《三角形边的关系》教学反思

知远网

2026-01-27教案

知远网整理的《三角形边的关系》教学反思(精选6篇),希望能帮助到大家,请阅读参考。

《三角形边的关系》教学反思 篇1

[片断一]:动手操作,产生问题

师:前面我们已经认识了三角形,知道三角形是由三条线段首尾相连围成的封闭图形,今天,老师想让同学们利用你们桌上的木条亲手搭建一个个的三角形,要求是每个三角形只能用三根木条,你们想不想试一试?

学生:想!

师:下面请同学们分小组开始活动。

(学生分小组活动)

师:每个小组利用桌上的六根木条共搭建了几个三角形?

学生:我们搭建了一个三角形。

师:剩下的三根木条能搭建成一个三角形吗?

学生:不能。

师:你们知道剩下的三根木条为什么不能搭建成一个三角形吗?你发现了什么?

学生1:我发现剩下的三根木条怎么连也连不到一起。

学生2:我们也是这样的。

师:“剩下的三根木条怎么连也连不到一起”说明了这三边在长短上有某种关系,你们能找出这三边在长短上有什么样的关系吗?

学生1:我们将较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来还没有另外一根木条长。

学生2:我们把较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来不是没有另外一根木条长,而是同另外一根一样长。

学生3:我们发现的结论与学生(1)相同,我们是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

学生4:我们发现的结论与学生(2)相同,我们也是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。

师:下面我们将能拼成三角形的三边分开,象上面一样比较一下这三条边在长度方面有什么关系?

(学生活动后汇报)

学生1:我发现较短的两条边加起来比最长的一条边长,同刚才的结论正好相反。

学生2:我发现我这个三角形的任意两边加起来的和都比第三边长。

学生3:我的发现同学生(2)一样,也是这个三角形的任意两边加起来的和都比第三边长。

学生4:“任意两边”是什么意思?我不太懂。

学生5:“任意两边”就是指三角形三边中的每两条边加起来的长度都比剩下来的第三条边的长度长。

学生4:原来是这样的。

(学生都有同感)

学生6:也就是说,任意一个三角形,它的.三条边都存在这样一个特征:三角形的任意两边之和都大于第三边。

学生7:我想应该是这样的吧。因为我们的三角形不一样,但我们得到的结论都是一样的。

学生8:我看到书上也有同样的结论。

(学生都翻书看)

[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,教师有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。

[片断二]:及时练习,形成能力

师:同学们刚才表现得非常棒,你们棒在不仅爱玩,而且能在玩中发现数学问题,通过自己的思考、探讨,你们也能解决问题。这就是我们今天一起学习的三角形的另外一个特征,现在你能运用三角形三边的关系判断给出的三条边能否组成一个三角形吗?

学生:能!

师:请同学们翻书到第86页,自己独立做第4题。

(学生做完后汇报展示,并说明判断的方法)

学生1:(1)、(2)、(4)这三组中的线段能拼成一个三角形,(3)中的线段不能拼成一个三角形,我是把每组中的三条线段两两相加,再与剩下的第三条线段相比较,其中(1)、(2)、(4)这三组中的线段每两条线段之和都大于第三条线段,所以它们能拼成一个三角形,而(3)中2+2〈6,所以这组中的三条线段不能拼成一个三角形。

学生2:我的结论同学生(1)一样,但我的判断方法与他不同,我是先找出较短的两条边,比较它们的和与剩下的第三条边的大小,如果和大一些,则能拼成三角形,如果和小一些,则不能拼成三角形。

学生3:学生(2)的方法只是一种巧合,他没有判断任意两边之和大于第三边,所以这种方法不行。

(学生对学生(2)的方法产生了争论,学生讨论一会儿后)

学生4:学生(2)的方法是对的,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,这也就更进一步说明这个三角形的任意两边之和大于第三边。

学生5:看来在判断某三条边能否拼成一个三角形时,用学生(2)的方法既快又对。

[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中老师充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们也欣喜地发现,通过练习,学生还在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。学生的能力不可限量啊!

[片断三]:结合实际,学会运用

师:通过刚才的练习,你们不仅掌握了判断某三条边能否拼成一个三角形的方法,并且还找出了最佳的判断方法。从这里可以看出,只要同学们肯动脑思考,一定会取得令人满意的结论。下面请同学们观察小明上学示意图(电脑出示书第82页示意图),如果小明想走离学校最近的路,你认为他会选择那条路上学?

学生:他会走中间这条路。

师:你们是怎样判断的?

学生1:因为中间这条路是直的,其它的路是弯的,所以中间这条路最短。

学生2:如果小明走通过邮局到学校这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的三边关系可以知道,小明家到邮局,邮局到学校这两条边之和一定大于第三边,即中间这条路,所以中间这条路最短。

师:思考问题既要靠直觉,更要学会用所学的知识解决问题,就像学生(2)一样。另外请问从这副图还可以看出连接两点的线中,哪条线最短?

学生:线段最短。

[反思]:教材是学习的载体,教学中教师应充分发挥教材的育人作用,挖掘教材的教育功能,而不要把教材撇开一边。从上面可以看出,这副图既能让学生领悟知识与实际的结合,又能从中学到另外的知识,可谓一举多得。

[片断四]:拓展延伸,丰富充实

师:通过上面的学习,老师欣喜地发现同学们不仅能自主、能动地学习新知,而且能将所学的知识用于解决实际问题之中。下面老师这儿有几道题不知怎样解答,谁能帮一帮老师?(电脑出示题目)

题目一:已知两条线段a、b,其长度分别是2.5cm与3.5cm。另有长度分别为1cm、3cm、5cm、6cm、9cm的五条线段,其中能够与线段一起组成三角形的有哪几条?

学生1:长度分别是3cm、5cm的两条线段中任意一条线段能与a、b组成一个三角形,因为3+2.5>3.5,2.5+3.5>5。

学生2:长度分别是1cm、6cm、9cm的三条线段中任意一条线段不能与a、b组成一个三角形,因为1+2.5=3.5;2.5+3.5=6;2.5+3.5<9。

题目二:用长度为2cm、2cm、6cm、6cm、6cm这五条线段中的任意三条线段拼成一个三角形,你能拼成几种不同的形状?拼成的三角形有什么特点?

学生1:我用长度为2cm、6cm、6cm三条线段能拼成一个三角形,这个三角形有两条边的长度相等。

学生2:我用长度为6cm、6cm、6cm三条线段能拼成一个三角形,这个三角形三条边的长度都相等。

学生3:我用长度为2cm、2cm、6cm三条线段不能拼成一个三角形,因为2+2<6,所以他们不能拼成三角形。

师:刚才学生1、学生2所说的三角形是两种较特殊的三角形,这些三角形我们将在下次课中学习研究。

题目三:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

学生1:我想最多可以由9根火柴棒组成。

学生2:我觉得最多可以由8根火柴棒组成。

┈┈

师:同学们敢于大胆猜想,勇于发表自己的意见,这很好。不过同学们如果能通过实践,讲究事实依据,用理由来说服人那就更好了!

(学生分小组讨论、拼摆)

学生1:我们通过实践知道,最长边最多可以由7根火柴棒组成。

学生2:我们通过讨论知道,最长边最多可以由7根火柴棒组成。此时另外两条较短的两条边的和为8,大于最长边7,根据三角形三边的关系可知,此时能拼成三角形,且最长边由7根火柴棒组成,为最多。

师:同学们今天表现非常棒,不仅能猜想,而且能通过实践,利用所学知识解决实际问题,老师为你们骄傲,我相信,只要同学们一如既往,灿烂的明天一定会与你拥抱。

[反思]:数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间,如此定会别有洞天。

[点评与拓展]:良好的教育一定要致力于学生用自己的眼睛去观察,用自己的心灵去感悟,用自己的头脑去判别,用自己的语言去表达,要能使一个人成为真正的人,成为他自己,成为一个不可替代的大写的“人”。本节课,授课教师在教学中充分体现了这一观点。先是设计了“拼三角形”这一环节,让学生在动手操作中用自己的眼睛去观察,接着设计汇报展示这一环节,让学生用自己的语言去表达,在听别的同学汇报时,让学生用自己的头脑去判别,用自己的心灵去感悟。在后面的教学中,该教师继续抓住这一教育思想对学生施教,让学生在学习中感受到了生命的存在与价值,体验到了自己主动建构知识的快乐,取得了满意的教育效果。

《三角形边的关系》教学反思 篇2

“三角形的三边关系”是人教版数学四年级下册的内容,这节课的内容安排在三角形特征之后,分类之前进行教学的。教材首先呈现了小明从家去学校的生活场景,通过这样一个学生熟悉的生活情景,引发学生对三角形三边的思考,接着呈现学生以小组合作学习的方式进行合作、探究、发现规律,形成结论的过程,最后揭示“为什么小明上学走中间这条路最近?”所蕴含的道理,体现了数学源于生活,反过来服务于生活的数学理念。

而我对这一部分教学内容进行了重组。首先我出示了分別由三条线段组成的三个图形,让学生说“哪个是三角形?”学生很容易找到,接着问他们“什么是三角形了?”学生说后出示小学和初中课本中的三角形定义,目的是为了夯实三角形的概念,从而为下面的动手实践“围三角形”扫清障碍。接着,我安排了两次动手操作活动,使学生在动手、动口、动脑等活动中,初步感悟,理解三角形三边的关系,为下一次环节规律的总结,知识的建构做好充分的准备,同时,用课件直观演示“围三角形”的过程和用投影仪展示“画一画,比一比”的结果,使学生理解了三角形三边之间的关系,再次把学生的思维激活,从而进一步深化了对规律内涵的理解。最后,再出示“小明去学校”的主题图,让学生说“为什么选择中间那条路?”让学生深刻的的感受到“生活中处处有数学”,从而学会用数学的眼光观察和分析周围的世界。练习设计力求多层次,让学生的思维在巧妙的设疑中引向深入,做到学以致用。

本节课通过让学生动手实践,认真思考、合作交流、共同分享,引领学生经历了一次“研究与发现”的完整过程,调动学生的多种感官参与学习活动体现了自主、合作、探究的`教学方式,体现了以生为本的教学理念,既注重数学知识教学,更注重数学学习方法和数学思想的渗透,从而养成深入思考的良好学习习惯。

这一节课也有很多遗憾的地方。比如:在汇报不能围成三角形的数据时,有位同学说:“9厘米、10厘米、11厘米能围成三角形时,教者并没有记录,而是强调要不能围成三角形的数据时,这样做打消了这位同学的学习积极性;有的同学回答不够全面时,教者让其他同学进行补充……以上情况出现时,教者没有及时给予启发,引导学生得到正确、完整的答案,让学生能“体面的坐下”,这说明教者在教学过程中没有灵活的教学机智,以后要多多关注学生的情感,对学生进行积极性评价。

一节课结束了,但留给我们教者的思考却很多:如何真正体现以生为本的教学思想?如何为学生后续学习和工作打好基础,铺平道路?如何打造高效课堂?在我今后的教学中这些都是值得深思的课题。

《三角形边的关系》教学反思 篇3

本节课是一节探究型课型,教学中,不仅应关注数学知识与结论,更应该关注学生主动探究的过程。因此,根据教材和学生的实际,我从知识、能力、情感三个方面制定了教学目标,在教学中,进行了一些探索与尝试:

一、充分体现数学探究型课型的特点。

本节课我按照游戏操作引入——产生问题——猜想——验证——推广运用这一主线组织教学的。让学生在行动中生问题,由问题生猜想,由猜想生价值。教学中,我给学生充分的`时间和空间去经历摆一摆、画一画、算一算的自主探索过程,虽然花的时间比较多,一些课后的练习不能在这堂课中解决,但是我认为是很值得的,我们不光是获得结论,更应该让学生经历探究过程,培养学生科学的探究态度和初步的探究能力、思维得到发展。

二、关注对学生学习过程的评价,创设融洽的学习氛围。

本节课我比较注重创设良好的学习氛围,以问题为中心,吸引学生积极思考,主动探究,形成师生互动,同时还注重用激励式的语言评价学生,激发学生积极思考,主动探求。

《三角形边的关系》教学反思 篇4

三角形边的关系是在认识了三角形的“分类”和“内角和”的基础上进行教学的。教学重点主要是探讨:任意三根小棒能否围成三角形?研究“三角形边的关系”得出“较短两边之和大于第三边”我不急于给学生答案,而是经过讨论验证后用“任意”代替“较短”,这样学生更清晰。本节课我主要是让学生经历一个探究解决问题的过程,引导学生先发现问题、提出假设、实验验证、得出结论、实践应用的过程。我在教学中,关键是抓住“任意的三条线段能不能围成一个三角形?”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的`三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。我这样设计主要体现了以下三点:

1、创设问题情景,以疑激思。

学生的积极思维往往是由问题开始,又在解决问题中得到发展。因此,课堂一开始,我是让学生拿出课前准备好的四组小棒,让学生动手摆一摆并提出“是否任意三条线段就一定能围成三角形呢?”设置悬念,引起学生的积极思考,让学生对三角形三边的关系产生好奇,引发学生探究欲望,从而去探索解决问题的方法。

2、实现数学知识的再创造。

“再创造”是指创设合适的条件,让学生在学习数学的过程中,经历一遍发现、创新的过程,即根据自己的体验,用自己的思维方式重新创造有关的数学知识。它是数学学习活动的灵魂。因此在教学中,我有意设置一些动手操作,共同探讨的活动,尽可能多些时间给学生创造展示自己思维的空间和时间,千方百计地让学生参与到知识形成的全过程,从而实现数学知识的“再创造”。如这节课中我设计了让学生动手拼三角形,小组讨论三角形边的关系,通过实践操作、观察、思考学生亲自体验“任意两边之和大于第三边”这一结论的普遍性。使学习真正成为学生自主的活动,也为学生提供了获得成功的机会。

3、密切数学知识与现实生活的联系。

本节课我结合学生已有的生活知识和生活经验,创设学生熟知的、贴近他们生活实际的教学活动情境,架起现实生活与数学学习的桥梁,使学生从周围熟悉的事物中学习,感受数学与现实生活的联系,让学生感受到生活中处处有输血,数学就在我们身边

《三角形边的关系》教学反思 篇5

在厦门听了北京的老师上这节课,便想跃跃欲试。不巧,有家长来办事,耽误了我制作学具的时间,怎么办呢?教学进度也不允许往后推一节课呀,何况明天因为七校联盟的决赛数学课已经调到下周一了!

就这么办!

我让每一个学生任意画了三个三角形,画好后让他们量出每个三角形每条边的长度,并做好记录。然后,引导他们发现三条边之间的关系,有的同学已经预习过了,忍不住大叫起来:“三角形任意两条边的和大于另一条边。”在这个学生的带动下,所有的学生都开始进行边的长度的两两相加并和第三条边进行比较,他们像发现新大陆似的欣喜。

是不是所有的三角形都有这样的规律呢?孩子们重新画了一个三角形进行验证。原计划安排的'动手操作、发现探究变成了发现、猜想、验证、归纳。孩子们的积极性很高、很投入、很有成功感!

接下来是让学生阅读课本,读一读、看一看并解决课本中的“哪条路最近”的问题,让孩子们感受这个数学知识在生活中的应用,并思考例题3下面的问题,对三组数据进行判断:哪三条线段可以围成三角形?孩子们都能用这样的语句来叙述:因为6+8大于7,8+7大于6,7+6大于8,所以这三条线段能围成三角形。

然后,我出示了四组数据,让学生说明每一组数据中的三条线段是否可以围成三角形。先是独立思考,接着在小组内交流。我走入孩子们中间,其中有一个小组领会错误:3cm-2cm-1cm,他们的结论是有的能有的不能。我未置可否,在全班交流、评讲的时候特意安排他们组先汇报,他们一说完,全班一片哗然,反对的声音坚决果断。我让一个孩子帮助出错的小组,这个孩子言之凿凿,条理清晰、富于逻辑,特别强调了“任意”二字。我望了望出错的小组,他们不好意思地露出了笑容。

是否每一次判断都要将每两条线段相加再和另一条线段比较呢?当我提出这个问题时出现了短暂的沉寂,孩子们都陷入了思考。

我指着“7厘米,3厘米,5厘米”对孩子们说,你是否可以只计算一次就作出判断呢?孩子们都说:“只要看3和5的和大于7就可以判断。”

看着孩子们依然在思索,还是没有谁来“揭秘”。我再次让他们观察判断过的几道题,这时文丽这个女孩举起手来,自信地说:“只要计算最短的两条边的和,看会不会大于第三边就可以了!”我含笑地望着课代表和几个平时发言积极、思维活跃的孩子:“有意见吗?”他们对自己落于人后似乎有些失望,但是孩子很高兴地回答:“我赞成文丽的意见!”好家伙!

书上的题他们很快就做完了,当我巡视的时候,孩子们争先恐后地把我递到我的面前,让我目不暇接。我特别留意了小琛、小琪,她们都能用只计算两条短边的和的简便的方法进行判断,我对她们竖起了大拇指。

孩子们在总结的时候都说,今天自己的收获特别大,学得特别好。看着孩子们高涨的情绪,我顿然滋生享受教学、享受课堂的感觉。

激发学生探究的动机,让学生获得成功感,培养学生思维的逻辑性和回答问题的逻辑性应该贯穿于每一节课。

《三角形边的关系》教学反思 篇6

《三角形三边的关系》是四年级下册内容,是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。学生都知道三角形是由三条线段围成,但是对于“任意的三条线段不一定都能围成三角形”这一知识却似懂非懂。另外,“三角形任意两边的'和大于第三边”的结论,对于学生来说理解并不是非常困难,此内容的教学价值更多的在于过程和方法。因此,在教学中应尽量地为学生提供探索的空间,引导学生围绕问题主动地进行观察、实验、猜测、验证、推理等数学探究活动,让学生自主地“做”和“悟”,从而得出结论。再次,学生的操作材料(吸管和小棒)都有一定的粗细,在实践操作时难免产生误差,此时,可恰当地运用多媒体动态演示,能有效地突破教学难点。

本节课的教学,我认为重点在于探究的过程与方法。通过动手用三根吸管围三角形(有的能围成,有的围不成),引导学生进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律。本节课,我设计了一连串的问题:“为什么这三根吸管围不成三角形?”、“怎样的三根吸管能围成三角形?”、“第三根小棒的长度应在哪个取值范围内?”引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。最后通过发挥多媒体教学的优势,最大限度地提高教学效果。三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。课件应用,能动态呈现出来,为突破本节课的难点起到了至关重要的作用。例如:在验证“当较短的两根小棒长度之和等于第三根”能否围成三角形的猜想时,学生意见不一,因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。利用课件引导学生明白当较短的两根小棒的端点搭在一起时,就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。

大家都在看