组合图形的面积优秀教案

知远网

2026-02-01教案

知远网整理的组合图形的面积优秀教案(精选6篇),希望能帮助到大家,请阅读参考。

组合图形的面积优秀教案 篇1

教学目标:

1、巩固已学平面图形特征的认识,学会用割(加)、补(减)等方法求组合图形的面积

2、通过动手、动脑、剪剪、拼拼和想象,培养学生动手操作的技能,发展观察能力、空间观念和思维的灵活性。

3、利用七巧板组合图形,并求出面积。教学重、难点:用割补法求组合图形的面积

教学准备:

小剪刀一把

长方形纸若干张

教学过程:

一、剪纸中得出组合图形的概念

师:大家跟我一起拿出一张长方形纸片:你能用一刀剪出两个其他图形吗?动手试试。(生剪师巡视,主要分清把长方形剪成两个基本图形或一个基本图形和一个不规则图形的同学。)

生汇报:我把长方形分成了一个三角形和梯形?(说面积公式)

我把长方形分成了一个三角形和?(说不清楚是什么图形)师展示这个图形:

(一个长方形的角落剪去一个三角形)师:这个图形叫什么图形呢?

方案1:生自己回答:这是一个长方形和梯形组成的。

师:哦!你是怎么分的?还可以怎么分?(让学生动手折一折)

方案2:生不能回答,师提示:我们刚才把一个长方形分成了

一个三角形和一个梯形,还把它分成了两个长方形,还有?那这个图形,我们可以把它分成我们已经学过的图形吗?(生回答,并折给大家看)

最后把图形粘贴在黑板上得出:像这样由几个基本图形组成的,我们把它叫作组合图形,这节课我们重点就来研究组合图形的面积(板书组合图形的面积)

二、求组合图形的面积

1、重点突破

师:如果老师临时给这个组合图形的边标上数据,(边说边根据图形的长短标上数据)你能求出这个组合图形的面积吗?自己动手算一算,有困难的可以请教同桌和老师。

展示学生的做法,并请他说说思考过程。

师:如果要你求这个组合图形的面积,你可以怎样求?

生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来?师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

师:还有其他方法吗?

(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你是吗启发吗?(得出用长方形面积减去三角形的面积)板书:贴+写

师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的',你能看出来是什么吗?(求出来的面积是一样的。)

2、基本练习

老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?(汇报)

在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

3、实践活动

师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

出示队旗:其实,我们的中队旗就是一个组合图形。

(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

用你认为简单的方法进行计算。先做好的小组上来板书。

反馈:你们是怎么思考的?

师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

三、四人小组

利用手中的七巧板来拼出各种图案来,并求出你拼出的图案的面积。四通过这节课的学习,你有什么收获?

希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

教学后记:

教学中我充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。

组合图形的面积优秀教案 篇2

教学过程:

一、认识组合图形。

1、师生谈话导入:什么是组合图形?

(1)出示火箭模型的平面图。观察一下,你有什么发现?

(2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?

(3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。

2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?

3、学生自己试举例说明。

二、计算组合图形的面积。

1、揭示课题。

(1)出示中队旗,计算它的面积。

80cm

20cm

30cm

30cm

(2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)

2、学生尝试。

(1)学生讨论算法。

(2)独立计算。鼓励用不同的做法。

演板:

(80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2

= 4200(平方厘米) = 4200(平方厘米)

(80-20)×(80-20)+30×20÷2×2

= 4200(平方厘米)

(3)比较:哪种方法比较简便?

2、小结:用哪些方法可以计算组合图形的面积?

三、巩固练习。

1、计算花坛的面积。

让学生感受:不是任何分解都可以计算的,要根据条件进行分解。

2、求火箭平面图的面积。

3、选一个求字母“l”和“n”的面积。

四、总结。

你有什么感受?

五、作业。(略)

六、板书:

组合图形的面积

(80-20+80)×30÷2 80×(30+30)(80-20)×(80-20)

= 4200(平方厘米) -(30+30)×20÷2 +30×20÷2×2

= 4200(平方厘米) = 4200(平方厘米)

课后反思:

学生的经验和活动是他们学习空间图形的基础。他们对组合图形的`认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的'基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。

一、 导入——铺设学习情境。

《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。

二、尝试——开启创造之门。

弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。

“给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?

三、练习促进动态生成。

让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味

组合图形的面积优秀教案 篇3

教学内容:

北师大版小学数学教材五年级上册第88—89页。

教材分析:

《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。

学情分析;作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

教学目标:

1、在自主探索活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。

4、感受计算组合图形面积的必要性,产生积极学习的兴趣。教具:多媒体教学课件教学过程:

一、图形欣赏、激发兴趣

1、今天老师给大家带来了一个小动物,你们猜猜会是什么动物呢?课件出示由基本的平面图形组成的金鱼图形学生欣赏。

(设计意图:兴趣是最好的老师,学生怀着极大的兴趣是上好一节课良好的开端,兴趣是一种无形的力量,是学好数学的保证。)

2、美丽的金鱼是由哪几个基本的平面图形组成的?在学生回答的同时一并复习正方形、长方形、平行四边形、三角形、梯形的面积计算公式。

(设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作铺垫,也为确保正确计算组合图形的面积夯实基础)

二、自主探索、合作交流

1、发现规律,初揭课题

拼图游戏:让学生用七巧板拼出自己喜欢的一个图案,学生一边拼图形,一边交流,教师巡视指导。选择2—3个有代表性的图形用实物投影展示出来。师:请同学们仔细观察并思考,这几个图形有什么共同特征?

生:(观察思考回答)这些图形都是由几个简单的基本平面图形拼出来的。师:对,我们就把像这样由两个或两个以上平面图形组合而成的图形叫做组合图形。(板书:组合图形)

(设计意图:“数学是思维的体操”,作为小学生思维能力训练的主阵地,数学课堂应开启学生的发现之旅,让学生练就一双善于发现的眼睛,同时游戏活动激发了学生学习的积极性和探究欲望。)

2、寻找图形,再揭课题

师:现实生活中存在着大量的组合图形,你能从我们生活中哪些物体的表面找到组合图形?

生:教室窗户由一个小长方形和两个大长方形组成、房子侧面由一个三角形和一个长方形组成、……

师:真不错!同学们都是生活的有心人,其实组合图形就在我们身边。

师:基本图形的面积计算同学们都是游刃有余!今天的关键是想求组合图形的面积,我们应该怎么办呢?

生:只要把组合图形中几个简单的平面图形的面积加在一起就行了。

师:真棒!这节课我们就一起来学习求组合图形的面积。(添加板书:的面积)

3、观察图形,估算面积

师:淘气家新买了住房,想把新房的客厅铺上地板,新房的客厅地板的面积有多大呢?同学们能帮他算算吗?(拿出老师发给同学们的客厅平面图)。

师:你能估一估这个不规则图形的面积吗?说说你是怎样想的?生:进行估算。汇报。

(设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,让学生在估算的时候,潜移默化地运用添补和分割的转化思想,也为下一步计算组合图形面积做一个很好的铺垫)

4、独立探索,计算面积。

师:同学们都说出了自己估算的理由,那你估算的数据接近真实的数据吗?请同学们观察手中的客厅平面图试着寻找出计算这个图形的方法。

学生独立活动:解决组合图形面积计算问题。

5、合作交流,探索方法。

(1)小组合作,交流方法

师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法?

学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。(设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。)

(2)全班共享,提炼方法

师:哪个小组的同学愿意先来汇报你们的想法?

生:在图形里面画一条线,分成一个长方形和一个正方形,分别算出长方形和正方形的面积,再算面积之和。

师:真好,这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线,还有不同的方法吗?

学生汇报,课件适时出示不同的计算方法,在探讨的过程中引导学生给不同的.计算方法命名。

师小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,另一种是割补法,那这几种方法有什么特点呢?请小组内的同学讨论一下好吗?

小组内讨论并汇报。师小结:

分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就不行了。用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:分割法求和)

添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。用添补法计算,记得把添上的这部分面积减去。(板书:添补法求差)

割补法:要求割下来的这部分能正好拼上。这种方法,既有分割,又有添补,(板书:割补法灵活计算)

师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?

师小结:不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。(板书:转化)(3)比较反思,选择方法

师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。

师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活地选择合理、简便的方法进行计算。(板书:合理、简便)

(设计意图:这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。)

三、应用拓展,提高能力

1、练一练1,书中第1题下面的图形可以分成哪些已学过的图形?

(作业设计意图:每一幅图都有多种分法,课堂上应避免学生分得过于复杂化,鼓励学生选择合理、简便的分法。)

2、练一练2,书中第2题,认真观察图,选择有用的数据,你想怎样计算?把你的方法在小组里交流。指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

(作业设计意图:这道题是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是用添补法到底能不能解决这道时,同学们就会发出疑问,可是当老师适当进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积埋下伏笔,同时也充分体现了算法多样化的教学理念。)

3、练一练3,书中第3题,计算这张硬纸板还剩多大的面积?

(作业设计意图:通过两个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,分割的图形越简洁,计算起来越简便。)

4、练一练4,书中第4题,学生自己独立思考并计算,然后说说自己的想法。

(作业设计意图:习题由浅入深、形式多样、难易适度,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力,获得了更多的解决问题的策略,还通过上面的两道解决实际问题的练习,使学生感受到数学就在我们身边,生活中处处有数学。)

5、思考,计算下面图形中阴影部分的面积。多媒体出示。

四、总结收获,反思提升

师:同学们通过本节课的学习,你有什么收获呢?引导学生说说学会了哪些?怎样学会的?还有哪些问题?。

(设计意图:总结的目的是让学生对本节课的内容进行一下回顾,让学生体会到独立思考和相互学习都很重要,做到在数学方法和数学思想方面都有所收获,有所提升。)

五、独立思考、完成作业长江作业《组合图形的面积》

六、板书设计

组合图形的面积

转化

分割法:求和

添补法:求差(特例除外)割补法:灵活计算合理简便

(设计意图:本节课重点是掌握求组合图形面积的计算方法,设计这样的板书不仅可以直观地、简明扼要地展示本节课求面积的方法,便于学生理解、把握和选择,而且明显看出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法,揭示了知识的内在规律及相互间的联系与区别,使学生在数学思想与方法上得到发展。)

组合图形的面积优秀教案 篇4

一、教学目标

1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。

2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。

3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。

二、教材分析

组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的.基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。

三、学校及学生状况分析

我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。

组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

四、教学设计

(一)观察动画,复习旧知,引出新知

1、观察动画,分析引入

(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

师:观察这幅图画,你发现了什么?

生:很多的基本图形,组成了很多的图形)

师:这些由基本图形组合而成的图形,就叫做组合图形。

2、复习基本图形面积公式

师:还记得我们都学过哪些基本图形吗?

(随着学生回答,按学习的顺序贴各个基本图形)

问:那谁还记得这些基本图形的面积公式?

(随着学生回答,在各个基本图形后面写公式)

师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]

(二)动手拼图,初探方法

1、自拼图形,分析要素

师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

边做边思考:

师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

(学生活动,教师巡视,指导画高。)

2、展示图形,分析条件

(学生分别介绍所拼的组合图形后,教师选择其中的`一个作重点分析。)

师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

(强调公共边:既做长方形的长,又作三角形的底。)

3、打开思路,探索面积

师:怎样求一个组合图形的面积?

生:分另计算三角形与长方形的面积,然后相加。

师:谁能说一说具体的计算过程?

组合图形的面积优秀教案 篇5

【教学内容】

人教版五年级上册第六单元《组合图形的面积》

【教材分析】

本课是五年级上册第六单元内容,是在学生学习了长方形与正方形。平行四边形。三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【设计理念】

儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。学生在解决问题的过程中,获得数学学习方法。在对学习过程与结果的反思中,提高解决问题的能力。

【教学目标】

1、能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。养成认真思考,团结协作的能力。

4、通过找一找。分一分。拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”。“补”等方法来计算组合图形的面积。

【教学重点】

探索并掌握组合图形的面积计算方法

【教学难点】

理解并掌握组合图形的组合及分解方法。

【数学思想】

分类、化归

【教学过程】

一。创设情境,引出问题

教师活动

学生活动及达成目标

1、说一说:

(1)让学生快速说出老师出示的平面图形的名字(正方形。长方形。平行四边形。三角形。梯形)。

(2)说出上面各种图形的.面积计算公式及字母表达式(并适时出示多媒体)。

2、看一看:

老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。)

出示生活中常见的组合图形(如房子的侧面。风筝。七巧板拼图。中队旗等),问:要想知道做一面中队旗用多少布就是求什么?

3、揭示课题并板书:组合图形的面积

学生观察回答

让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。

二。共同探索,总结方法

教师活动

学生活动及达成目标

由张老师家新房的侧面平面图入手,设计让学生合作交流解决“房子侧面积”这一生活问题。

教师利用多媒体演示。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。

总结组合图形面积的计算方法。

让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”的计算方法。让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。

1、学生独立与小组合作交流解决组合图形面积计算问题。

2、小组汇报学习情况。

(1)将组合图形分割成一个三角形和一个正方形

(2)将组合图形分割成两个梯形

(3)将组合图形添补上两个小三角形,使它成为一个大长方形,再用大长方形的面积减去两个小长方形的面积。

在这一环节中我真正的转变了教师的.角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验。

学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察。独立尝试。合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

三。运用方法,解决问题

教师活动

学生活动及达成目标

同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

出示课本104页1题,让学生独立完成,并说明自己人是怎样求出组合图形的面积的?

独立完成例5,学生独立完成,并汇报自己的解决方法,让学生清楚的认识到拓展思维,可以从多角度分析解决问题,从而多方法解决问题。

四。反馈巩固,分层练习

教师活动

学生活动及达成目标

1、学生举例并结合学生自己举的例子解答讲解

2、分别出示求组合图形及阴影的面积?

让学生举出自己能够解决的例子,增强他们解决问题的自信心。

学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学于生活,应用于生活的教育理念。

五。课堂总结,提升认识

教师活动

学生活动及达成目标

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

【板书设计】

组合图形的面积

把组合图形分割成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。

分割法添补法

组合图形的面积优秀教案 篇6

设计说明

本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。

1.以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。

2.重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。

3.完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的同时,形成归纳概括的能力。

课前准备

教师准备:PPT课件

学生准备:学具卡片

教学过程

⊙创设情境,复习引入

1.引导学生回忆常见平面图形的面积计算方法。

(课件出示长方形、正方形等图形,指名回答各自的面积计算公式)

2.引导学生观察组合图形的特点。

(课件出示由长方形、正方形、三角形等组合而成的图形)

师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)

师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。

设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。

⊙合作交流,探究新知

1.估计组合图形的面积。

(课件出示教材88页例题图)

师:请同学们观察一下,这是什么图形?(组合图形)

师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的`地板吗?

(1)学生估计至少要买多少平方米的地板。

(2)组内交流估计的方法。

预设

生1:把客厅看成长方形,6×7=42,客厅的面积不到42m2。

生2:把客厅看成边长是6m的正方形,估计其面积是36m2。

2.实现转化,明确求组合图形面积的解题思路和解题方法。

(1)质疑:怎样求这个组合图形的面积呢?

(引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)

(2)动手实践,探究转化的方法。

(引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)

①小组合作探究,将探究的结果填在课堂活动卡上。

②各组组长汇报本组的转化方法和转化结果,教师进行汇总。

师:你们是怎样转化的?分别转化成了什么图形呢?

分割法:

添补法:

割补法:

(3)观察比较,优化解题方法。

师:在这些转化方法中,哪些方法比较简单、容易计算呢?

预设

生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。

师:在进行图形转化时,我们的要求是简单、易算。

大家都在看