知远网整理的《分数除法》教学设计(精选15篇),希望能帮助到大家,请阅读参考。
《分数除法》教学设计 篇1
板书设计(需要一直留在黑板上主板书)
分数除法
例1:每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)
学生学习活动评价设计
通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。
教学反思
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。
主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的`四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。
《分数除法》教学设计 篇2
内容:
本册教科书第28页例2和练习八第1~4题。
教学目的:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。
教学过程:
一、复习
1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。
1/5、3/4、7/16、9/9
2、口算下面各题。
1/6÷3、4/5÷2、3/8÷6、6/7÷2
提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)
3、解答应用题。
一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)
提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)
指定一名学生列式解答。
二、新课
揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。
1、出示例题。
一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:这道题要求哪一个数量?根据已学过的'数量关系,这道题应该怎样列式?
指名列出算式,教师板书:18÷。
2、教学整数除以分数的计算方法。
教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。
提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。
提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)
提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)
提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)
提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)
提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。
提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。
提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:
18÷==45(千米)
写出答案“答:汽车1小时行驶45千米。”
3、引导学生小结。
“整数除以分数,等于整数乘上除数的倒数。”
三、看教科书中新课内容后试算
全体学生独立计算“做一做”中的练习题:
12÷ 24÷
集体订正计算过程及结果,并提问一个数除以分数的法则。
四、课堂练习
在练习本上计算练习八第1、2题,然后订正计算结果。
五、总结
今天学习了什么新知识?
整数除以分数的计算法则是什么?
计算整数除以分数应注意什么?
六、布置作业
1、阅读教科书第28~29页的内容。
2、在练习本上做练习八第3、4题。
《分数除法》教学设计
作为一位不辞辛劳的人民教师,通常需要准备好一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的《分数除法》教学设计,仅供参考,欢迎大家阅读。
《分数除法》教学设计 篇3
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的'被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2、3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2、3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
《分数除法》教学设计 篇4
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:
(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,
教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
教后反思:
本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的'1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。
《分数除法》教学设计 篇5
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的'算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2.3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2.3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
《分数除法》教学设计 篇6
教学内容:
苏教版五年级下册第四单元例2、例3及相关练习
教学流程:
一、复习旧知,导入新课
1.回顾旧知
回忆:同学们在以前的学习中,认识了哪些数?(整数、小数、分数、自然数、正数、负数……)学过了哪些运算?(加、减、乘、除)上节课我们认识了分数的意义,那么分数的本质和我们学过的运算之间有没有什么联系呢?今天就让我们一起来研究。
提问:对于3/4这个分数,你有哪些认识?
预设:
①把单位“1”平均分成4份,表示这样3份的数。
②分数单位是1/4,3个1/4就是3/4。
③这个分数比1少1/4。
2.激疑引新
过渡:分数在我们生活中也会经常用到。请看,我们学校五年级同学前段时间春游了。午餐时间,同学们正在平均分饼吃呢。(出示情境图)
提问:瞧!这里有四组同学,每组都是4个人,每个桌上都有一盒饼。那么,每人分得自己桌上饼的几分之几?你是怎么想的?
预设:
①每人都是分得自己桌上饼的1/4。
②都是把单位“1”平均分成4分,每人分得这样的1份。
追问:既然这些小组分的都是总数的1/4,那每人分得的块数会一样多吗?
预设:①一样多。②不一样多。
过渡:到底是不是一样多,让我们一起来分分看。
【设计意图:课始通过必要的复习,激活相关旧知,为新课学习做好迁移准备。然后借助简单的生活情境,在巩固学生对分数的“份数”定义认识的同时,结合单位“1”——饼的总数变化,引导学生初步感知总数与份数、每份数之间的关系,产生计算每个小组每人分得块数的需求,也为后面理清“每人分得多少块”和“每人分得这些饼的几分之几”,即“量”和“率”这两个容易混淆的问题进行了适当的铺垫。】
二、操作探究,形成概念
1.初步感知
提问:我们先打开第一个盒子,看每人分得多少块?你是怎么想?
交流:8÷4=2(块),把8块饼平均分成4份,每份就是2块。
提问:再打开第二个盒子。这时总数的1/4表示多少块呢?
交流:4÷4=1(块)
追问:为什么刚才都可以用除法来计算呢?(平均分)
过渡:原来我们要把这些饼平均分,所以用除法计算。
(板书:饼的块数÷人数=平均每人得到的块数)
提问:我们来打开第三个盒子,现在只有1块饼,你会列式吗?
交流:1÷4
追问:那每人分得多少块呢?你是怎么想的?
预设:①0.25块。②1/4块。
过渡:我们在平均分的时候,有时候可以得到整数商,有时候不能得到整数商,于是就产生了小数和分数。
演示:让我们借助图形来验证一下。
演示
(板书:1块的1/4是1/4块)
追问:同学们刚才这三桌同学都在平均分饼,每人都分得自己桌上饼的1/4,为什么有人分得2块,有人分得1块?有人分得1/4块呢?
小结:是呀,虽然都是总数的1/4,但是总量不同,每一份的具体块数也不同。
【设计意图:从商是整数的除法,演变到商是几分之一的除法,学生通过已有的除法经验,不难想到计算的.方法;而当总块数是1块饼的时候,学生也很容易从分数意义的角度,用除法推想出分得的结果。从这两个角度出发,学生很自然地就能在1÷4和1/4之间建立起相等的关系。基于这样的认识,再借助实物建立起1/4块的表象,同时渗透度量的思想,为后面的教学做好孕伏。】
2.操作比较
提问:打开第四小组的盒子。盒子里有3块饼,还是分给4个人,平均每人分得多少块呢?可以怎样列式呢?
预设:3÷4
实验操作:能不能利用我们上面分一块饼的方法,用合适的数表达把3块饼平均分成4份,每人分得的结果?
(小组合作,动手分一分)
交流①:我们是一个一个分的。
(学生上台操作分饼)
追问:你是先得到什么再得到3/4块的?
(教具演示)
过渡:还有哪个组分的过程和他们不一样?
交流②:我们是3个饼叠在一起分的。
(学生操作演示)
回顾:刚才在分的过程中把几块饼平均分成了4份?每人得到了这3块饼的1/4,那么每人分得多少块呢?你能把每人的1份拼在一起吗?现在知道3块饼的1/4也就是3/4块。
比较:刚才在分的过程中有同学是一块一块分的,有同学是3块一起分的,分法虽然不一样,但它们之间有什么相同地方?哪一种分得更快一点呢?
(学生以4人为一组,讨论)
讲述:把3块饼平均分成4份,我们可以用3÷4等于3/4块。
3.变式延伸
提问:假如第四组又来了一个小朋友,你能算出现在第四组平均每人分得多少块吗?
思考并交流:3÷5=3/5(块)
问:是不是真的等于3/5块呢?我们可以怎么验证?(在脑中分一分)你是怎么想的?(学生说说自己的想法,课件演示)
延伸:如果3块饼平均分给7个小朋友,每人分得多少块?平均分给8个小朋友呢?100个小朋友呢?
【设计意图:学生通过动手操作、观察、思考以及交流、讨论、汇报等数学活动,一方面可以理解分数是由多个分数单位合成的,另一方面也理解了两种分法的关系。同时从3/4到3/5再到3/7、3/8、3/100……一系列变式延伸,让学生充分体会到了分得的块数与饼的总量和人数之间的关系,在此基础上分数与除法的关系模型已初步建立。】
4.勾连关系
提问:通过今天的研究,黑板上有这么多分数和除法算式,仔细观察,你能用一句话来概括出分数于除法之间的关系吗?
交流并翻转卡片得到板书:
追问:字母关系式中有什么要注意的呢?(b不等于0)
联系:通过刚才的学习,我们指导除法的商都能用分数来表示,那我们以前学习的除法能不能用分数来表示呢?你更喜欢哪种?
小结:以前学习的整数除法的得数也可以用分数表示,有时用整数简便,有时也用小数表示。我们一起学习了分数和小数之间的关系,今天又一起研究了分数与除法之间的关系。
(板书:分数与除法的关系)
【设计意图:从直观到抽象,从操作到想象,这是一个不断递进的过程。有了前面慢节奏的初步感知和深入交流,才会为此环节建立真正的概念模型打下基础,同时学生对除法和分数之间的关系有了进一步的理解,为今后解决实际问题和灵活应用积累了丰富的数学活动经验。】
三、练习应用,形成能力
1.巩固练习
(学生独立思考,同桌交流)
2.应用练习
(学生独立思考,全班反馈)
追问:在互化时你的依据是什么?后面一题为什么不用小数表示?
(看来分数有时能弥补小数的不足)
3.拓展练习
(学生看图,独立完成并口述交流。)
追问:仔细观察这几题,你有什么发现?什么变了,什么没变?
【设计意图:通过三个层次的练习,帮助学生巩固了分数与除法关系的知识。从数学问题到数量问题再到生活问题,层层递进。最后把前后知识勾连,形成知识体系。】
四、全课总结,感悟思想
提问:通过今天的学习,你有什么收获?我们是怎样研究分数与除法之间的关系的?
板书设计
总结:分数与除法之间有着密切的联系。计算除法的商,有时候我们可以用像以前一样的整数或小数来表示,有时候可以用类似今天这样的分子比分母小的分数来表示。以后我们还会碰到分子比分母大的分数。(联系板书内容)像这里的8/4块、1/4块……这样的分数表示的都是具体的数量(板书:数量),我们再来看,当平均分成4份时,每人分得1/4;那平均分成5份、7份呢?b份呢?像这里的1/4、1/5、1/7、1/b表示的是部分与整体的关系(板书:关系)。关于分数与除法之间的联系与应用,今后我们将进一步学习。
教学点评
前不久,在苏州市吴中区小学数学课堂教学比赛中,独墅湖实验小学朱勤老师设计执教的这节《分数与除法的关系》,以其整体化的教学设计与充满活力的课堂教学,一举获得一等奖第一名。笔者观察了这节课的教学流程与教学设计意图,有如下三点体会:
1.注重数概念与运算的一致性
20xx版数学新课标在“课程理念”中特别强调“设计体现结构化特征的课程内容”,并在“数与代数”学习领域提出“感悟数的概念本质上的一致性”和“体会数的运算本质上的一致性”。在第三学段的“内容要求”中则指出“结合具体情境理解整数除法与分数的关系”。因此,本课可以看作是探索分数概念与除法运算本质上一致性的一次积极尝试。
经过了三年级两次认识分数,本单元是小学阶段系统教学分数知识的开始。在学生学习了分数意义之后,首先沟通分数与除法的关系,然后进一步学习分数的基本性质、分数四则运算和混合运算以及运用分数解决实际问题等内容。本课主要学习分数与除法的关系,这对完善分数概念十分重要。利用分数与除法的关系,不仅能把分数化成整数或小数,而且与除法意义有关的知识及其应用,就能向分数迁移。
朱老师把本课的两个例题进行了整体化设计。通过生活化的情境展开,分别设计了四个小组进行分饼活动:从总量是8块、4块、1块、3块,分别平均分成4份,求每份是多少块。学生在用除法列式计算时,分别列出8÷4=2块,4÷4=1块,1÷4=1/4块,3÷4=3/4块。在直观演示、动手操作和沟通旧知的过程中,逐渐把除法与分数建立起了内在联系。
2.注重学生学习方式的多样性
20xx版数学新课标十分重视学习方式的改善,指出“认真听讲、独立思考、动手实践、自主探索、合作交流是学习数学的重要方式”。这就启示我们在课堂教学时,要特别注重学习方式的多样性。有效的数学学习,是根据所学知识的属性与儿童认知的规律而展开的,因此绝不是某一种学习方式就能独霸天下。对于陈述性知识,应该以有意义接受学习为主;而程序性知识,则需要让学生进行探究发现式学习;至于策略性知识,则需要充分进行体验与对比。
本课的学习难点是例题3,即把3块饼平均分给4个小朋友,求每人分得多少块。在例题2教学时,通过整体化情境设计和教学,学生已经初步建立起除法与分数的基本模型(都是平均分,被除数相当于分子,除数相当于分母,商可以用分数表示),因此学生列出除法算式3÷4并不困难,而难的是从操作中得到每份分得的饼是3/4块。朱老师在这个环节设计了动手实践、自主探索与合作交流的学习方式,在学生汇报思考过程时针对两种典型的分法:有的学生是1块1块地分,每次得到1/4块,3次分得3个1/4块,合起来是3/4块;有的学生把3块饼叠起来同时分,每人分得3块的1/4,合起来也是3/4块。然后再进行对比与勾连,体会除法式子与分数各部分的对应联系,感悟用除法计算与用分数表达的内在一致性。
3.注重学生核心素养的生长性
20xx版数学新课标已经发布,这标志着课堂教学进入了核心素养导向的新时代。在小学阶段的核心素养主要表现有数感、量感、符号意识、推理意识、几何直观、空间观念、运算能力、数据意识、模型意识等方面。结合本课的教学,应该让学生在数感、符号意识、推理意识、模型意识、运算能力等方面有所发展。笔者以为,核心素养是一种看不见、带得走、用得上的关键能力和必备品格,是无法由教师直接传递给学生的,而是需要学生通过学习过程感悟,逐步生长出来。
朱老师在教学过程中,既没有由老师一讲到底地灌输,也没有完全放任学生无序地操作,而是精心组织了具有生长性的学习内容,精心设计了体现学生主体性的学习流程,在操作、观察、分析、比较中,让学生找到分数与除法的对应联系。本来,分数是一种数,而除法是一种运算,要真正沟通数概念与数运算的内在关系,需要在丰富的操作活动中经历知识发生和发展的过程,体验除法与分数之间的联系与区别,感悟数与运算的对应性与一致性。尤其是,朱老师依据了“问题情境——列出算式——分出得数——体验等式”的教学线索,让学生在对分数概念感悟和对除法运算的推演中理解两者的内在关联,初步建立起对应性的数学模型,并在归纳中概括,在转化中对应,在推理中建模,进而对分数的意义和除法的运算达到深度理解水平,为今后探索分数的基本性质和解决分数实际问题打下良好的素养基础。
《分数除法》教学设计 篇7
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的`耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.课件演示:
2.列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
《分数除法》教学设计 篇8
第二课时
教学内容:
教学目标:
知识目标:
体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:能求一个数的倒数。
教学难点:分数除以整数计算法则的推导过程。
教学准备:长方形纸片。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的'计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?
②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?
③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
⑥那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三巩固练习
学生独立完成
四、课堂小结
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
板书设计:
分数除以整数
教学反思:
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。
《分数除法》教学设计 篇9
教学目标
1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。
2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。
教学重点、难点
1、理解掌握分数与除法的关系。
2、会对假分数与带分数进行正确互化。
教学过程
活动一:创设情境,引导探索。
师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?
师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=
师:大家拿出练习本来计算这个商是多少?
生:3(1)
师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。
即:1÷3=3(1)(个)
答:每人分得3(1) 个。
活动二:剪一间,拼一拼。
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]
②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]
④列一列:怎样用算式表示分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)
答:每人分得4(3) 张。
观察刚才所得结果:
1÷3=3(1) 3÷4= 4(3)
讨论、感知关系
讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:
被除数÷除数= 被除数/除数
如果分别用字母a和b表示除法算式中的'被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= a/b
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上: b≠0
活动三:总结提升,归纳关系。
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
活动四:课堂检测(一)
1、填空:课本P39试一试1。
2、用分数表示下面各式的商。
1÷4= 3÷4= 8÷3= 7÷3=
1÷7= 13÷4= 5÷2= 4÷9=
活动五:假分数带分数互化。
师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?
生:小组讨论思考
师:以7/3为例讲解,课本P39 T 2、3
师生共同总结互化方法。
1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。
2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。
活动六:课堂检测(二)
课本P40 练一练 的2、3。
课后作业
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。
《分数除法》教学设计 篇10
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的`关系。板书课题:《分数与除法》。
二、探索新知
1、教学例1
(1)课件出示例1
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?
三、拓展应用
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结
通过这节课的学习,你有什么收获?
五、作业布置
完成教材第50页"做一做"
《分数除法》教学设计 篇11
教学设想:
1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。
2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。
3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。
教学目标:
1、理解分数与除法的关系,知道如何用分数表示除法算式的商。
2、培养学生动手操作、合作交流和灵活运用知识的能力。
3、通过学习,培养学生转化的数学思想和勇于探索的精神。
教学重点:
理解分数与除法的关系。
教学难点:
具体体会每一个商的由来和表示的含义。
教学过程:
一、感知关系
1、问题:把6米长的绳子平均分成3段。每段长多少米?
把1米长的绳子平均分成3段。每段长多少米?
提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)
2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?
板书:被除数÷除数=被除数/除数
二、探究关系
1、验证关系
(1)通过动手操作验证
出示实例:把3块饼平均分给4个小朋友,每人分得多少块?
列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)
动手操作:剪拼纸圆,研究3÷4的商的.由来和表示的含义。
同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。
反馈验证
引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。
板书:3÷4=3/4
(2)运用分数意义验证
师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?
出示例[2]:17分是几分之几小时?
引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)
1÷60=1/60 17÷60=17/60(小时)
引导小结:分数与除法之间的关系,还可以用来转化名数。
2、揭示关系
师:通过刚才的验证,你得出了哪些结论?
①两个数相除,当商不是整数时,可以用分数来表示。
②被除数÷除数=被除数/除数。
师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?
联系
区别
除法
被除数
除号
除数
是一种运算
分数
师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b
引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0
三、巩固关系
1、强化分数与除法的关系。
① P.82 2 ②(P.82 4)
③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时
④在括号里填上合适的数
( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )
2、比较练习,完成P.82 3
①学生选择条件,列式解答。
②引导比较:联系—都占总数的1/3,区别—能否用整数表示商
四、总结提升
师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)
质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?
《分数除法》教学设计 篇12
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、谈话激趣,复习辅垫
1.师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的`呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
成人的体重× 3 (2 )=成人体内的水分的重量
2.揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、引导探究,解决问题
1.课件出示例题。
2.合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3.学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4.比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5.对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1)看作单位“1”的数量相同,数量关系式相同。
(2)复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试:一条裤子的价格是75元,是一件上衣的3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、联系实际,巩固提高
1.(投影)看图口头列式,并用一句话概括题中的等量关系。
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了5 (2 ),修了多少千米?
(2)一条路修了50千米,修了5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
《分数除法》教学设计 篇13
内容:
本册教科书第28页例2和练习八第1~4题。
教学目的:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。
教学过程:
一、复习
1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。
1/5、3/4、7/16、9/9
2、口算下面各题。
1/6÷3、4/5÷2、3/8÷6、6/7÷2
提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)
3、解答应用题。
一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)
提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)
指定一名学生列式解答。
二、新课
揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。
1、出示例题。
一辆汽车小时行驶18千米,1小时行驶多少千米?
提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?
指名列出算式,教师板书:18÷。
2、教学整数除以分数的计算方法。
教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。
提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的'5份上面注明“1小时行驶?千米”。
提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)
提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)
提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)
提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)
提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。
提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。
提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:
18÷==45(千米)
写出答案“答:汽车1小时行驶45千米。”
3、引导学生小结。
“整数除以分数,等于整数乘上除数的倒数。”
三、看教科书中新课内容后试算
全体学生独立计算“做一做”中的练习题:
12÷ 24÷
集体订正计算过程及结果,并提问一个数除以分数的法则。
四、课堂练习
在练习本上计算练习八第1、2题,然后订正计算结果。
五、总结
今天学习了什么新知识?
整数除以分数的计算法则是什么?
计算整数除以分数应注意什么?
六、布置作业
1、阅读教科书第28~29页的内容。
2、在练习本上做练习八第3、4题。
《分数除法》教学设计 篇14
教学内容:
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6=64÷5=0。880÷5=16
3÷7=5÷10=0。54÷9=
然后引导学生归纳分类:
36÷6=6和80÷5=16的商为整数;
4÷5=0。8和5÷10=0。5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的'儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想
要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,
大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个4740÷47
饮料39瓶4739÷47
花生8千克478÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用
其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2、层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0。333…或
课件显示:1÷3=0。333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,
即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师
出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3、巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
《分数除法》教学设计 篇15
板书设计(需要一直留在黑板上主板书)
分数除法
例1:每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)
学生学习活动评价设计
通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。
教学反思
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。
主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的.系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。