知远网整理的四年级数学上册教案(精选6篇),希望能帮助到大家,请阅读参考。
四年级数学上册教案 篇1
一、教学内容
教科书第62页例3、例4及相关内容。
二、教学目标
1、在操作试验活动中经历探索发现“三角形边的关系”的过程,知道三角形边的关系。
2、借助剪一剪、拼一拼、移一移等活动,积累数学活动经验,培养学生自主探索、动手操作、合作交流的能力。
3、渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。
三、教学重点
理解三角形任意两边的和大于第三边。
四、教学难点
理解两条线段的和等于第三条线段时不能围成三角形,理解“任意”二字的含义。
五、教具准备
“几何画板”制作的教学课件,三角形的每条边可以根据学生生成的数据输入显现,展示围的过程。
六、学具准备
透明彩色喷墨胶片打印线段。
七、教学过程
环节预设教师活动学生活动设计意图
一、再现三角形模型——强化对三角形的认识
1、谈话导入,复习三角形概念。
师:我们已经认识了三角形,谁来说说什么是三角形?
2、操作试验,感受三条线段怎样围成三角形,懂得围成三角形的关键是任意两条线段的端点两两相接。
(实物投影:三张印有线段的胶片,胶片的边沿相连。)
师:看屏幕,现在这样围成三角形了吗?
教师:谁来围一围?
(请一名学生在实物投影上操作,其他同学观察,评价。)
教师:刚才的没围成三角形,现在就围成了,围成三角形的关键是什么?
学生回答
学生观察
学生操作,评价
学生讨论并回答
先让学生说说什么是三角形,调出学生的原有认知,通过实物投影上三条线段围的变化,一方面帮助学生重现三角形的模型,强化对“每两条线段的端点相连”的认识,潜移默化地指导了围的方法。为后边的学习打下基础。
二、拆解三角形模型——制造冲突,引发思考
1、拆解
师:如果从三条线段中拿走一条,剩下的可能是哪两条?
(板书:11、6和11、11)
2、讨论
师:用这两条线段能直接围成三角形吗?能想办法变成三条线段吗?
师:变成三条线段了,就能围成三角形吗?
(板书:能?不能)
学生动手,观察并总结回答在学生生活经验和已有认识中,想象得到的都是能围成三角形的三条线段,头脑中也有大量这样的生活原型和抽象的三角形模型。教师通过“从三条线段中拿走一条→两条线段围不成三角形→想办法变成三条→三条线段就能围成三角形吗”四个小步骤的巧妙设计,打破了学生头脑中存有的三角形模型,引发学生的思考:三条线段能不能围成三角形呢?给学生提供了一个质疑自己和他人已有知识经验的机会,让他们在审视、思考、疑惑中进入到下一个环节的研讨。
三、重组三角形模型——探究三角形边的关系
1、操作试验,明确三条线段能否围成三角形
(1)明确要求。
师:实际情况是不是你们想的那样呢?请你动手试试。
要求在动手前,小组内先一起说说打算剪哪一条,怎么剪。组内4个人每人剪的尽量不一样,剪完围围看,然后填在记录单上。
记录单:两条线段11cm和6cm(或11cm和11cm)
剪后的三条线段是()cm、()cm和()cm
围成三角形了吗?(√或×)
(2)小组合作试验。
教师监控:收集试验数据
能围成不能围成
3、8、62、9、6
4、7、61、5、11
5、6、62、4、11
…………
(3)展示交流试验情况,提取数据。
师:谁愿意把你试验的情况给大家看看?(学生说教师板书。)
追问:谁和他的不同?
还有补充吗?
谁用的是11和11,说说你们试验的结果?
师:这两条线段在哪儿相连?
师:你们觉得他说的有道理吗?
师:到底连没连上,最后边的同学看得清楚吗?看来这儿用学具不容易看清楚,我们用课件清楚地看看。
师:有没有同学认为这个能围成?到底能不能围成,说说理由。我们通过课件演示来看一下。
(播放两边之和等于第三边时围的课件。)
(4)小结过渡。
师:通过亲自试验,大家知道三条线段有时能围成三角形,有时不能围成三角形。
学生动手操作
学生展示结果
情况一:
全是能(或全是不能)的情形。
情况二:
有的能有的不能的情形。
学生将一条线段剪成两条,从理论上分析能够得到无数种不同的剪法,但围三角形的.结果只会出现两种:能围成和不能围成。教师根据可能出现的试验结果进行设计,引导学生在生生交流中提取典型数据。通过实物投影变焦放大的功能,有助于学生清晰地看到两条线段的端点相连情况。几何画板课件随学生生成输入数据和动态演示过程,弥补了学具操作的不足,有助于学生达成统一认识。这几个环节的设计,不是就内容说内容,而是让学生在亲自动手试验基础上,补充完善个人和小组的认识,达成共识。学生在剪、围中思考,初步感受能不能围成三角形,不是在比较每一条线段,而是需要看两条线段与第三条线段的关系,为后续教学做了铺垫。
三、重组三角形模型——探究三角形边的关系
2、数形结合,探究三角形边的关系
(1)提出问题。
师:试验前我们的问题已经解决了,如果继续研究,你想研究什么?
师:你觉得三条线段能否围成三角形与什么有关系?
(2)研讨三条线段不能围成三角形的情况。
师:三条线段在什么情况下不能围成三角形呢?小组同学研究研究。
师:哪个小组来说说你们的想法?(课件:输人数据生成三角形演示围的情况。)
(3)研讨三条线段能围成三角形的情况。
师:同学们知道了两条短的线段的和小于或等于第三条线段的时候一定不能围成三角形。
那三条线段在什么情况下就能围成三角形呢?我们来看这些能围成的情况,一起来分析分析。
师:哪个小组来说说你们的想法?
生:什么样的三条线段能围成三角形,什么样的不能围成三角形。
小组讨论
学生说想法
课件重现了数据对应的图形,学生借助黑板上的数据、屏幕上的图形和数据进行分析,发现不能围成三角形的三条线段之间的关系。
四年级数学上册教案 篇2
教学目的:
1、使学生能够利用电子计算器进行简单的计算。
2、使学生知道用电子计算器计算顺序和笔算顺序是一样的。
3、让学生善于观察发现数学的秘密,能够对一些有规律的数进行口算。
教学重点:
能够利用计算器进行简单的计算。
教学难点:
懂得观察发现一些有规律的数的.计算。
教学过程:
一、利用计算器计算:
386+179=
说说你是怎样使用的。
(先按“386”,屏幕上显示386,再按“+”,屏幕显示不变,再按“179”,屏幕显示179,按“=”,显示结果565。)
试试ce键有什么功能?(清除)
自己试试看:
26×39= 312÷8=
l、你觉得使用计算器需要注意些什么?
看清数,别摁错了;每次计算前要清0。
2、计算。
54+46= 60×2=
198÷49= 50+30=
38×79= 201+99=
计算后说一说你怎么算的这么快?(并不是任何时候用计算器计算都是的,像可以直接口算的、能简算的题目,就不需要使用计算器了。)
3、做一做练习。
让学生在小组内做一做,然后同桌做一做。
二、观察发现
1、比一比,看谁做的又对又快。
(以四人小组为单位进行)
9999×1= 9999×2= 9999×3= 9999×4=
说说你为什么做的又对又快。
观察上面的算式和结果,你发现什么规律?
生畅所欲言。
师:根据你们的发现大胆猜测,能不用计算器,直接写出下面各题的答案吗?
9999×5= 9999×7= 9999×9=
师总结:碰到9999乘9以内的自然数(0除外)答案都是五位数,位和个位就是自然数与9的乘积,中间三位数都是9。
三、练习
做一做。练习30页的第11、12题。
第11题用比赛的方式进行,以巩固学生使用计算器计算。
第12题学生独立完成,全班讲评。
四、课堂小结
今天你有什么收获?
四年级数学上册教案 篇3
四年级数学上册教案(通用17篇)
作为一位不辞辛劳的人民教师,就不得不需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的四年级数学上册教案,希望能够帮助到大家。
四年级数学上册教案 篇4
【教学内容】:
教材第51页例3。
【教学目标】:
理解和掌握积的变化规律,能根据积的变化规律进行简便运算。
【重点难点】:
重点:理解积的变化规律。
难点:运用积的变化规律进行简便计算。
【教学过程】:
一、创设情境
1.口算。
15×8=
25×4=
170×5=
26×100=
30×50=
32×300=
36×20=
9×800=
42×400=
8×600=
20×300=
240×5=
教师用卡片出示口算题,学生开火车练习。
2.引入。
买一个文具盒需12元,买2个文具盒需多少元?(24元)买4个文具盒呢?(48元)买6个文具盒呢?(72元)买文具盒的个数越多,所需的钱就越多。那么在乘法算式中,积有怎样的变化规律呢?ぃò迨榭翁猓夯的变化规律)
二、自主探究
1.投影出示例3。
(1)6×2=12
(2)20×4=180
6×20=120
10×4=40
6×200=1200
5×4=20
2.仔细观察两组题目,说一说你发现了什么。
让学生充分讨论,互相说出自己的观点。
引导学生交流看法,在学生汇报中点拨。
(1)左边第一道算式与第二道算式比较,哪个因数没有变,哪个因数变了?是怎样变的`?积又有什么变化?
(2)左边第一道算式与第三道算式比较,又有哪些地方变与没变呢?
(3)请将左边第二道算式与第三道算式也作类似的比较,发现规律。
(4)你能用自己的话概括出你的发现吗?
一个因数不变,另一个因数分别乘10、100,积也分别乘10、100。
(5)用以上的方法比较右边三道算式,概括出你的发现。
一个因数不变,另一个因数分别除以2、4,积也分别除以2、4。
(6)你还能举例说说你的发现吗?
3.引导学生进行归纳、概括。
一个因数不变,另一个因数乘几或除以几,(0除外)积也乘几或除以几。
4.教材第51页“做一做”第1题。
(1)你能看出每组算式有什么规律吗?小组交流,独立填写得数。
(2)指名说说你发现了什么,然后集体订正。
三、实践应用
1.教材第51页“做一做”第2题。
(1)要求学生先弄清题意,想一想怎样解答这个问题。
(2)小组讨论交流,点名学生汇报。
教师板书:
方法一:200÷8=25(米)25×24=600(平方米)
方法二:200×(24÷8)=600(平方米)
追问方法二的同学,说说自己的做法。(长不变,宽乘3,面积也乘3)
师:你的方法真巧妙,能运用所学知识解决问题。
2.教材“练习九”第1题。
学生独立完成,看谁做得又对又快,集体订正。
四、课堂小结
你能说说今天在学习过程中所发现的规律吗?
四年级数学上册教案 篇5
【教学内容】
人教版二年级下册数学P59~60例1、做一做及练习十四第1、2题。
【教材分析】
这个内容是表内除法知识的延伸和扩展,是在表内除法的基础上进行教学的。教材注重联系学生已有的知识和经验,结合具体情境,选择数目小,学生熟悉的事物作为例题,配以实物图,让学生理解有余数除法的意义。
【学情分析】
认识有余数的除法,是在学生已学过表内乘除法的基础上学习的。学生在前一阶段刚学会表内除法,已经接触过许多正好全部分完的事例,但二年级学生的思维还是以具体形象思维为主,想完成由形象思维向抽象逻辑思维的转变,就要借助动手操作,让学生亲自去实验,去体验知识的形成过程。在教学时,应该根据知识的系统性以及二年级学生的思维特点,使学生通过积累观察、操作、讨论、合作交流、抽象、概括等数学活动获取知识,发展学生的抽象思维。
【教学目标】
知识技能:使学生经历把平均分后有剩余的现象抽象为有余数除法的过程,初步理解有余数除法的含义,认识余数。
数学思考:通过操作、观察、对比等活动,使学生发现生活中在分物时存在着分不完有剩余的情况,借此理解余数及有余数的除法的含义,初步培养学生全面思考问题的意识。
问题解决:认识有余数的除法,加强概念,掌握算法。能根据平均分有剩余的活动写出除法算式,正确表达商和余数。
情感态度:渗透借助直观研究问题的意识和方法,培养学生观察、分析、比较的能力,使学生感受数学与生活的密切联系。
【教学重点】
把平均分后有剩余的情况抽象为有余数的除法。
【教学难点】
理解有余数除法的意义。
【教学准备】
课件、小棒
【教学过程】
一、情境导入,揭示课题
1、课件出示P59情境图。观察动画,引出活动:这些同学在做什么?
2、拿出11根小棒自己摆。
3、揭示课题:认识有余数的'除法
二、探究新知,初步感受
1、教学例1,复习表内除法的含义:
(1)(课件出示草莓)这是什么?一共有几个?每2个摆一盘,你能摆几盘?用学具摆得试一试。(学生动手操作,教师巡视指导。)
(2)一共可以摆几盘?有剩余吗?
(可以摆3盘,正好摆完,没有剩余)
(3)(课件演示分草莓)这是平均分的问题,你能把刚才摆的过程用一个算式表示出来吗?
(4)学生汇报,形成板书:6÷2=3(盘)请你再说说这个算是表示什么意思?
2、理解有余数的除法的含义:
(1)在动手操作中感受平均分时会出现有剩余的情况。
如果不是6颗草莓,是7颗呢?再动手摆一摆,每2个摆一盘,看看能摆几盘?(学生动手操作)
讨论交流:再摆的过程中你们发现了什么问题?
师:剩下的还能再平均分吗?(不能,只剩一个不够分。)
(2)在交流中确定表示平均分时有剩余的方法。
(课件演示分草莓)你能把刚才摆的过程用一个算式表示出来吗?(小组内思考、讨论)
出示学生的。表示方法,比较各种表示方法。
小结:在数学上可以这样表示:7÷2=3(盘)……1(个)
说说这个算式表示什么意思?
小结:这个算式表示7个草莓,每2个一盘,可以摆3盘,还剩下1个草莓。省略号表示剩余,1是剩下的个数,我们把它叫做余数。余数表示什么?
(3)比较归纳,完善认知结构。
(课件出示两次分草莓的过程和算式)今天我们分了两次草莓,这两次分草莓的过程有什么相同的地方?又有什么不同的地方?
观察比较6÷2=3(盘)和7÷2=3(盘)……1(个)这两道算式,引导学生再次认识到:在日常生活中分东西会出现两种情况,一种是全部分完没有剩余,另一种是分后有剩余,但不够再分,不够分剩下的部分就是除法算式中的余数。
三、巩固练习:
课件出示P60“做一做”:
1、学生独立在书上圈一圈,填一填,完成第1小题。
反馈交流:17÷2=8(组)……1(个)
23÷3=7(组)……2(个)
说说这两道算式商和余数各是多少,分别表示什么?
2、完成第2小题。
先用学具按要求摆一摆,然后根据摆的结果填空。
展示个别学生的填空情况,说说每道题中的商和余数分别表示什么,强调商和余数的单位名称。
四、课堂小结、作业:
1、这节课你学会了什么?对自己和他们有什么评价?你还有什么疑问吗?
2、作业:练习十四第1、2题。
【板书设计】
认识有余数的除法
6÷2=3(盘)
7÷2=3(盘)……1(个)
四年级数学上册教案 篇6
教学目标:
1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。
2.培养学生学习数学的兴趣。
3.使学生感受生活中处处有数学。
教学重难点:
认识算盘、计算器,计算器的使用。
教学关键:
能够自学了解算盘与计算器的使用方法。
教具准备:
算盘、计算器。
教学过程:
课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。
一、计算工具的历史
(一)课前参与反馈(学生介绍计算工具)
前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?
学生发言。
(二)老师根据学生介绍的情况补充介绍计算工具的发展历史
计算工具的源头可以上溯至20xx多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。
计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。
从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。
最古老的计算工具:算筹
我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。
中国人发明算盘
随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。
一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。
算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。
算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。
利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。
由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的传授及普及教育一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的.珠算教育在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算教育近年来也取得了长足的发展。
即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算教育中心,有1,000多所学校接受珠算教育,算盘正成为美国的一种数学教学工具。
计算机
1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(ENIAC)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。
计算机发展史:
■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。
■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。
■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。
■19xx年IBM360系统问世它成为使用集成电路的第三代电子计算机的代表。
■使用超大规模集成电路的第四代计算机。
■第五代电子计算机被称为智能计算机。
■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。
二、算盘和计算器的认识与使用
1.算盘。
刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?
(1)算盘各部分名称
算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。
常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。
在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)
拨出一个数,说一说这表示多少?
(2)两种不同的算盘:
出示两种不同的算盘(书23页图):
观察有什么不同。
左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。
后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。
原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。
(3)算盘的两种功能:计算和计数
2.计算器。
(1)计算器的使用非常的广泛,你认识计算器吗?
出示一个计算器,你能说说每个键的功能吗?
显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。
(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。
(3)计算器的使用与算盘相比有什么优势?
(4)全班看计算器,师生对口令。
三、总结
计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。
四、作业:
1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)
2.了解计算器的其他功能
