小数的意义教案

知远网

2026-02-12教案

知远网整理的小数的意义教案(精选6篇),希望能帮助到大家,请阅读参考。

小数的意义教案 篇1

小数的意义教案 篇2

教学目标:

1、借助计数器,掌握小数的数位。

2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:

掌握小数的数位和计数单位。

教学难点:

掌握小数的基本性质。

教学准备:

课件、计数器

教学过程:

一、复习旧知,导入新课

过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?

(课件出示)1、填空。

3写成小数是( ) 10

660.56表示()写成小数是() 100

6780.625表示( )写成小数是( ) 10000.4表示( )

2、读一读下面一段话中的小数。

北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。

师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))

二、动手操作,探究新知

1、认识数位。

出示计数器,师问:这个计数器有什么特点?

学生观察后汇报

师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。

课件出示拨数情况,引导学生认识:

“22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.

师提问:小数点右边第2个“2”在百分位上,它表示2个

引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100

师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?

学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000

师引导学生再次思考:小数点左边两个2分别表示多少?

学生先独立思考,再小组内交流,最后集体汇报。

2、认识计数单位及计数单位之间的进率。

师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?

课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:

小数点右边第一位是十分位,计数单位是十分之一(0.1);

小数点右边第二位是百分位,计数单位是百分之一(0.01);

小数点右边第三位是千分位,计数单位是千分之一(0.001);

小数点右边第四位是万分位,计数单位是万分之一(0.0001);

课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?

学生讨论后汇报交流,师生共同总结:

相同点:相邻计数单位间的进率都是10.

不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的`计数单位,只有最大的计数单位——0.1.

师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。

三、巩固运用,拓展提升

1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?

引导学生讨论后交流汇报。

2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?

让学生自主涂色,并汇报:0.6和0.60一样大。

师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

3、即时练习。

课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?

3.203.09 6.06 50.44 5.700 200.04

四、课堂小结

通过这节课的学习,我们学会了哪些知识?

板书设计:

小数的意义教案 篇3

教学目标:

1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

教学重点:

理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

教学难点:

理解一位、两位、三位小数的意义。

教学过程:

一、情境导入:

1、(展示一根绳子)猜猜它有多长?

生猜:1米……

师:要想知道准确的结果,怎么办?

生:量一量。

师:谁愿意来测量一下它的长度?

两名学生合作测量。

师:把你们测量的结果汇报一下。

生:一米。

师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

生猜并测量验证。

师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

生:不能。

师:为什么不能用整数了?

生汇报

师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

师:那你们说说在哪些地方还见过小数。

生汇报

师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

二、探索交流,建构新识:

(一)理解一位小数的意义。

1.师:请同学们任意说一个小数。

生汇报师板书

师:那老师也来写几个。

0.1 0.01

师:猜一猜老师接下来会写什么?

生:0.001

师:同学们真的是很会推理。

2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

生汇报

师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

3.生展示、汇报

展示若干组学生的画法。

(编号,让学生说出自己的想法。)

师:你认为哪位同学表示出了0.1那么大小。

生:1号;3号;2号;4号。

师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

师:那现在谁来说说0.1到底表示什么?

生汇报师小结:说简单点0.1就表示。(板书)

师:涂色部分为0.1那空白部分用哪个小数表示呢?

生汇报:0.9。

师:怎么看出0.9的?

生汇报

师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

生:1

师:现在我们明白了1里面有(10)个0.1。(板书)

4.再涂1块能看到哪两个小数?

生:0.2、0.8。

师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

生:分母都是10、都是十分之几……

师:那我们就可以说一位小数表示的就是十分之几。(板书)

(出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

(二)理解两位小数的意义。

1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

同桌交流讨论。

生汇报:把它平均分成100份,取其中的一份。

预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

师:0.01就表示。还看到了哪个小数?

生:0.99。

师:0.99里面有几个0.01。

生:99个。

师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

2.如何表示0.25呢?

生汇报

师:还能想到哪个小数?他们的分数朋友分别是谁?

生:0.75,分数朋友:

3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

4.师提问:

(1)你涂了哪个小数?

生汇报。

师:猜一猜他涂了几格,还能找到另外一个小数吗?

(2)你涂了几格?谁能知道他写的是哪个小数?

5.师:(指板书)刚才我们研究的'小数都有什么特点?他们都表示什么?

生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

(三)理解三位小数的意义。

1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

师:那它的分数朋友是多少?()

师:那0.237表示什么?它的分数朋友是谁?

生:

师:小数是多少?

生汇报

2.师:谁能找一个大一点的三位小数?

生:0.999 =

师:要在正方形纸上涂上0.999会有什么感觉?

生汇报

如果再涂多少就涂满了?(0.001)

师:那也就是说(1000)个0.001是1。

师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

……

师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

(四)提炼小数意义

1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

生汇报

小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

三、巩固内化:

师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

出示课件练习题。

1、填一填。

2、填上合适的数。

四、回顾反思:

1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

小数的意义教案 篇4

复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)

复习要求:

1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。

2.使学生掌握用四舍五人法取积、商是小数的近似值。复习重点:进一步提高计算的正确率和熟练程度。

复习过程:

一、基本练习

1.口算。05。381。40。20。156800。58。50。21。250。83。910

3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数

10。395

2。047

0。9292

二、复习指导

1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()

③8。40。4表示()④8。44表示()(2)思考并回答。

①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。

(1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125

①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?

②怎样把除数是小数的'除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。

三、课堂练习

1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03

0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95

先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。

2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?

生独立审题,分析数量关系并列式计算。

四、作业

练习九第1、2题

小数的意义教案 篇5

教学目标

(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

(二)通过归纳整理,提高学生的概括能力。

教学重点和难点

熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

教学过程设计

(一)归纳整理小数乘除法的意义

1口算下面各题,并说出各算式的意义。

15×3 15×3 15×03 15÷3

28×2 28×2 28×02 28÷2

25×5 25×5 25×05 25÷05

12×4 12×4 012×04 012÷04

2思考:

①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

②小数除法的意义是什么?

讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

3比较归纳、整理:

看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

讨论完成下表:

(二)复习小数乘除法的计算法则

1小数乘法的计算法则。

(1)说出下面各题的积中各有几位小数。

23×05 214×07 275×1203 184×0026

提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

①04×25=(1);②0075×052=(0039)。

提问:

①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

(3)计算并验算:

67×75= 836×25= 125×24=

订正后回答:

067×75= 836×025= 0125×24=

小结:

小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

讨论得出:

相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(4)口算:

08×4= 4×08= 005×20= 20×005=

003×9= 9×003= 19×5= 5×19=

观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

练习:在下题的○中填上>,<或=。

①16×12○16; ②14×0○14;

③024×5○024; ④37×21○37;

⑤0×7○0; ⑥0×28○0。

上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

2小数除法的计算法则。

(1)计算并验算(P34:6):

189÷054= 71÷0125= 051÷022=

计算后订正,提问:

①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

(2)口算:

42÷06= 15÷5= 32÷08= 2÷4=

哪些算式的商大于被除数?哪些算式的.商小于被除数?为什么?

(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

练习:在下面的○中填上>,<或=。

30÷06○30 18÷9○18 0÷02○0

36÷4○36 27÷03○27 0÷12○0

上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

(三)综合练习

1口算:

3978×1= 36÷36= 287×0=

1×056= 78÷1= 0÷287=

“1”与“0”有什么特性?

2计算并求近似值:P35:2。

小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

3作业:P35:1,3。

课堂教学设计说明

复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

板书设计

整数乘法:

4×25=100

75×52=3900

小数乘法:

小数除法:

小数的意义教案 篇6

学习目标:

1.体会小数所表示的意思,理解小数的意义。

2.理解和掌握小数意义。

教学重点:

通过练习,体会小数的意义,知道小数所表示的含义。

教学难点:

通过练习,体会小数的意义,知道小数所表示的含义。

教学准备:

学生、老师准备计数器、小黑板

教学方法:

小组合作学习交流法

教学过程:

一、情景导入,呈现目标

1.你的身高是多少?你会用小数来描述吗?

2.你都在哪里见过小数?说一说,并写出几个你见过的'小数来。

二、探究新知(自学后完成下面问题)

1.把1元平均分成十份,其中一份用分数表示是( )元,用小数表示是( )元。十分之三表示其中( )份,用小数( )表示。

2.把1元平均分成100份,其中的一份用分数表示是( )元,其中的37份用分数( )表示,用小数( )表示。

3. 1.11表示( )元( )角( )分。

三、合作探究,当堂训练

1. 用数表示下面各图中得涂色部分?(课本第2页第2题)

2. 想一想填一填?(学生独立完成)

3. 自己画一方格纸,并画出0.1、0.5、0.6?

4.找一找生活中的小数,小组交流,选代表汇报。

四、精讲点拨(根据学生出现的问题进行精讲。)

五、学习收获,自我总结

1.小组评价:你认为第几小组表现最棒,为什么?

2.自我总结:通过今天的学习,我学会了 ,以后我会在______________ 方面更加努力的。

板书设计:

小数的意义

大家都在看