知远网整理的二次根式教案(精选6篇),希望能帮助到大家,请阅读参考。
二次根式教案 篇1
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;
2.熟练地进行二次根式的加、减、乘、除混合运算.
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.
指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.
2.二次根式 的乘法及除法的法则是什么?用式子表示出来.
指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,
计算结果要把分母有理化.
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x-2且x0.
解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一个二次根式的被开方数的'分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.
解 因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、课堂练习
1.选择题:
A.a2B.a2
C.a2D.a<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:
二次根式教案 篇2
本节的重点有两个:
⒈、同类的概念
⒉、二次根式加减运算的方法
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并、二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点。
本节的难点二次根式的加减法运算
二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了、整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项、但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点、
本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并、
(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法、两种处理方法各有优劣,教师在教学过程中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁、
(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:
①把被开方数都是整数的放在一个小题中;
②把被开方数都是分数的放在一个小题中;
③把被开方数带有简单字母的放在一个小题中;
④把字母次数略高于2的放在一个小题中。
……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感、
(3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:
①不需要化简能直接进行相加减的';
②需要化简但被开方数都是简单整数的;
③被开方数都是有理数但既有整数又有分数的;
④被开方数含有字母的,等等。
(4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力、
(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:
①不是最简二次根式就不是同类二次根式;
②该化简的没有化简,或化简的不正确;
③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况。
教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固。
二次根式教案 篇3
二次根式教案
作为一名无私奉献的老师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?以下是小编为大家收集的二次根式教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二次根式教案 篇4
一、内容和内容解析
1.内容
二次根式的加减乘除混合运算.
2.内容解析
二次根式的混合运算是本章所学内容的综合运用,运算过程中用到乘法分配律,还需用多项式的乘法法则和整式的乘法公式,教学中要注意让学生体会二次根式的运算与整式运算的联系.
基于以上分析,可以确定本课的教学重点是运用乘法分配律、多项式乘法法则及乘法公式进行二次根式的加减乘除混合运算.
二、目标和目标解析
1.目标
(1)掌握二次根式混合运算的法则,合理使用运算律.
(2)灵活运用运算律、乘法公式等技巧,使计算简便.
2.目标解析
达成目标(1)的标志是:学生能在有理数混合运算及整式的混合运算基础上,类比得出二次根式混合运算的法则及算理.
目标(2)是通过类比整式乘法公式让学生能熟练进行二次根式混合运算.
三、教学问题诊断分析
二次根式的混合运算,困难在于让学生体会二次根式的运算与整式运算的联系.在二次根式运算中,法则和乘法公式仍然适用.
本课的教学难点是:二次根式运算中,灵活运用多项式乘法法则及乘法公式.
四、教学过程设计
(一)提出问题
问题1:计算
(1);(2).
问题2:计算
(1);(2).
师生活动:学生独立完成计算,小结算理.
追问1:问题1、2中的字母、可以代表哪些数与式.
师生活动:学生自由发言,引出、可代表二次根式.
设计意图:类比整式运算引出二次根式混合运算的法则与算理.
(二)探索新知,解决问题
问题3:类比问题,完成计算:
(1);(2).
师生活动:学生独立思考完成,请学生板演,教师适时引导,两题均用乘法分配律.
设计意图:让学生体会到数的扩充过程中运算律的一致性.
问题4:在问题2中,若令,你能计算下列式子的.值吗?
(1);(2).
师生活动:学生通过类比思考得出结论,教师引导学生得出二次根式运算中,多项式乘法法则和乘法公式仍然适用.
设计意图:让学生感受到数的扩充过程中数式通性.
(三)典型例题
例1计算:(1);(2).
例2计算:(1);
(2);
(3).
师生活动:学生独立完成计算,教师适时给予评价.
设计意图:加强学生运算技能的训练,进一步让学生认识二次根式和整式性质运算法则上的一致性.例2、例3在不能用乘法公式的情况下,可用多项式乘法法则.
(四)课堂小结
整式的运算法则和乘法公式中的字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式,所以整式的运算法则和乘法公式适用于二次根式的运算.
设计意图:让学生加深数式通性的理解.
(五)布置作业
课本第15页第4题.
五、目标检测设计
1.计算:的值是.
2.计算:=;=.
3.计算:=.
4.计算:=.
5.计算:=.
设计意图:通过练习熟悉二次根式的运算的法则与算理.
二次根式教案 篇5
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的.特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
二次根式教案 篇6
教学设计
1、知识技能:
(1)会进行简单的二次根式的除法运算。
(2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算。
2、数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则。
3、 解决问题:引导学生从特殊到一般总结归纳的方法以及类比的.方法,解决数学问题。
4、情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的
同步练习含答案解析
【考点】最简二次根式。
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是。
【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;
B、符合最简二次根式的条件;故本选项正确;
B、,被开方数里含有能开得尽方的因式x2;故本选项错误;
C、被开方数里含有分母;故本选项错误。
D、被开方数里含有能开得尽方的因式a2;故本选项错误;
故选;B。
【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式。
课时练习含答案
解答:选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故选B。
分析:正确运用二次根式除法运算法则进行计算,并能辨析运算的正误,是本节的教学难点,学生可以通过比较分析或正确计算加以判断。
