《圆的面积》说课稿

知远网

2025-12-09教案

知远网整理的《圆的面积》说课稿(精选6篇),希望能帮助到大家,请阅读参考。

《圆的面积》说课稿 篇1

一、把握教材,定为目标

(一)教材

《圆的面积》是义务教育课程标准试验教科书小学数学第十一册第四单元的内容,它是在学生掌握了圆的周长及三角形、长方形、平行四边形、梯形的面积计算基础上进行教学的,而像圆这样的曲线图形的面积计算,学生还是第一次接触到。引导学生运用转化的思想求圆的面积。由于让学生完全自主探索如何把圆转化成长方形是有很大难度的,教材上给了明确的提示,让学生利用学具进行操作,在此基础上,让学生自主发现圆的面积与拼成的长方形面积的关系,圆的周长、半径和长方形长、宽的关系,并推出圆的面积计算公式。之后练习中安排了已知半径、直径或圆的周长求面积的题目,还安排了一些求组合图形面积的题目,以培养学生综合运用知识的能力。

(二)目标

基于以上认识,我认为本课的教学目标应确定为:

1、知识目标:使学生理解圆面积公式的推导过程,掌握求圆面积的方法,并能正确计算;并能运用公式解答一些简单的实际问题。

2、能力目标:通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。

3、德育目标:渗透极限思想,进行辩证唯物主义观念的启蒙教育。

(三)重点、难点

本节课的重点是:正确计算圆的面积。

本节课的难点是:圆面积公式的推导。

二、选择教法,突出主体

充分利用学生已学的数学知识和数学思想方法进行教学。首先教学圆面积定义时,先让学生回忆已学过的圆形面积的含义,教学圆的面积计算公式之前,让学生体会到将一个圆形转换成已学过的图形,是一种基本的数学思想和方法,但每个图形面积公式的.推导过程又有其自身的特殊性。在充分发挥多媒体课件的作用,利用它的优势,不断把圆细分,这样拼出的图形越来越接近于长方形,效果更直观。

三、教学过程与总体评价

(一)导入新课

我们之前学过哪些图形的面积,那么圆的面积怎样计算呢?只要知道了圆的面积公式,就可以解决计算出圆的面积,这节课我们就一起来学习圆的面积。

(二)新授

1、什么是圆的面积?PPT动画展示圆的面积定义

2、回忆平行四边形的面积、圆的周长计算公式,猜想我们可不可以把求圆的面积转化成其他平面图形来推导圆的面积计算公式?

3、PPT展示将圆分成不同的(4、8、16、64...)偶数等份,按照一定的方式组合成新的图形?

4、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形。

5、转化后的长方形的长和宽与原来的圆有什么关系?

1)转化后长方形的长相当于什么?宽相当于什么?

2)你能从计算长方形的面积推导出计算圆面积的公式吗?

6、汇报讨论结果。

7、运用新知识,解决问题。r=2cm,求圆的面积

8、拓展思考

(三)总结

小结:本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

《圆的面积》说课稿 篇2

说教材:

1、本节内容是人教版六年级上册第四单元的内容

2、教材的地位和作用

学生从学习直线图形的面积到学习曲线图形的面积,无论是内容本身,还是研究方法都是一次质的飞跃。在这节课中学生将初步学习研究曲线图形的基本方法-----“化曲为直”、“化圆为方”,为以后学习圆柱、圆锥等知识奠定基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

根据本节课的特点确定如下教学目标.

1、知识目标:

⑴引导学生通过观察了解圆的面积公式的推导过程。

⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题。

2、能力目标:

使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

3、情感目标:

通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

根据本节课的内容,确定以下教学重点与难点:

教学重点:圆的面积公式的推导过程以及圆的面积公式的应用。

教学难点:由于圆与以前学习的直线图形性质有很大不同,对“曲线图形”转化为直线图形学生是第一次接触,对学生已有知识和经验都是一种挑战,因此,“化圆为方”的转化方法和极限思想的感受是本节课的难点。

说教法:

针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

说学法:

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时间和自由度使学生成为课堂的主人。

说教学过程:

(一)、复习旧知,渗透转化

新课开始,我先让学生回忆已经学过的圆的认识、周长及长方形、平行四边形面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

(二)、创设情景,引出课题

出示“一只小狗被它的主人用一根长10米的绳子栓在草地上,问小狗能够活动的范围有多大?”的'ppt课件。启发学生进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题,讲授圆的面积的概念。融新知识于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

(三)、合作学习,探索新知

为了帮助学生开展探究活动,第一步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。学生进行四人小组活动后,我让各小组的代表展示自己剪拼的作品,根据学生出现的多种情况,我利用课件演示把一个圆平均分成8等份、16等份、32等份、64等份、128等份后,并拼成近似的长方形,这样设计让学生在视觉上得到证实:将圆平均分的份数越多,拼成的图形越接近长方形。当把圆平均分成无数份时,拼成的图形就成了长方形,即“化曲为直”。 这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

第二步,我让学生讨论:根据转化的图形如何推导出圆的面积计算公式?拼成的近似长方形的长相当于圆的什么?宽相当于圆的什么?学生通过观察讨论发现:在剪拼的过程中,图形的形状变了,但面积没变,拼成的近似长方形的面积等于圆的面积,近似长方形的长等于圆的周长的一半,宽等于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积等于圆的周长的一半乘半径,从而推导出圆的面积计算的字母公式s=πr 。

学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成八份、十六份、三十二份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中初步理解了。

在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

《圆的面积》说课稿 篇3

一、说教材

《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

本节内容是从一只小羊吃草的实例出发结合学生的生活经验引出圆的面积。学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。

二 、说教学目标

1.知识目标:

(1)引导学生通过观察了解圆的面积公式的推导过程

(2)帮助学生掌握圆的面积公式,并能应用公式解决实际问题。

2.能力目标:

进一步培养学生合作探究,分析概括,以及迁移类推的能力。

3.情感目标:

通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

三、重难点分析

本节课的重点是:圆面积概念的建立,公式的推导及应用。

难点是:转化和极限两种数学思想的渗透。

四、教法分析

1.教法分析:

针对小学六年级学生的年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生"同甘共苦"一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

2.学法指导

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

3.教学手段

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。

五、教学过程

1.复习(1)长方形面积公式

(2)平行四边形面积公式

平行四边形面积公式的求法是通过割补转化为长方形面积来解决。

2.创设问题情景,引入课题

利用课件出现一头牛拴在树下的牛在草地上吃草的图。并提问:"牛吃到草的最大范围是什么形状?这个范围有多大?"从而引出圆面积的课题。(板书课题:圆的面积)

3.师生互动,探索新知

(1)引导:

平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?

(2)合作学习,探究新知

教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。学生汇报探究结果之后,()为了使学生更直观、更形象的理解"极限"的概念,我适时进行课件演示,引导学生观察:把圆平均分成四份、八份、十六份、三十二份、六十四份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。就这样,抽像难懂的"极限"的.概念就在课件直观、形象的演示中迎刃而解了。

(3)得出结论:

启发1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

启发2:长方形的长、宽与圆有什么关系呢?

设圆的半径为r(再次演示课件)。

启发学生寻找规律,由圆的周长为2πr,推导得出长方形长为πr,宽为r,

圆的面积 .

4.圆面积公式的应用。

出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?

学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

=3.14×102

=3.14×100

=314(平方厘米)

答:它的面积是314平方厘米。

例题2:一个圆的直径是40 米, 它的面积是多少平方米?

40÷2=20(米)

3.14×202

=3.14 ×400

= 1256(平方米)

答:这个圆的面积是1256平方米。

5.巩固练习。

(1)半径2分米,求圆的面积。

(2)圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)

(3)绳长10米,问小狗的活动面积有多大?

(4)发散思维: 如下图: S正方形=3平方厘米, S圆=?

o

6.归纳小结

为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。

(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

《圆的面积》说课稿 篇4

各位领导、各位老师:

大家好!

我设计的课件《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

本节课的教学目标是:

1、要使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用。

2、通过学生操作,发现推导圆面积的公式。

3、结合知识的教学,渗透转化极限的数学思想。

本节课的重点是:圆面积概念的建立,公式的推导及应用。

难点是:转化和极限两种数学思想的渗透。

考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生学习的兴趣。

本课使用多媒体,设计时主要想突破以下几个问题:

一、明确概念:

圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

二、以旧促新

明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的'平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

三、转变图形

根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。

四、公式推导

平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2 =πr h=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r =πr2。

此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画 》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2 ,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

五、公式的应用.

探究出公式,要学会应用,并能把利用所学的知识解决生活中的实际问题,培养学生解决实际问题的能力.先引导学生观察面积公式,思考要想计算圆的面积应该知道哪些条件?让学生讨论.练习安排了三个层次的练习:

第一:看图计算面积。主要是巩固新知,强化公式的应用。两个图一个是已知半径,另一个是已知直径。

第二:变式练习。学生根据公式一般认为计算圆的面积,必须知道半径,否则无法计算,这一题是已知r2=5平方厘米。根据目前知识,学生没有能力求出半径,怎么办?激起学生的认知冲突,引导学生讨论,就会发现,除了知道r,可以求出面积,若能知道r2,不必求出半径,直接利用公式计算面积,打破学生的思维定势,全面理解公式,达到对公式的进一步认识。

第三:实践练习。圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。

至此,课件设计的初衷,概念—旧知—转化—推导—应用五个任务就算完成了,这也是设计时个人的一些想法,敬请大家批评指正,谢谢!

《圆的面积》说课稿 篇5

一、说教学内容

教学内容是苏教版第十册P124~P125及“练一练”练习二十六第1~4。

《圆》这一章引领学生进入了一个新的领域,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决问题的能力,也为以后学习圆柱、圆锥等知识打好基础。教学中我们教师要有机渗透转化这种数学思想方法,引导学生了解用这种数学辩证法来解决新的较复杂的问题策略。

二、说教学目标:

知识目标:通过本课学习使学生掌握圆的面积的计算方法,了解圆的面积的推导过程,会利用公式进行圆的面积的计算。

能力目标:让学生在小组合作探究中提升合作意识、自主探究能力,善于与同学交流、善于倾听其他同学的见解,会利用转化思想进行面积的推导。

情感目标:在提升自我的同时,尊重他人;在表现自我的同时,心中有他人。

三、说教学方法:

注重与新课改结合,通过“创设情境”、“动手实践合作交流、自主探究”、“应用成果”、“知识深化”几个教学环节,激发学习兴趣。

学法设计:

动手实践,加强操作。小组交流,合作探讨。

四、说重点、难点:

教学重点:圆面积的推导过程。

教学难点:学生在合作探究中把圆转化成学过的圆形。

五、说教学过程

(一)创设情境,引导新课

故事引入:

镜头一,一天数学王国里可热闹啦!(课件动画演示)长方形、平行四边形、三角形、梯形在草地上争论。“我个子大”,“我个子大”……。问:他们比什么?什么叫面积?能告诉它们怎样计算各种上图形的面积吗?(闪烁一下面积)

镜头二:排队啦!“我排前面”、“我排后面”……引导你根据我们学习它的面积公式的先后湎序给它们排队吗?引导思考平行四边形、三角形、梯形的计算公式各是怎样推导出来的?为了形象、生动,节约时间,突出重点,我们将推导的过程做成课件,最后引导学生反思推导过程中的共同点,使学生领悟到将一个图形转化为已学过的图形来推导这个图形的面积。

板书:一个图形→会计算面积的图形。

镜头三,圆来了,“我个子大”……闪烁面积,引导学生思考:要各道圆的个子有多大,就要计算圆的面积,理解圆的面积的含义,引导设题,怎样计算圆的面积呢?板书课题圆的面积

课的开始,由学生感兴趣的.故事情境引入,利于激发学生的学习兴趣,利用动画将公式的推导浓缩,突出其主要精神,为学习新知识作好铺垫。设计了怎样求圆的面积的疑问,引发学生思考。(用6分钟)

(二)动手实践、自主探索、合作交流学习新知

1、寻找求圆的面积的策略

怎样求圆的面积呢?你有什么想法?引导学生想出把圆转化成学过的图形来计算它的面积。猜一猜可能转化成什么图形?(不把解决的方法局限在长方形上)

2、小组动手实中一,引导思考:你想怎样转化?突出平均产分的,拼的思路。

一环节的的细化是为了小组合作交流作铺垫。

要求小组合作,验证自己的猜想,给每组准备四张有双面的纸,这样拼同时位置好固定。环节一:小组交流猜想,猜想相同的可吧一起完成。

环节二:小组用16等份或32等份的圆验证。

环节三:完成实验报告一。

在这里,教者及时了解学生的猜想方法,以转化长方形的方法为主,兼顾转化其他图形的方法,让学生到初步展示台上交流自己的成果。这里要注意把16等份拼成的长方形和32等份拼成的长方形进行比较,使学生感受到分的份数越多会越接近于长方形,如果分成无限多的份数,拼成的圆形就会越来越拦近于长方形。拼成三角形、梯形一样的。

这一节的设计让学生的学习过程充满观察、实验、逡证、推断等探索性和挑战性的活动,让学生投入到探索与交流的学习活动之中。在解决问题的策略上,尊重学生的想法,不强求学生统一用转化的长方形来思考,但又让学生感悟到转化成长方形是易于操作的,是较优的方法。从16等份到32等份渗透了极限的思想。

3、小组动手实践二

问题:如果我们把圆的半径用r表示,用s表示圆的面积,你能找出圆的面积计算公式吗?

环节一:根据实验报告二的问题展开思考、讨论、交流。

环节二:完成实验报告

环节三:让用长方形、三角形、梯形转化的同学到视频展示台上来交流自己的想法。估计长方形的方法是能够讲好的,如果班级的基础较差,三角形、梯形的转化学生不能完成,教师视情节而定,给予帮助,如不备条件,留待其它时间完成,体现教学设计的综性化,随学生回答板书推理自己的过程。

环节四:大屏幕动画展示转化的过程、公式的产生。归纳出圆的面积公式。S=πr2 反思:要求圆的面积要知道圆的什么?

这一环节的设计以让学生学习的主动性,积极性得到进一步的激发,以合作与交流地过程中让大部分同学的思维得到发展,比较、抽象、概括的能力得到提高,尝到成功的喜悦,激发对数学学习的兴趣。这里既是本节课的重点,又是难点,我安排两次合作、交流考虑到教学的实效和可操作性,如果提出大问题后就让学生动手合作,大部分可能会陷入无助的状态之中。这样有利于突出重点,突破难点。

(三)应用扩展

1、动画出示圆的半径是5厘米。它的面积是多少?

这里观察学生是要先算了r2

2、动画出示圆的直径是8厘米。它的面积是多少?

观察学生能否先求出半径的长度。

3、出示、长方形、正方形、平行四边形、三角形、梯形,一大一小两个圆。 (一个知道直径,一个知道半径),给出的数据都很小。便于口算。

你能根据它们个子给它们排排队吗?

4、课内作业。e26:3、4

应用扩展的练习注意了形式多样,由易到难,循序渐进,既巩固新知又发展能力。

(四)总结提高,小结全课。

(1)通过今天的学习你学会了什么?

(2)这节同学们真不简单,我们把圆转化成学过的图形,自己发现了圆的面积的计算方法,而且同学们还用了不同的方法。老师相信同学们今后一定能经过自己的努力,大家的合作发现、解决更多的数学问题。

小结既注重知识技能的总结,注重了学习方法,转化思想,独立思考,群体合作等情感态度、价值观的总结。

《圆的面积》说课稿 篇6

一、教材分析:

圆是一种曲线图形,和以前学的直线图形在性质上有很大的不同,但是在研究方法上联系又很紧密。因此,认识圆以及圆的周长计算都注重了引导学生应用转化的思想,找到问题的突破口。由此,在本节课中,仍然渗透转化的思想即“化圆为方”的思想,把圆的面积转化为长方形的面积,通过计算长方形的面积来推导圆的面积,得出圆的面积计算公式。在推导圆的面积计算公式时,首先让学生回顾以前长方形、正方形、三角形、平行四边形的面积推导公式,它们的共同特点都是运用转化的方法,让学生自主探究。教材中呈现的几种探究方法,非常注重发挥学生的创新思维,鼓励学生大胆地进行探究,把探究如何将圆的面积转化为以前学过的图形面积作为本课的重点和难点,推导出圆的面积计算公式。

二、教学目标及重、难点:

教学目标:

1、使学生理解和掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养学生观察、操作、分析、概括的能力以及逻辑思维能力。

2、引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化圆为方等数学思想方法。

3、培养学生认真观察、深入思考的良好思维品质,锻炼学生面对困难勇于克服、锲而不舍的精神。

教学重点:掌握圆面积的计算公式。

教学难点:把圆转化为什么平面图形以及圆面积的计算公式的推导。

三、学生知识储备分析:

学生在学习直线图形的面积计算,如:平行四边形、三角形、梯形的面积计算时都是利用了转化的数学思想,把未学过的图形的面积转化为已学过的图形的面积来解决的。出示大小不同的圆,让学生猜一猜圆的面积的大小和什么有关,学生很容易地得出和半径有关系。然后让学生回顾平行四边形、三角形、梯形的面积计算公式的推导过程,引导学生利用转化的方法将圆转化为学过的图形,从而推导出圆面积的计算公式。

四、 教学设想:

圆面积这节课是在学生学习了圆的认识和平行四边形、三角形、梯形的面积的基础上教学的。圆的面积对于对于小学阶段的学生可以说是一次思维的飞跃。在过去所学的平面图形的面积中运用的转化思想是显性的,如将平行四边形转化为长方形,将三角形转化为平行四边形或长方形,等等。而圆的面积对于学生来说运用转化的思想不是难点,但是由于圆是曲线图形,使得学生不知该如何转化为熟悉的直线图形成为了本课的重点和难点。因此,本节课我采用“探究法”,给予学生充分的时间与空间,在探究过程中讨论、操作、观察、比较,让学生经历“猜想——设想——操作——推导”的`过程。其中的操作是放手让学生去尝试剪拼,学生可能失败很多,但即使失败了也不要紧,在巡视的过程中要不断地鼓励学生在失败中总结经验教训,寻求不同的方法,通往成功之路。在这个过程中重要的是让学生掌握方法、学会学习,这才是终身受益的。在学生的失败中,激励、引导学生找到正确的剪拼方法拼成长方形,可能会有学生拼成其他图形来推导出圆的面积公式。这样的教学主要靠学生自身积极、主动地去探求知识,体现了学生在学习中的主体地位,让学生体会到了数学探究的魅力,体验到成功的快乐,从而激发学生学习数学的积极性。

在充分尊重学生思维发展的过程中,我还要适时地加以引导、点拨,在学生动手操作已经无法再完成时,要用动态演示来弥补学生操作与想象的不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像长方形,并围绕“怎样更像”进行了一次又一次的追问,让学生充分体验“极限思想”。在学生多次地折、剪、拼活动中发现把圆的面积转化为求长方形的面积后,让学生思考:什么变了,什么没变。引导学生说出:面积没变,形状变了。再让学生观察、思考长方形的长、宽分别相当于圆的什么?引导学生得出长方形的长相当于圆周长的一半,长方形的宽相当于圆的半径,长方形的面积=长×宽,所以圆的面积=圆周长的一半×半径=∏r×r=∏r2。

五、练习题的设计:

因为圆的面积=∏r2 ,所以要计算圆的面积必须知道半径。但是如果条件中知道直径或者周长,怎样求圆的面积呢。让学生明白首先要求出圆的半径再利用圆面积计算公式进行计算。

大家都在看