五年级下册数学《3的倍数的特征》教学设计

知远网

2025-12-17教案

知远网整理的五年级下册数学《3的倍数的特征》教学设计(精选6篇),希望能帮助到大家,请阅读参考。

五年级下册数学《3的倍数的特征》教学设计 篇1

教学目标:

1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重、难点:

是3的倍数的数的特征。

教学设计:

一、提出课题,寻找3的倍数特征。

师:同学们,我们已经知道了2.5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?

师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)

二、自主探索,总结3的倍数特征

师:先请在下表中找出3的倍数,并做上记号。

(教师出示百以内数表,学生利用p18的表。在学生的'活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)

师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

学生同桌交流后,再组织全班交流。

学生先自己写数并验证,然后小组交流,得出了同样的结论。

全班齐读书上的结论。

三、巩固练习:

完成p19做一做

四、课堂小结:

这节课你有什么收获

板书设计:

3的倍数特征

3的倍数什么特征

五年级下册数学《3的倍数的特征》教学设计 篇2

教学目标:

1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数

2、使学生在探索3的倍数的特征的过程中,进一步培养观察,比较,分析,归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

教学重点:

使学生掌握3的倍数的特征,会判断一个数是否是3的倍数

教学难点:

探索3的倍数的特征

教学准备:

有学号的卡片;学生准备小棒若干。

教学过程:

一,复习引新

1, 用5,6,7三个数字组成一个三位数,使这个数是2的倍数 说说什么样的数一定是2的倍数 可以摆成5的倍数吗 说说怎样摆 什么样的数是5的倍数

2, 引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗 今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

二,排列中感受奇妙

1, 谈话:我们班有50个同学,现在每个同学手中都有一张写有自己学号的卡片,请大家判断一下,自己的学号数是3的倍数吗 (稍停,让学生完成判断)请学号数是3的倍数的同学把卡片贴在黑板的左边,不是3的倍数的,卡片贴在黑板的右边。

2, 提问:请观察一下,根据一个数个位上的数字,能确定一个数是3的倍数吗 (不能)那么3的倍数究竟有什么特征呢

3, 抽取黑板左边3的倍数12和21。

(1) 谈话:比较这两个数,你能发现什么有趣的现象 (数字相同,数字排列的顺序不同)

(2) 提问:在左边3的倍数中,再找几个数,把他的数字顺序改变一下,看看还是不是3的倍数 你有什么发现 (一个3的倍数,改变数字的顺序后,仍然是一个3的倍数。)

(3) 在右边不是3的倍数的数中,也有这样的数,你能把他们一组一组地排列起来吗 (13,31;14,41;23,32;25,52;34,43;)这里又说明什么呢 (一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数)

(4) 到现在,我们可以推想,3的倍数的特征和数字的排列顺序没有系,但和这个数的各个数位上的数字有关,这里到底有什么奥秘呢

三,操作中发现规律

1, 活动:每个同学手中都有一些小棒和一张数位表,我们在数位表上分别来摆几个3的倍数,看看分别用了几根小棒,现在请你在3的倍数中任意选几个来摆一摆,开始。

2, 学生在小组中完成并记录,然后汇报,教师板书如:12:1+2=3;

3, 提问:对于小棒的根数你有什么发现 (都是3的倍数)

4, 下面我们反过来试试看,请你数出3的倍数根小棒,摆成一个两位数或三位数,看看这个数是不是3的'倍数。(学生操作后汇报结果)

5, 提问:摆每个数所用的小棒根数就是这个数的什么 现在你觉得什么样的数一定是3的倍数 (3的倍数,它的各位数的和一定是3的倍数)

6, 教学试一试:如果一个数不是3的倍数,这个数各数位上数字之和会是3的倍数吗 请你找几个不是3的倍数算一算看。你得到什么结论 (各数位上数字的和不是3的倍数,这个数就不是3的倍数)

7, 你能把刚才发现的结论和现在这个结论连起来说一说吗

四,练习中提升认识

1, 完成"想想做做"第1题

学生独立完成判断,并把题中3的倍数圈出来。

组织交流:哪些数是3的倍数 你是怎样判断的

明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数。

2, 完成"想想做做"第2题

启发:这几道除法算式有什么共同特点 如果一个数除以3没有余数,说明这个数和3是什么关系 反过来,如果一个数是3的倍数,那么这个数除以3会有余数吗 你打算怎么判断

学生各自做出判断,在组织交流。

3,完成"想想做做"第3题

填什么数字能使这个两位数是 3的倍数 你为什么填这个数 你是怎么想的 还可以填哪些数

4,完成"想想做做"第4题

先让学生按要求操作,交流:你是怎么找9的倍数的 9的倍数都是3的倍数吗 反过来,3的倍数都是9的倍数吗 请举例说明。

5,完成"想想做做"第5题

提问:每次要选几张卡片 要使组成的三位数是3的倍数,这三张卡片上的数要满足什么要求

学生动手选一选,并把每次组成的三位数记下来

组织交流:你选了哪三张卡片 为什么选这三张呢 用这三张卡片能组成几个不同的三位数 还可以选哪三张卡片 用这三张卡片又能组成哪几个3的倍数 这样的三位数一共有多少个

五,全课总结

3的倍数有什么特征 判断一个数是不是3的倍数,你会怎么判断

五年级下册数学《3的倍数的特征》教学设计 篇3

教学目标:

1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。

2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

教学重点:

使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

教学难点:

探索3的倍数的特征。

教学准备:

有学号的卡片,学生准备小棒若干。

教学过程:

课前:

一、复习引入

对口令复习2、3、5的乘法口诀,由屏幕中的小游戏引入。

二、操作探索,验证猜想

1、合作发现

百数表是我们认识数的好帮手,找规律的好帮手。每个人手里都有一张百数表,请你在上面圈出出3的倍数。和小组内的同学商量一下3的倍数有什么特征。

自主探究,小组合作,师巡视,帮助找3的倍数有困难的学生。

小组代表合作,全班交流

生1:我发现10以内的数只有3、6、9是3的倍数。

生2:我发现不管横的.看或竖的看,3的倍数都是隔两个数出现一次。

生3:3的倍数个位上0~9这十个数字都有可能。

师:其他同学还有什么发现吗?

生:我发现3的倍数按一条一条斜线排列很有规律。

师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

师:这是一个重大发现,其他斜线呢?

生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

师:现在谁能归纳一下3的倍数有什么特征呢?

生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

让我们在组数的过程中再深入研究一下3的倍数的特征。

课件出示四组卡片和活动要求。

学生合作探索,教师巡视参与。

师:谁来代表你们小组汇报研究的情况?

课件出示各组数字之和。

师:请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

生:我的猜想是一个数的数字和是3的倍数的数,这个数就是3的倍数。(板书:各个数位上数字之和是3的倍数,这个数就是3的倍数)

2、举例验证

师:我们发现的这个规律是不是具有广泛性,如果是更大的数是不是符合这个特征呢?谁能任举一例子并说明具体的验证方法?

生:如4572这个数。我先把4572各位上的数字加起来,看数字之和是不是3的倍数,再看这个数是不是3的倍数。

师生共同讨论验证,并引导学生体会验证方法。(略)

学生在小组内举例验证。

汇报验证结果,形成共识,得出结论,总结出规律。

三、课堂巩固练习

3的倍数的特征你掌握了吗?我们做一下练习题。过五关斩六将,看谁是英雄好汉。闯关即将开始,你准备好了吗?

第一关:下面哪些数是3的倍数?

42 134 78 268

第二关:在下面每个数的□里填上一个数字,使这个数是3的倍数。

① 3□ ② 2□6 ③ 2□ 5 ④ 47□

学生在4□的□中填出0、3、6、9后,师:请你们观察填的3个数字,能发现其中的规律吗?

生:它们依次相差3。

第②、③④题的过程同上。

生:因为0不能做一个数的最高位。

四、拓展:生活中的数学

课件出示小游戏

五、课堂小结

我们今天学的是什么内容?谁来具体地说说3的倍数的数有什么特征?

六、板书设计

3的倍数的特征

3的倍数的特征:各个数位上数字之和是3的倍数

五年级下册数学《3的倍数的特征》教学设计 篇4

一、教学内容

新人教版《义务教育课程教科书数学》五年级(下册)第10页。

二、教学目标

1.使学生掌握3的倍数的特征,能够正确地判断一个数是不是3的倍数。

2.让学生经历科学的探究过程,激发学生探索新知的兴趣,培养学生的自主学习能力。

3.结合知识的教学,培养学生的观察、猜想、分析、比较、归纳等思维能力。

4.让学生获得探索成功的体验,增强学好数学的自信心,培养学生的数学兴趣。

三、课前准备

计数器、课件

四、教学过程

(一)复习旧知,引出新知 1.复习旧知

出示:

(1)如果将这些钱平均分给2所学校,每所学校得到的钱数是整元数吗?你是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

(2)如果将这些钱平均分给5所学校,每所学校得到的钱数是整元数吗?你又是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

2.引出新知

如果将这些钱平均分给3所学校,每个学校分到的钱是整元数吗?你是怎么知道的?能不用计算3860÷3的方法判断吗?

⒊导入新课

同学们,3的倍数有特征吗?有什么特征呢?今天我们就来研究3的倍数的特征。

教学意图:一方面通过复习帮助学生回忆2.5倍数的特点,巩固前一节学习的知识,另一方面引出本节课要研究的知识――3的倍数的特征,自然过渡到新知教学。

(二)猜想验证,制造悬念

1.请同学们猜一猜3的倍数的特征可能是什么? 各种不同的数,都是3的倍数。

2.用4颗珠子摆数研究

(1)用4颗珠子可以摆出哪些数?

学生先摆,并做搞好记录,最后汇报:4、40、31、22、13、400、310、301、220、202、211、130、103、121、112。

(2)这些数是3的倍数吗?

(3)你又有什么发现?

教学意图:通过让学生摆数、计算等活动,发现规律:用4颗珠子摆成的不同的数,都不是3的倍数。

3.观察比较,寻找简便方法

(1)把3颗珠子和4颗珠子摆的数联系起来看一看,有什么发现?

(2)从这里可以看出,只要看摆出的几个数就知道摆出的其他数是不是3的倍数了?

教学意图:通过对3颗、4颗珠子摆数、判断的比较,发现规律:摆出的数要么全是3的倍数,要么全不是3的倍数,从而寻找到简便的判断方法:只要判断摆成的一个数是不是3的倍数就知道其他的数是不是3的倍数了,为下面快速地判断奠定基础。

4.用n颗珠子摆数研究

(1)用5颗珠子摆成的数是3的倍数吗?为什么?(如:104不是3的倍数,所以摆成的其他数都不是3的倍数)

(2)用6颗珠子摆成的数是3的倍数吗?为什么?

(3)用7颗珠子摆成的数是3的倍数吗?为什么?

(4)用8颗珠子摆成的数是3的倍数的数吗?为什么?

(5)用9颗珠子摆成的数是3的倍数吗?为什么?

教学意图:通过快速地判断5、6、7、8、9颗珠子摆成的数是不是3的倍数的研究,为下面的研究规律提供丰富的素材,为发现和概括规律奠定基础。

5.观察比较,发现规律

(1)请同学们观察上面的研究,有什么发现?

(2)猜想一下还可以用几颗珠子摆成的数都是3的倍数?为什么?验证一下猜想对不对?

(3)为什么不猜10颗、11颗珠子摆的数?验证一下对不对?

(4)请同学们想一想:摆成的3的倍数与珠子的'颗数有什么关系?

(5)再请同学们思考:珠子的颗数就是摆成的数的什么?

(6)把珠子颗数换成“各位上数的和”说说3的倍数有什么特征?

教学意图:先帮助学生寻找到摆成的3的倍数的数与珠子的颗数之间的关系,初步发现规律,再引导学生思考:珠子的颗数就是摆成的数的各位上数的和,最终发现3的倍数的特征。

6.举例判断,验证规律

师:这个规律对不对呢?怎样去验证?学生举几个例验证(略)。

教学意图:因为这个规律是采用不完全归纳法归纳出来的,具有一定的局限性,正确与否还需要进行验证,学生随机举例验证,从而证明规律的正确性。

(四)巩固练习,消化理解

1.下面哪些数是3的倍数?你是怎么想的?

45 546 7 7610 81 8180

2.在下面每个数的□里填上一个数字,使这个数是3的倍数。你是怎么想的?

4□ 3□5 12□ □12

可以填哪些数?有什么规律?

⒊熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸带着小熊到狐狸家里领工资。他们通过计算,得出以下的结果:狐狸:856×3=2468(元),小熊:856×3=2558(元),熊爸爸:856×3=2568(元),你知道谁算对了吗?为什么?

⒋有个很大的数,如:46091362930,它是3的倍数吗?你是把所有的数字都加来的吗?有更简便的方法吗?

(五)回顾总结,结束全课

通过今天的学习你学到了什么?你有什么收获?

《3的倍数特征》教学反思

3的倍数特征相对于2和5来说相对不易发现,在讨论3的倍数特征时,学生学习遇到困难,有学生得出结论:

1、个位是3、6、9的数是3的倍数。

2、个位是3的倍数,这个数就是3的倍数。

这时,我让学生用计数器上的3颗珠子和4颗珠子拨数,计算出是否是3的倍数,再次找3的倍数特征,学生交流后发现光看个位是不是3的倍数可不行。课件出示114,圈一圈,你有什么发现?让学生明确把各个数位上的数加起来,所得的和是3的倍数,这样的数才是3的倍数。

整个教学过程,我重点放在了教学方法上,着重学生“发现问题—探索问题—解决问题”的能力培养,让学生能在猜想、操作、验证、交流、反思、归纳的过程中获取知识,也有助于学生数学思维的培养。抓住一切可以利用的机会,激发学生的创新欲望,培养学生的创造意识,充分发展个性才能。

五年级下册数学《3的倍数的特征》教学设计 篇5

教学目标:

1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。

2、通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。

3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

教学重点:

使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:

3的倍数的数的特征的归纳过程。

教具准备:

小黑板、课件、小棒等。

教学时数:

一课时

教学过程:

一、 复习导入。

为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。

下面的数,哪些是2的倍数?哪些是5的倍数。 364、420、515、736、1028、905

让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2.5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)

为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。

二、 猜想验证。

由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。

三、 体验新知。

由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。

3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21 ……

并引导学生进行观察发现:3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的`数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。

四、归纳总结。

在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就 3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。

五、实践应用。

当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。 练习1:课本第19也做一做。 1,下列数中3的倍数有: —— —— 14 35 45 100 332 876 74 88

(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)

练习2:①第21页(5、6题),在基本练习的基础上我增设了3道发展题。

②把数娃娃送回家。题目如下:

这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)

练习3:第21页(7题)

7、在口里填一个数字,使每个数都是3的倍数。 口7 4口2 口44 65口 12口1

(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)

六、拓展延伸

为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2.5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?

纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。

板书设计:

3的倍数的特征

一个数的各位上的数的和是3的倍数,这个数就是3的倍数。

五年级下册数学《3的倍数的特征》教学设计 篇6

一、教材简析

《3的倍数的特征》是新人教版第十册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。

二、教学目标

1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

2.发展分析、比较、猜测、验证的能力。

三、教学思路

本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。

基于以上想法,本课设计以下两个大环节:

探究 深化

四、教学过程

一.探究

这个部分,我为学生提供了四个探究平台:

(1)猜想

复习:2和5的倍数特征。猜测3的倍数的特征。

(2)观察

在百数表中找出所有3的倍数,通过观察否定猜想。

借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?

学生很快能发现所用数珠的'颗数都是3的倍数。

当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。

如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?

经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。

(3)举证

我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。

小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?

经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。

所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。

(4)归纳

现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。

“各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。

二.深化

让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:

(1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?

(2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?

(3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?

如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……

刚才的练习有没有给你什么启发?

用你们的方法判断下面的这些数是不是3的倍数:

36996969336, 1827457874。

判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。

大家都在看