梯形的面积教学设计

知远网

2025-08-26教案

知远网整理的梯形的面积教学设计(精选15篇),希望能帮助到大家,请阅读参考。

梯形的面积教学设计 篇1

一、教学目标

1、在实际情境中,认识计算梯形面积的必要性。

2、引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

3、结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

4、通过小组合作学习,培养学生合作学习的能力。

二、教材分析

“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

三、教学设计

(一)复习准备

1、复习旧知,铺垫引导

师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

生:转化成平行四边形。

(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

(点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)

师:同学们对前面的知识掌握的真不错。

(二)新知探索

(一)呈现实际情境,感受计算梯形面积的必要性

师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

师:你认为我们该从哪儿入手研究呢?

(学生思考片刻可能会回答:可以先转化为学过的图形)

师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

(点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)

(二)提供材料,自主探究图形的转化过程

1、提出小组合作的要求

师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

a。利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

b。把你的方法与小组成员进行交流,共同验证。

C、选择合适的方法交流汇报。

2、自主探究,合作学习

(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

3、全班汇报交流

师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

(学生边动手演示,边说转化过程,见下图。)

生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

(三)探索、归纳梯形的面积计算公式

师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的`平行四边形有什么联系?怎样推导其面积公式?

生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

生:梯形的面积是所拼平行四边形面积的一半。

生:梯形的面积=(上底+下底)×高÷2

(教师板书梯形面积计算公式)

师:一个梯形的面积为什么要除以2?

生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

板书:S=(a+b)h÷2

(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

(点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)

(三)联系实际,巩固运用

1、试一试

引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

(1)出示篮球场的罚球区图形,请计算出罚球区的面积。

(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

2、练一练第1、2、3题,让学生独立完成。

3、思考题

我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?

(四)课堂小结

通过今天课堂上的学习,谈谈你的收获。

梯形的面积教学设计 篇2

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、导入新课

1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

二、新课展开

第一层次,推导公式

(1)猜想:

让学生先猜测一下梯形的面积可能和哪些量相关。

(2)操作学具

①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

③指名学生操作演示。

学生预设:

方法一:把两个完全一样的梯形拼成一个平行四边形;

方法二:把一个梯形分成两个三角形;

方法三:把一个梯形分成一个平行四边形和一个三角形。

……

师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的'右边平行移动,直到成为一个平行四边形为止。

(2)观察思考

①教师提出问题引导学生观察。

a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

(3)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。

板书:梯形的面积=(上底+下底)×高÷2

问:梯形的面积公式中“(上底+下底)×高”求的是什么?

为什么要除以2?

③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

方法一:梯形的面积=上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

方法二:梯形的面积=平行四边形面积+三角形面积

=上底×高+三角形的底×高÷2

=(2个梯形上底+三角形底)×高÷2

=(梯形上底+梯形下底)×高÷2

④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

学生回答后,教师板书:“S=(a+b)h÷2”。

第二层次,公式应用。

(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

(1)完成练习十七第1、2和3题。

(2)讨论完成练习十七第4和6题。

四、全课小结。(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高例3S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

S=(a+b)h÷2=156×135÷2

=10530(平方米)

梯形的面积教学设计 篇3

【教学内容】

人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页。

【学情与教材分析】

梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。

【教学目标】

1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。

2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的'变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学

和现实生活的密切联系,体会学数学、用数学的乐趣。

【教学重点、难点】

1.理解并掌握梯形的面积计算公式。

2.运用梯形面积计算公式解决问题。

教学关键:

怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。

教具:

课件、梯形卡纸。

学具:

剪刀、各种不同形状的梯形卡纸。

教学过程:

一、课前复习

同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

请同学们看这幅图片,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

二、探索转化:

1、引导学生提出解决问题方向:

我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学

过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)

2、动手转化:

(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

小组活动:

(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

小组合作交流,老师巡视指导。学生可能出现的情况:

(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

3、公式推导:

根据转化方法来推导梯形的面积公式。归纳总结梯形的面积计算方法。梯形面积=(上底+下底)x高÷2

(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)

4、用字母表示梯形面积公式

三、应用公式解决问题

我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图

同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。)

四、巩固练习

1、选择(进一步明白求梯形面积公式的条件)。

2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)

3、我最聪明。(拓展提高)

五、反思总结,拓展延伸

1、学生谈收获,谈学习方法。

2、组内互评:这节课你最想表扬谁,为什么?

3、完成课内作业。

现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。

(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

【教学反思】

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作

梯形的面积教学设计 篇4

【教学内容】北师大版小学数学五年级第二单元图形的面积(一),探索活动(三)梯形的面积。

【教学目的】

1、通过观察、操作等实践活动,探索并掌握梯形的面积计算公式。

2、利用数方格或割补等方法,灵活运用旋转和平移的知识,探索梯形面积的推导过程,渗透迁移和转化的数学思想,发展学生的空间观念。

3、能有条理的思考,并对结论的合理性作出说明,感受数学思考过程的条理性和数学结论的确定性。

【教学重点】梯形的面积计算公式的推导过程

【教具准备】多媒体课件一套

【学具准备】两套完全一样的平面图形卡片、小剪刀、每个小组准备一份表格。

【教学过程】

一、创设情境,提出问题

投影:五种平面图形(正方形、长方形、平行四边形、三角形、梯形)的卡通形象。

(1)开心辞典:

每个学生可任意选择一种平面图形,说说对这种图形的认识。

(学生可能会围绕着图形的特征、周长和面积,以及面积公式的推导过程展开介绍)

师给予肯定和评价。

(2)激发内需,提出问题:

对于这5种平面图形,你还想了解哪个图形的数学知识?

板书课题:梯形的面积

二、合作探究,逐层递进

活动(一):猜一猜

1)根据以往的学习经验,你打算运用什么方法,找到梯形面积的计算方法呢?(数方格或割补等)

2)让学生尝试用数方格的方法进行学习,制造认知冲突。

质疑:那该怎么办?(割补方法,转化成已学过的平面图形)

板书:转化

投影如图:

(二)剪一剪,拼一拼

1)画一画:学生以小组为单位,拿出准备好的5种平面图形。

师:你能把正方形、长方形、平行四边形、三角形剪成两个完一样的梯形吗?请大家先试着在图形卡片上找一找、画一画。

2)剪一剪:跟小组同学商量后,再剪。

比一比,哪个小组的动作更快?(提醒学生:使用剪刀要注意安全)

3)学生分组活动,教师巡视指导。

4)学生汇报交流:

a.正方形可以剪成两个完全一样的直角梯形;

b.长方形可以剪成两个完全一样的梯形;

c.平行四形可以剪成两个完全一样的梯形;

……

多媒体课件剪的.演示过程。

5)学生互评:表扬小组中勤于思考、勇于探索的同学。

(三)议一议,填一填:

1)小组议一议:剪出来的梯形与原来的图形有什么联系呢?

2)填写表格。

投影如下:

底(ab)

高(h)

面积(s)

长方形

平行四边形

三角形

正方形

梯形

我发现了__________________________________

3)汇报交流:

a.梯形面积原来图形面积的一半;

b.梯形的(上底+下底)的和,是正方形的边长;

c.梯形的(上底+下底)的和,是长方形的长;

d.梯形的(上底+下底)的和,是平行四边形的底;

e.梯形的高是正方形的宽;

f.梯形的高是平行四边形的高;

……

学生边回答,课件边填写展示。

4)怎样计算梯形的面积呢?

板书:

因为正方形的面积= 边长 × 边长,所以:

梯形的面积=(上底+下底)×高÷2

因为长方形的面积=长 × 宽,所以:

梯形的面积=(上底+下底)×高÷2

因为平行四边形的面积= 底 × 高,所以:

梯形的面积=(上底+下底)×高÷2

……

5)小结:

谁能再说一说梯形面积的计算公式?

板书:

梯形的面积=(上底+下底)×高÷2

s = (a + b ) h÷2

三、回归生活,深化认识

1、出示情境图:一个堤坝的横截面,它的面积是多少?

2、顽皮的梯形:

投影:梯形的卡通人物形象,(配音1:同学们,休息一会儿,伸伸腰,我们一起来做操。)如图:

6

3

3

3

7

(单位:cm)

配音2:同学们,现在你还以求出我的面积吗?

学生练习后汇报交流,

提问:你发现了什么规律?(形状改变了,面积不变;梯形的面积大小是由底和高的大小决定的。)

我该怎么办?

3、大象的困惑:

如图:

师:大象每天都得运一堆33根的木材。今天它却碰到了难题,不知道该运哪一堆才好。你能帮助它吗?

学生练习,并汇报小结:(上层的根数+下层的根数)×层数=梯形木材的总根数

四、反思总结,拓展延伸

1、学生谈收获,谈学习方法;

2、组内互评:这节课你最想表扬谁,为什么?

五、作业:

1、练一练第1、3题和“试一试”;

2、怎样把梯形转化成其他平面图形,回家试试看。并把推导过程记录下来。

板书设计:

梯形的面积

(转 化)

平行四边形的面积= 底 × 高,

梯形的面积 =(上底+下底) ×高 ÷2

s =( a + b )h÷2

(集合)梯形的面积教学设计

作为一名无私奉献的老师,时常需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的梯形的面积教学设计,仅供参考,希望能够帮助到大家。

梯形的面积教学设计 篇5

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的'面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

[优秀]梯形的面积教学设计15篇

作为一位不辞辛劳的人民教师,常常需要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的梯形的面积教学设计,欢迎大家分享。

梯形的面积教学设计 篇6

教学内容:

教科书88页和89页

教学目标:

(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力以及动手操作能力。

(3)进一步渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教具准备:多媒体课件

教学过程:

一、创设情境,引出问题

教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

问:同学们这块地是什么图形啊?

生1:这是一个梯形。

问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

生2:必须先知道梯形的面积。

师:今天我们这节课就来研究“梯形面积的计算”(板书)。

二、探究新知。

(1)、铺垫孕伏。

组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

重点突出旋转、平移、割补的数学思想。

(2)、协作研讨,探求方法

1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

师:谁能介绍一下这个梯形?

生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

生4: (3+5)42=16(平方厘米)

生5: 542+342=16(平方厘米)

生6: (5+3)42=16(平方厘米)

生7: (5-3)42+34=16(平方厘米)

生8: (5+3)(42)=16(平方厘米)

生9: (3+5)24=16(平方厘米)

生10: 34+(5-3)42=16(平方厘米)

师生交流、点评……

3、总结规律,渗透数学思想方法

师:这些方法有什么共同的地方吗?

生11:结果都是16平方厘米。

生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

师:这几个数字和梯形有什么关系吗?

生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:现在谁能猜一猜梯形的面积计算公式是怎样的?

生14:梯形的面积=(上底+下底)高2

师:如果用字母S表示梯形的'面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

生15:S=(a+b)h2

三、应用知识,解决问题

1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

生16:(300+200)100210=2500(棵)

2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

3、提高能力练习:共同探讨练习十八的第四题。

四、知识小结,体验学习的快乐!

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

梯形的面积教学设计 篇7

【教学内容】北师大版小学数学五年级第二单元图形的面积(一),探索活动(三)梯形的面积。

【教学目的】

1、通过观察、操作等实践活动,探索并掌握梯形的面积计算公式。

2、利用数方格或割补等方法,灵活运用旋转和平移的知识,探索梯形面积的推导过程,渗透迁移和转化的数学思想,发展学生的空间观念。

3、能有条理的思考,并对结论的合理性作出说明,感受数学思考过程的条理性和数学结论的确定性。

【教学重点】梯形的面积计算公式的推导过程

【教具准备】多媒体课件一套

【学具准备】两套完全一样的平面图形卡片、小剪刀、每个小组准备一份表格。

【教学过程】

一、创设情境,提出问题

投影:五种平面图形(正方形、长方形、平行四边形、三角形、梯形)的卡通形象。

(1)开心辞典:

每个学生可任意选择一种平面图形,说说对这种图形的认识。

(学生可能会围绕着图形的特征、周长和面积,以及面积公式的推导过程展开介绍)

师给予肯定和评价。

(2)激发内需,提出问题:

对于这5种平面图形,你还想了解哪个图形的数学知识?

板书课题:梯形的面积

二、合作探究,逐层递进

活动(一):猜一猜

1)根据以往的学习经验,你打算运用什么方法,找到梯形面积的计算方法呢?(数方格或割补等)

2)让学生尝试用数方格的方法进行学习,制造认知冲突。

质疑:那该怎么办?(割补方法,转化成已学过的平面图形)

板书:转化

投影如图:

(二)剪一剪,拼一拼

1)画一画:学生以小组为单位,拿出准备好的5种平面图形。

师:你能把正方形、长方形、平行四边形、三角形剪成两个完一样的梯形吗?请大家先试着在图形卡片上找一找、画一画。

2)剪一剪:跟小组同学商量后,再剪。

比一比,哪个小组的动作更快?(提醒学生:使用剪刀要注意安全)

3)学生分组活动,教师巡视指导。

4)学生汇报交流:

a.正方形可以剪成两个完全一样的直角梯形;

b.长方形可以剪成两个完全一样的梯形;

c.平行四形可以剪成两个完全一样的梯形;

……

多媒体课件剪的演示过程。

5)学生互评:表扬小组中勤于思考、勇于探索的同学。

(三)议一议,填一填:

1)小组议一议:剪出来的梯形与原来的图形有什么联系呢?

2)填写表格。

投影如下:

底(ab)

高(h)

面积(s)

长方形

平行四边形

三角形

正方形

梯形

我发现了__________________________________

3)汇报交流:

a.梯形面积原来图形面积的一半;

b.梯形的(上底+下底)的和,是正方形的边长;

c.梯形的(上底+下底)的和,是长方形的长;

d.梯形的(上底+下底)的和,是平行四边形的底;

e.梯形的'高是正方形的宽;

f.梯形的高是平行四边形的高;

……

学生边回答,课件边填写展示。

4)怎样计算梯形的面积呢?

板书:

因为正方形的面积= 边长 × 边长,所以:

梯形的面积=(上底+下底)×高÷2

因为长方形的面积=长 × 宽,所以:

梯形的面积=(上底+下底)×高÷2

因为平行四边形的面积= 底 × 高,所以:

梯形的面积=(上底+下底)×高÷2

……

5)小结:

谁能再说一说梯形面积的计算公式?

板书:

梯形的面积=(上底+下底)×高÷2

s = (a + b ) h÷2

三、回归生活,深化认识

1、出示情境图:一个堤坝的横截面,它的面积是多少?

2、顽皮的梯形:

投影:梯形的卡通人物形象,(配音1:同学们,休息一会儿,伸伸腰,我们一起来做操。)如图:

6

3

3

3

7

(单位:cm)

配音2:同学们,现在你还以求出我的面积吗?

学生练习后汇报交流,

提问:你发现了什么规律?(形状改变了,面积不变;梯形的面积大小是由底和高的大小决定的。)

我该怎么办?

3、大象的困惑:

如图:

师:大象每天都得运一堆33根的木材。今天它却碰到了难题,不知道该运哪一堆才好。你能帮助它吗?

学生练习,并汇报小结:(上层的根数+下层的根数)×层数=梯形木材的总根数

四、反思总结,拓展延伸

1、学生谈收获,谈学习方法;

2、组内互评:这节课你最想表扬谁,为什么?

五、作业:

1、练一练第1、3题和“试一试”;

2、怎样把梯形转化成其他平面图形,回家试试看。并把推导过程记录下来。

板书设计:

梯形的面积

(转 化)

平行四边形的面积= 底 × 高,

梯形的面积 =(上底+下底) ×高 ÷2

s =( a + b )h÷2

梯形的面积教学设计 篇8

教学内容:

教科书88页和89页

教学目标:

(1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力以及动手操作能力。

(3)进一步渗透旋转、平移的数学思想。

教学重点:理解并掌握梯形面积公式的计算方法。

教学难点:理解梯形面积公式的推导过程。

教具准备:多媒体课件

教学过程:

一、创设情境,引出问题

教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

问:同学们这块地是什么图形啊?

生1:这是一个梯形。

问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

生2:必须先知道梯形的面积。

师:今天我们这节课就来研究“梯形面积的计算”(板书)。

二、探究新知。

(1)、铺垫孕伏。

组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

重点突出旋转、平移、割补的数学思想。

(2)、协作研讨,探求方法

1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

师:谁能介绍一下这个梯形?

生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

生4: (3+5)42=16(平方厘米)

生5: 542+342=16(平方厘米)

生6: (5+3)42=16(平方厘米)

生7: (5-3)42+34=16(平方厘米)

生8: (5+3)(42)=16(平方厘米)

生9: (3+5)24=16(平方厘米)

生10: 34+(5-3)42=16(平方厘米)

师生交流、点评……

3、总结规律,渗透数学思想方法

师:这些方法有什么共同的地方吗?

生11:结果都是16平方厘米。

生12:每种方法的`计算过程中都用到3、4、5、2这几个数字。

师:这几个数字和梯形有什么关系吗?

生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

师:现在谁能猜一猜梯形的面积计算公式是怎样的?

生14:梯形的面积=(上底+下底)高2

师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

生15:S=(a+b)h2

三、应用知识,解决问题

1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

生16:(300+200)100210=2500(棵)

2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

3、提高能力练习:共同探讨练习十八的第四题。

四、知识小结,体验学习的快乐!

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

梯形的面积教学设计 篇9

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的`梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形的面积教学设计 篇10

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的`平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形的面积教学设计 篇11

一、教材分析

“梯形的面积”是在学生认识梯形的特征,掌握了平行四边形,三角形的面积计算,并形成一定空间观念的基础上进行的教学。因此,教材没有安排用数方格的方法求梯形的面积,引导学生把梯形转化为已学过的图形来计算它的面积,让学生在自主探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的构建。

二、教学目标

1、知识技能目标

通过剪、拼、摆等操作活动,运用转化思想,寻找图形之间的联系,推导梯形面积计算公式,并运用公式解决简单的实际问题。

2、过程方法目标

通过梯形面积公式推导过程,培养学生观察、比较、分析、概括能力,发展学生空间观念。

3、情感态度价值观目标

使学生能用梯形的面积公式解决简单的实际问题,体会学数学,用数学的乐趣。

三、教学重点

理解并掌握梯形面积计算公式。

四、教学难点

理解梯形面积公式的推导过程。

五、学具教具准备

梯形纸片、小剪刀、多媒体课件

六、教学过程

(一)我们来回顾

1、动画引入:生动的动画小金鱼

图中有哪些几何图形?你知道哪些图形的面积公式?

2、回顾平行四边形面积公式,三角形面积公式的推导过程,突出“转化”的数学思想方法。

生1:探索平行四边形面积时,把平行四边形转化为已经学过的长方形,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的.高,所以平行四边形面积=底×高。

生2:探索三角形面积时,把两个完全一样的三角形拼成一个平行四边形。

(二)我们来探究

1、情景导入

车窗玻璃是梯形的,你算车窗玻璃的面积吗?

2、自主探究

摆一摆,剪一剪,拼一拼,你能用所学过的方法推导出梯形的面积计算公式吗?

(三)我们来交流

1、小组交流

2、全班汇报展示

演示你们小组的实验操作过程,说说你的推导方法和过程

A组汇报展示:我们小组是把两个完全一样的梯形拼成一个平行四边形(操作演示),这样平行四边形的底等于梯形的上、下底的和,高等于梯形的高,所以得到:

梯形的面积=(上底+下底)×高÷2

同学们有没有问题?

生问:为什么要除以2?

A组同学解疑:因为是两个完全一样的梯形拼成一个平行四边形,所以这两个梯形的面积等于这个平行四边形的面积,即(上底+下底)×高,求一个梯形就要除以2。

B组汇报展示:我们小组是把一个梯形沿对角线剪成两个三角形(操作演示),它们的面积分别是“上底×高÷2”和“下底×高÷2”,所以梯形的面积=上底×高÷2+下底×高÷2。

C组汇报展示:我们吓阻是把一个梯形剪成一个平行四边形和三角形一个(操作演示),它们的面积分别是“(下底-上底)×高”和“上底×高÷2”,所以梯形的面积=(下底-上底)×高+上底×高÷2。

D组汇报展示:我们小组是沿着中位线剪开,拼补成一个平行四边形(操作演示)这个平行四边形的底等于梯形上、下底的和,高等于梯形的高的一半,所以梯形面积=(上底+下底)×高÷2。

……

师:同学们真棒!用这么多的方法求出了梯形的面积,再一起把这些方法梳理一下(课件展示不同方法的推导过程)。

概括梯形面积公式:梯形面积=(上底+下底)×高÷2,如果用s表示梯形面积,a、b分别表示上底、下底,h表示高,那么s=(a+b)×h÷2。

注意转化前后的图形之间的联系并体验多种策略解决数学问题的魅力和乐趣。

3、概括梯形面积计算公式

(四)我们来解决

1、求三峡水电站横截面的一部分面积(课件出示题目及图形)

学生独立解答

展示学生解答过程,并点评强调不要忘记除以二

2、求车窗玻璃面积

课件出示题目

提示学生要求两块车窗玻璃的面积

展示学生独立完成的过程并点评

(五)我们来挑战

1、一个梯形上、下底的和是10,厘米,高6厘米,求它的面积。如果高不变,面积不变,它的上、下底可能分别是多少?画一画,你能够发现什么?梯形、平行四边形、三角形的面积公式有联系吗?

2、下次研究圆的面积计算,你打算用什么策略?

(六)我们来小结

说说你这节课学到了哪些知识?用到了哪些数学思想方法?

(七)教学反思

这节课通过学生动手操作、自主探究、小组合作、全班交流,经历了从探究中发现,从发现中体验,在体验中发展的过程。在这个过程当中,同学们运用类比思想、转化思想,得出了多种计算梯形面积的方法和策略,体验了数学的无限魅力和无穷乐趣,学生在一次次成功的喜悦中,学得其乐无比,兴趣盎然。

在这节课“我们来挑战”的活动中,第一题有利于同学们研究梯形、平行四边形、三角形面积公式的联系,对所学知识进行有效的整合,还渗透了极限思想方法。第二题多数同学能够类比想到以后研究圆时,仍然把它转化为已将学过的图形研究,让转化的思想深入人心。

梯形的面积教学设计 篇12

教学目标

1.使学生在理解的基础上探索并掌握梯面积计算公式的推导过程,能利用公式求梯形的面积。

2.掌握转化的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点

梯形面积计算公式的推导和利用

教学难点

运用转化的方法探究梯形的面积计算公式

教学具准备

剪刀,一个梯形,方格纸

教学过程

一、复习欣赏、引入新课。

1.展示生活中的梯形,温故引新

师:这就是我们生活中的梯形。你能说出它各部分的名称吗?请你边说边用你的小手指一指.你还想知道什么?(出示课件)

生:面积

师:大家回忆一下,三角形的面积计算公式是什么?三角形的面积计算公式是怎么推导出来的?(ppt演示)

生:用两个完全一样的三角形拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形的高,三角形的面积是平行四边形面积的一半。沿三角形两边的中点剪开后拼成平行四边形,平行四边形的底是三角形的底,平行四边形的高是三角形高的一半,所以三角形的面积是底乘高除以2。师:通过剪拼转化成我们学过的图形,找到他们之间的联系在推导。

2.出示课题

师:今天我们继续用转化的方法学习梯形的面积。(板书课题:梯形的面积)

师:谁知道梯形的面积公式?

生:梯形的面积=(上底+下底)×高÷2

师:如果用a、b、h分别表示梯形的上底、下底与高,用s表示梯形的面积,梯形的面积计算公式还可以怎么表示?

生:S梯形=(a+b)×h÷2

【设计意图】本环就展开想象,在兴趣盎然的状态中打开了思维,培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力,初步感知解决问题的途径和方法.

二、提供材料、动手操作、公式推导。

1.猜想梯形面积公式可能的推导过程

师:谁愿意猜一猜梯形面积的计算公式可能是怎样推导出来的?

生1:用两个完全一样的梯形拼成平行四边形

生2:把个梯形分割成两个三角形

生3:把一个梯形转化成三角形来推导

生4:把一个梯形转化成平行四边形来推导

师:同学们对梯形面积的计算公式推导作了大胆的猜想,但光有猜想是不够的,我们还要进行探索研究,通过事实来说明。

2.提供材料,探索研究

师:刚才同学们提到用两个完全一样的梯形拼成平行四边形推导,但老师今天只准备一个梯形怎么办?(课件出示图一)

生:画一个同样的梯形进行推导

师:请先想象一下,然后拿出材料画一画,再推导面积公式(学生研究,然后汇报并白板操作)生:两个完全一样的梯形拼成一个平行四边形,平行四边形的底是梯形上底与下底的和,平行四边形的高是梯形的高,梯形的面积是平行四边形面积的一半。

师:“(上底+下底)×高”表示什么?求梯形的面积为什么还要除以2?

生:(上底+下底)×高求的是平行四边形的面积,用两个完全一样的梯形拼成平行四边形,除以2求的是梯形的面积。

师:通过刚才的学习,用两个完全相同的梯形拼成一个平行四边形确定能推导出梯形的面积计算公式,但是也有同学猜想用一个梯形也能转化成平行四边形、三角形、长方形来推导,你们觉得可以吗?

(2)用一个梯形推导梯形面积计算公式(学生再次研究,然后汇报并白板操作)

师:想办法把一个梯形剪或拼成平行四边形或三角形,再推导出面积公式。

生1:我们沿着梯形两腰中点的连线将梯形剪开(白板操作)转化成一个平行四边形。平行四边形的底等于梯形上底与下底的和,平行四边形的高只有梯形高的一半,(上底+下底)×高÷2,求出的是这个平行四边形的面积,也就是梯形的面积。所以梯形的面积=(上底+下底)×高÷2。

师:上底与下底的和表示什么?高÷2又表示什么?

生:上底与下底的和表示平形四边形的底,高÷2表示平行四边形的高。

师:那位同学是转化成三角形来推导的?

生2:我们沿着梯形一个顶点和一条腰的中点分割下来,把它转化成三角形。三角形的底等于梯形的上底与下底的和,梯形的高等于三角形的高。所以梯形的面积=(上底+下底)×高÷2。(学生白板操作)师:你们是沿着腰上的任意一点进行分割的?

生:必须要沿着梯形一腰的中点与顶点的连线进行分割,剪下来才能拼成一个三角形。

师:上底与下底的和表示什么?

生:上底与下底的和表示三角形的底

生3:我们把梯形分割成两个三角形,方格纸中读出每个三角形的底和高,两个三角形面积和就是梯形的面积,再在方格纸中读出梯形上底,下底,高,从而推出梯形面积公式。

生4>我们把一个梯形分割成一个平行四边形和一个三角形进行推导,也能推出梯形面积公式。

师:刚才同学们用了不同的方法推导出梯形的面积公式,这说明同学们很会思考,其实推导梯形的.面积公式还有其他方法,我们还可以在课后继续研究。

【设计意图】让学生动手操作在实验中不断发现问题,在同伴交流中拓展自己的思维,哦不满足于一种方法的公式推导。展示多种方法,开拓学生的思维,沟通多种方法之间的联系和区别。

三、联系实际、巩固运用

1.师:有了梯形面积计算公式,我们能不能计算这个梯形的面积?想办法计算出这个梯形的面积?

(学生白板工具栏中数学选直尺量出梯形的上底4.7厘米、下底13.5厘米、高8.5厘米,代入梯形面积计算公式计算出梯形的面积。)

2.师:梯形在我们日常生活中用途很广泛,这是我国最大的三峡水电站,

我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

【设计意图】本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。

四、课堂总结、畅谈收获。

本节课你学到了哪些知识?你有什么收获?(引导学生从知识和方法两方面进行总结)【设计意图】这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

板书设计:

梯形的面积

梯形的面积=(上底+下底)×高÷2

S=(a+b)h÷2

教学反思:

是在学生学习了平行四边形和三角形面积计算的基础上进行学习的。多数学生学习了平行四边形和三角形面积计算之后,会通过各种不同的渠道获取梯形面积的计算公式,但很少有学生会思考梯形面积计算公式是怎样推导出来的,学生经历了平行四边形和三角形的面积公式的推导过程的学习后,已经掌握了要把梯形转化为已知学过的图形进行推导。那么.用什么材料和方法引导学生进行探索呢?

一、一切从学生实际出发

新课表的核心理念是为了每一个学生的发展,但我们有多少时间是真正站在学生发展的角度去落实课堂教学呢?在我们的思维习惯中,往往会从整个数学知识体系去考虑教学,却很少从孩子发展的角度思考。学生已经具备了要把梯形转化为学过的图形进行推导的经验,是否就可以完全放手让学生应用已有的知识,经验主动学习新知识,从而学会学习呢?真正落实到课堂上,却并非易事。所以我把梯形的面积公式推导过程分为两个层次组织学生进行学习,先引导学生用两个完全相同的梯形进行推导,让全班所有的学生都掌握这种推导方法,再引导学生用一个梯形通过割补、分割等方法,把梯形转化成平行四边形、三角形等进行推导,根据推导方法的难易程度,在学习组织上安排了二人合作的形式进行这样的组织教学,层次清楚,每个环节目标明确,让每个学生更深刻地体验了转化的数学思想方法,数学思维能力得到提升。

二、画一画中经历面积的推导过程

在平时的动手操作课中,多数教师都觉得很麻烦,主要原因是制作学习材料繁琐,课堂教学调

控比较困难,很容易造成操作的低效现象,为追求学习材料的简洁,我没有制作一些梯形的纸片让学生学习研究,而且把纸片拼摆改成让学生自己画一画,同时考虑到学生画图是用尺子量,误差太大,速度很慢等缺点。采用方格图帮助学生理解,排出一些不必要的干扰因素,这样的学具准备一方面很方便,更重要的是让学生把研究的想法画出来,逼迫学生先进行想象,比直接让学生拼摆更具有挑战性,更有利于发展学生的空间观念。

三、在推导过程中发展空间观念和思维能力

推导梯形的面积公式主要不是让学生简单地拼一拼、摆一摆或剪一剪,而是让学生通过这样的动手操作推导出梯形的面积公式,培养学生的空间观念。本课教学让学生先想象,然后把拼摆过程画下来,画的过程就是学生想象的过程,发展学生的空间观念。尤其把一个梯形转化成平行四边形、三角形要求更高,这些转化过程必须经历学生的空间想象,白板的应用,让学生观察梯形的变化,即发展了学生的空间观念,又能很好地将梯形的面积公式与三角形、平行四边形的面积公式沟通起来,让学生感受到数学知识之间的内在联系,化抽象为具体,让学生理解的更深刻。

梯形的面积教学设计 篇13

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的`面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形的面积教学设计 篇14

一、学情分析

学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析

"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计

1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点

教学重点

1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点

梯形面积公式的推导过程。

五、教学策略设计

我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

六、教学过程设计

教学环节一

一、汇报预习的成果

(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

2、对于梯形,你们已经知道了什么?

3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?

4、如何推导梯形的面积计算公式?谈谈你的想法。

学生汇报前三个:

生1:我发现任何梯形都可以分成两个三角形。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。

(揭示课题)

设计意图

引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

教学环节二

二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。

师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。

(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)

生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?

生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?

生8:看看梯形的面积与已经学过的`长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

设计意图

交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。

教学环节

三、应用知识,自主探究

师:同学们是不是都有自己的想法了,想不想马上动手试试?

(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)

教学环节四

设计意图

对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

四、汇报展示

师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:

引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

教学环节

五、在实践应用中拓展、延续数学知识的"再创造"。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:

学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

六、作业设计

师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)

实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

七、板书设计

梯形的面积

梯形的面积=(上底+下底)×高÷2转化

S梯形=(a+b)×h÷2(学生的方法展示)

八、预设效果

本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

九、课外知识的准备

了解多种转化的方法。

梯形的面积教学设计 篇15

【教学内容】北师大版小学数学五年级第二单元图形的面积(一),探索活动(三)梯形的面积。

【教学目的】

1、通过观察、操作等实践活动,探索并掌握梯形的面积计算公式。

2、利用数方格或割补等方法,灵活运用旋转和平移的知识,探索梯形面积的推导过程,渗透迁移和转化的数学思想,发展学生的空间观念。

3、能有条理的思考,并对结论的合理性作出说明,感受数学思考过程的条理性和数学结论的确定性。

【教学重点】梯形的面积计算公式的推导过程

【教具准备】多媒体课件一套

【学具准备】两套完全一样的平面图形卡片、小剪刀、每个小组准备一份表格。

【教学过程】

一、创设情境,提出问题

投影:五种平面图形(正方形、长方形、平行四边形、三角形、梯形)的卡通形象。

(1)开心辞典:

每个学生可任意选择一种平面图形,说说对这种图形的认识。

(学生可能会围绕着图形的特征、周长和面积,以及面积公式的推导过程展开介绍)

师给予肯定和评价。

(2)激发内需,提出问题:

对于这5种平面图形,你还想了解哪个图形的数学知识?

板书课题:梯形的面积

二、合作探究,逐层递进

活动(一):猜一猜

1)根据以往的学习经验,你打算运用什么方法,找到梯形面积的'计算方法呢?(数方格或割补等)

2)让学生尝试用数方格的方法进行学习,制造认知冲突。

质疑:那该怎么办?(割补方法,转化成已学过的平面图形)

板书:转化

投影如图:

(二)剪一剪,拼一拼

1)画一画:学生以小组为单位,拿出准备好的5种平面图形。

师:你能把正方形、长方形、平行四边形、三角形剪成两个完一样的梯形吗?请大家先试着在图形卡片上找一找、画一画。

2)剪一剪:跟小组同学商量后,再剪。

比一比,哪个小组的动作更快?(提醒学生:使用剪刀要注意安全)

3)学生分组活动,教师巡视指导。

4)学生汇报交流:

a.正方形可以剪成两个完全一样的直角梯形;

b.长方形可以剪成两个完全一样的梯形;

c.平行四形可以剪成两个完全一样的梯形;

……

多媒体课件剪的演示过程。

5)学生互评:表扬小组中勤于思考、勇于探索的同学。

(三)议一议,填一填:

1)小组议一议:剪出来的梯形与原来的图形有什么联系呢?

2)填写表格。

投影如下:

底(ab)

高(h)

面积(s)

长方形

平行四边形

三角形

正方形

梯形

我发现了__________________________________

3)汇报交流:

a.梯形面积原来图形面积的一半;

b.梯形的(上底+下底)的和,是正方形的边长;

c.梯形的(上底+下底)的和,是长方形的长;

d.梯形的(上底+下底)的和,是平行四边形的底;

e.梯形的高是正方形的宽;

f.梯形的高是平行四边形的高;

……

学生边回答,课件边填写展示。

4)怎样计算梯形的面积呢?

板书:

因为正方形的面积= 边长 × 边长,所以:

梯形的面积=(上底+下底)×高÷2

因为长方形的面积=长 × 宽,所以:

梯形的面积=(上底+下底)×高÷2

因为平行四边形的面积= 底 × 高,所以:

梯形的面积=(上底+下底)×高÷2

……

5)小结:

谁能再说一说梯形面积的计算公式?

板书:

梯形的面积=(上底+下底)×高÷2

s = (a + b ) h÷2

三、回归生活,深化认识

1、出示情境图:一个堤坝的横截面,它的面积是多少?

2、顽皮的梯形:

投影:梯形的卡通人物形象,(配音1:同学们,休息一会儿,伸伸腰,我们一起来做操。)如图:

6

3

3

3

7

(单位:cm)

配音2:同学们,现在你还以求出我的面积吗?

学生练习后汇报交流,

提问:你发现了什么规律?(形状改变了,面积不变;梯形的面积大小是由底和高的大小决定的。)

我该怎么办?

3、大象的困惑:

如图:

师:大象每天都得运一堆33根的木材。今天它却碰到了难题,不知道该运哪一堆才好。你能帮助它吗?

学生练习,并汇报小结:(上层的根数+下层的根数)×层数=梯形木材的总根数

四、反思总结,拓展延伸

1、学生谈收获,谈学习方法;

2、组内互评:这节课你最想表扬谁,为什么?

五、作业:

1、练一练第1、3题和“试一试”;

2、怎样把梯形转化成其他平面图形,回家试试看。并把推导过程记录下来。

板书设计:

梯形的面积

(转 化)

平行四边形的面积= 底 × 高,

梯形的面积 =(上底+下底) ×高 ÷2

s =( a + b )h÷2

梯形的面积教学设计范例15篇

作为一位杰出的老师,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么优秀的教学设计是什么样的呢?下面是小编精心整理的梯形的面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

大家都在看