知远网整理的乘法运算定律教案及活动设计(精选6篇),希望能帮助到大家,请阅读参考。
乘法运算定律教案及活动设计 篇1
教学内容
教科书第9~11页的例5、例6,练习三的第9题。
教学目的
1、使学生知道整数乘法的运算定律对分数乘法同样适用。
2、使学生能够运用所学的运算定律进行一些简便运算。
3、使学生知道在运算时应用了哪些运算定律,以培养学生的思维能力。
教学过程
一、复习
指名说一说在整数乘法中学过哪些运算定律(乘法交换律、乘法结合律、乘法分配律)。学生说出字母表达式或用语言叙述都可以。对说出字母表达式的学生,最好让他们再说一说每个运算定律是什么意思。然后用课件结合具体例子进行说明。
二、新课
1、整数乘法运算定律推广到分数乘法。
出示下面三组算式,让学生说一说每组算式的左右两边有什么样的'关系。
× ○ ×
( × )× ○14×( × )
( + )× ○ × + ×
先让学生观察每组中的两个算式有什么特点。然后算出左右两边的得数,看看每组的两个算式有什么样的关系,并分别做出结论。如,根据 × = × ,可以做出“整数乘法的交换律对于分数乘法也适用”的结论。
最后做出“整数乘法的交换律、结合律和分配律,对于分数乘法同样适用”的结论。
让学生用字母表示每一个运算定律,教师板书:
a×b=b×a
(a×b)×c=a×(b×c)
(a+b)×c=a×c+b×c
教师:“这三个等式中的字母可以表示什么数?”(整数、小数、分数。)
2、教学例5、例6(运用乘法运算定律使分数乘法计算简便)。
教师:“我们已经知道应用乘法运算定律可以使一些整数、小数的乘法计算简便,在分数乘法中应用运算定律也可以使一些计算简便。”
(1)课件展示教学
例5。 × ×5
=×5×(应用了什么运算定律?)
=
出示例5,让学生仔细观察,题里的已知数有什么特点。( 和5可以约分,所以可以先乘。)
然后,教师问:“这种简便方法是应用了乘法的什么运算定律?”(乘法交换律和乘法结合律。)
乘法运算定律教案及活动设计 篇2
教学目标:
知识与技能:使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
过程与方法:学生在自主探究解决问题的过程中理解两位数乘两位数的笔算算理,培养学生的分析,归纳能力。
情感态度与价值观:在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
教学重点:
掌握两位数乘两位数计算方法,能正确笔算。
教学难点:
探究笔算乘法的算法,理解算理。
教具准备:
多媒体课件
教学过程:
一、创设情景,引入新课
课件出示主题图。
今天,圆圆和妈妈一起去书店买书。圆圆在书店看到一套《百科全书》非常喜欢。1套12本,每本24元,根据这两个信息,你能提出一个什么问题吗?(买一套一共需要多少钱?)
分析:要算一共付出多少钱,用什么方法计算?怎样列式?(就是计算12个24元是多少,列出算式就是:24×12=?)
分析:怎样才能知道估算的钱数最接近正确答案呢?这就需要我们准确的计算出24×12的得数,今天这节课我们就来研究两位数乘两位数的笔算乘法。(板书课题:两位数乘两位数的笔算乘法)
二、启发思维,自主探索
师:谁能来帮帮圆圆解决这个问题?
1、独立思考,寻找方法。
师:你能用你学过得知识想办法算出得数吗?大家赶快动脑想一想,算一算吧。
2、教师带领学生一起来分析每个算法:
3、教师讲解笔算方法:
首先,是相同数位对齐。
①计算时,我们先用第一个因数与第二个因数个位的数相乘。即:24X2=48(师边说边盖住第二个因数十位上的数字)
②我们再用第一个因数与第二个因数十位上的数相乘,即24X10=240
(师盖住第二个因数个位上的数字)说明:我们在列竖式的时候,只要把4写在十位上,把2写在百位上,就可以表示240了。这个0只是占位的作用,为了简便,这个0可以省略不写。(边说边擦去0)
③我们现在分别计算了24X2,24X10,那怎样才能表示出24X12的积呢?
(把上面两个积相加)
4、观看竖式:
师再问:a.第一步表示什么的积?(24×2)
b.第二步表示什么的积?(24×10)
“4”为什么写在十位上?(24中的4是十位上的`1和个位上的4相乘得出的结果,是4个十,所以和十位对齐)
c.第三步算的是什么?(48+240)
5、小结:刚才我们用竖式计算24×12时,第一步是用个位上的2与24相乘,第二步是用十位上的1与24相乘,第三步把两次相乘的积相加。
师:也就是说圆圆买这套书要付288元。我们不要忘记把算得的结果写到等式的后面。
三、巩固运用,解决问题。
活动:智力大比拼
第一关:小车开到的哪儿停?
(强调:第二个积的末位要和第一个积的十位对齐)
第二关:笔算大比拼
33×13= 21×34= 43×12=
第三关:小马虎体检中心(仔细观察,对的打“√”,错的打“×”,并改正。)
第四关:弄脏的题单
四、归纳梳理,总结收获
师:今天大家表现得真不错,谁来说说这节课你有什么收获?
两位数乘两位数不进位笔算乘法步骤:
1、用第二个因数个位上的数去乘第一个因数得出第一个积。
2、用第二个因数十位上的数去乘第一因数得到第二个积,得到这个积的末位要和第一个积的十位对齐。
3、把两次乘得的积加起来。
五、家庭作业:
课本第47页第2、4题
板书设计:
乘法运算定律教案及活动设计 篇3
教学目标:
进一步掌握乘法运算定律,会根据不同算式的特征,正确灵活、合理选择运算定律进行简算,提高应用乘法运算定律进行简便计算的能力。
教学过程:
(一)明确目标。
出示上节课出来的本单元的框架,指出本节课要复习的内容,并提出要求,掌握乘法的三个运算定律,并能灵活的运用于简便计算。
(二)复习定律
1、简算。
4×13×25125×(8+80)
全班练习、两位学生板演,完成后反馈校对,并说明计算的理由。教师板书运算定律的名称。
2、掌握定律。
简要的叙述运算定律和字母表示,学生回答,教师板书相应的字母公式。
根据字母公式,比较乘法结合律和乘法分配律有什么区别?根据字母公式说说他们的结构特征。
(三)定律运用
1、课本第6题
(1)归类,各应用什么运算定律可以使运算简便,画出具有特征的数学运算符号。
(2)全班练习,完成上面一行3题,完成后反馈校对,指出每一题的特征。
(3)全班练习,完成下面一行3题,完成后反馈校对,指出每一题的特征。
2、判断、改错练习。
(1)400×(25+1)=400×25+1
(2)(64+4)×25=64×25+25
(3)25×32=25×(4×8)=25×4+25×8
(四)综合练习
1、练习第7题。
(1)找出能运用乘法运算定律的算式,并各自归入相应运算定律类型中。
(2)余下的两题:32+144+68+56,1230-216-184,为什么不能归入相应的'类型?他们可以简算吗?
(3)独立练习。
(4)反馈矫正。
2、两步四则混合运算练习。
(1)计算课本第8题,完成后校对。
(2)计算第9题,完成后的、反馈讲评。
3、应用题练习。
(1)独立练习第10题。
(2)反馈讲评,对25×400+25×40025×400×2两种方法进行比较。
4、思考题指导。
(1)独立思考2分钟。
(2)指名已解答的同学说思路。
(五)巩固知识结构
通过两节课,我们对第一单元进行了系统的复习,说一说第一单元中学到了哪些知识,掌握了哪些本领?还有什么不清楚的地方?
(六)作业:《作业本》
乘法运算定律教案及活动设计 篇4
教学目标:
1.通过学习,使学生理解和掌握乘法分配律。
2.学会运用乘法分配律进行简便运算。
3.学会用字母表示乘法分配律。
教学重点:
理解和掌握乘法分配律
教学难点:
运用乘法分配律进行简便运算。
教学过程:
一、复习引入
1.说一说什么是乘法交换律?什么是乘法结合律?边说边用字母写出来。
2.全班交流。
3.今天我们来学习乘法的又一个运算定律。板书课题:乘法分配律
二、在情境中初步感知乘法分配律
1.课件出示例7
收集信息,明确条件问题
问题:
(1). 从图中你都知道了哪些信息?
(2). 要想解决问题,需要用到哪些
条件?
(3).读相关条件和问题
独立解决,思考不同方法
(1). 根据题意,你能列式解答吗?
有没有不同的方法?
(4+2)×25 4×25+2×25
=6×25 =100+50
=150 =150
(2). 谁能说一说这样做的道理?
(先算出每一组植树的有6人,再乘25个组,就是一共植树的人数。)
(3). 有没有不同的做法?
(分别算出25个小组挖坑、种树的人数和25个小组抬水、浇树
的人数,把这两部分加在一起,就是一共植树的人数。)
枚举验证,比较概括规律
问题:(1). 这两种做法有什么相同点和不同点?
(相同点:结果相等,(4+2)×25=4×25+2×25。)
(2). 你还能举出像这样的等式吗?(展示学生的举例,4~5组。)
(3). 观察这些算式,有什么特点?
(两个数的和与一个数相乘,可以先把它们
与这个数分别相乘,再相加。)这叫做乘法分配律。
(4). 你能用自己喜欢的.方式表示乘法分配律吗?
三、巩固练习,提升认识
1. 下面哪些算式是正确的?正确的画“√”,错误的
画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2. 下面哪些算式运用了乘法分配律?
117×3+117×7=117×(3+7) 24×(5+12)=24×17
4×a+a×5=(4+5)×a 36×(4×6)=36×6×4
四、课堂小结
今天我们学习了什么?你有什么收获?
五、布置作业
第28页练习七,第7题。
乘法运算定律教案及活动设计 篇5
学习目标:
1、通过整理复习进一步理解运算定律,牢记所有定律。
2、通过复习,发现运用知识解决问题中的难点问题,及时纠正错误。
3、通过复习,进一步提高分析、判断与计算能力;建立知识之间的联系和区别,能根据具体情境选择正确的方法进行简算。
学习重难点:
重点:理解运算定律,能正确运用运算定律进行计算
难点:能根据算式的特点,灵活选择适合的运算定律进行计算。
实物准备:
多媒体课件、答题卡。
学习流程:
一、导入
同学们,我们已经学习了加法、乘法、减法、除法的运算定律,运用这些运算定律能使我们的计算更简便,今天我们就来整理复习第三单元《运算定律》
二、导学
活动一:回忆定律
活动任务:回忆、整理第三单元学过的运算定律,用含有字母的'算式表示出来。
活动流程:
1、明确任务:认真默读活动任务,理解活动要求。
2、自主学习:独立回忆整理第三单元学习的运算定律。(5分钟)
3、小组讨论:小组交流运算定律,推选出发言人准备交流。(2分钟)
4、展示分享:随机抽一个小组展示交流,其他小组补充,质疑。
5、梳理提升:教师引导梳理,对比加法、乘法交换律、结合律。再次记忆运算定律。
活动要求:
1、 自主学习可以参考课本复习整理
2、小组讨论轮流发言,补充式发言。
活动二:运用定律
活动任务:用运学过的算定律完成下列练习:
①23+56+77
②462-83-17
③3200÷25÷4
④8×30×125
⑤17×147-17×47
⑥36×47+47×64
⑦99×53+53
⑧101×97-9
活动流程:
1、明确任务:投影出示练习题,认真读题思考。
2、自主学习:独立学习卡二相关练习(分组完成4题即可)。
3、小组讨论:小组长组织订正学习卡二,统计易错练习,分析错误原因,改正错误。
4、展示分享:随机抽取一个同学学习卡展示解题过程其他小组评价、订正。
5、梳理提升:根据解题情况重点分析易错练习解题思路。
三、导练
活动三:强化训练
活动任务:请你完成下面的练习
①99×18
②101×45
③25×28
活动流程:
1、明确任务:认真读题,思考解题方法。
2、自主学习:独立完成简算练习。(只用写出解题思路即可,不用算出答案)
3、小组讨论:小组长组织交流,选出最佳解题方法。
4、展示分享:一个小组展示解题过程并说明解题思路。其他同学补充、质疑。
5、梳理提升:教师梳理运用运算定律的注意事项
四、导结:这节课你印象最深的是哪个知识点?
乘法运算定律教案及活动设计 篇6
教学目标:
1、使学生进一步掌握小数乘法的计算法则。
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教学重点
运用小数乘法的计算法则;正确计算小数乘法。
教学难点
正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教具准备
小黑板或投影片若干张
教学过程一:
一、复习准备:
1、口算:P.5页10题。
0.9×6 7×0.08 1.87×0 0.24×2 1.4×0.3
0.12×6 1.6×5 4×0.25 60×0.5
老师抽卡片,学生写结果,集体订正。
2、不计算,说出下面的积有几位小数。
2.4× = 1.2× =
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
1、教学例5:非洲野狗的速度是56千米/小时,鸵鸟的速度是非洲野狗的1.3倍,鸵鸟的速度是多少千米/小时?
⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
⑵是这样的吗?我们一起来算一算?
①怎样列式?
②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)
使学生明确:现在倍数关系也可以是比1大的小数。
⑶生独立完成,指名板演,集体订正。
⑷算得对吗?可以怎样验算?
⑸通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2、看乘数,比较积和被乘数的大小。
①(出示练习一10题中积和被乘数的大小)先计算。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的`乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2. 4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
三、运用
1、做一做:3.2×2.5= 0.8 2.6×1.08=2.708先判断,把不对的改正过来。
2、P.9页13题
四、体验今天,你有什么收获?
五、作业:P8页8题,P9页11、14题
个人修改
3、思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
⑤专项练习:练习一12题先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
板书设计:
当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教后反思:
在指导学生在积上应怎样点小数点,这是关键,也是教学难点,要强调整个一道乘法算式中共有几位小数,在积中就点几位小数。其中的道理也要让学生明确,把小数看成整数,是先扩大几倍,最后也要缩小相同的倍数,所以要在积中点几位小数。
