知远网整理的三角形内角和教学设计(精选6篇),希望能帮助到大家,请阅读参考。
三角形内角和教学设计 篇1
教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:
1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:
理解并掌握三角形的内角和是180°。
教学难点:
验证所有三角形的内角之和都是180°。
教具准备:
多媒体课件、各种三角形等。
学具准备:
三角形、剪刀、量角器等。
教学过程:
一、出示课题,复习旧知
1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的'内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知
1、通过预习,认识结论,提出疑问
2、验证三角形的内角和
(1)用“量一量、算一算”的方法进行验证
①汇报测量结果
②产生疑问:为什么结果不统一?
③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证
①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
③验证得出:三角形的内角和是180°。
(3)用“折一折”的方法进行验证
①指导折法。
①分别折:锐角三角形、直角三角形、钝角三角形。
③再次验证得出:三角形的内角和是180°。
3、看书质疑
【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。
三、实践应用,解决问题:
1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。
2、求出三角形各个角的度数。(图略)
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是
70°,它的顶角是多少度?
4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)
5、数学游戏。
【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。
四、总结全课、延伸知识:
1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?
2、知识延伸:给学生介绍一种更科学的验证方法——转化。
【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。
板书设计: 三角形的内角和是180°
方法:①量一量 拼角(略)
②拼一拼
③折一折
【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。
三角形内角和教学设计 篇2
【教材分析】:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
【教学目标】
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
【教学重点】
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
【教学难点】
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
【教学方法】
引导,演示讲解。
学法:实践操作,小组合作。
【教学准备】:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
【教学时间】
一课时
【教学过程】
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的'方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形内角和教学设计 篇3
教学内容:
北师版小学数学四年级下册《探索与发现(一)—三角形内角和》
教材分析:
《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。
学情分析:
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。
教学目标:
1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。
2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的`习惯。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学重点:
让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,并能应用规律解决一些实际问题。
教学难点:
掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:
表格、课件。
学具准备:
各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、复习
提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?
生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。
2、引入
三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。
播放课件,提问:它们在争论什么?
什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?
学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
(二)探索与发现
1、初步探索,提出猜想。
(1)量一量
①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②、小组合作。
③、汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在1800,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
2、动手操作,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)
引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)、小组合作,讨论验证方法。
(2)分组汇报,讨论质疑
学生可能会出现的方法:
A、撕拼的方法
把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。
讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
B、折一折的方法
把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
C提问:还有没有其它的方法?
3、回顾两种方法,归纳总结,得出结论。
(1)课件演示:两种方法的展示。
(2)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生一定会高兴地喊:“1800!
(3)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
(4)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800
(三)、回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800,。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°— 90°—30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°— 75°— 28°
3、小法官:数学书29页第二题
4、拓展创新
A D G
B C E F H R
ABC的内角和是()
DEF的内角和是()
GHR的内角和呢?
小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
三角形内角和等于1800。
猜想验证得出结论应用
三角形内角和教学设计 篇4
设计思路
本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。
教学目标
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备
教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。
学具:三角形
教学过程
一、引入
(一)认识三角形的内角及三角形的内角和
师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?
师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)
师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)
(二)设疑,激发学生探究新知的心理
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:……
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、动手操作,探究三角形内角和
(一)猜一猜。
师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
……
(二)操作、验证三角形内角和是180°。
1、量一量三角形的内角
动手量一量自己手中的三角形的内角度数。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?
学生汇报结果。
师:请汇报自己测量的结果。
生1:180°。
生2:175°。
生3:182°。
……
2、拼一拼三角形的内角
学生操作
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?(学生操作)
生:把它们剪下来放在一起。
师:很好。
汇报验证结果。
师:通过拼合我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
3、折一折三角形的内角
师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。
如果学生说不出来,教师便提示或示范。
学生操作
4、小结:三角形的内角和是180°。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的`内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1、下面说法是否正确。
钝角三角形的内角和一定大于锐角三角形的内角和。()
在直角三角形中,两个锐角的和等于90度。()
在钝角三角形中两个锐角的和大于90度。()
④一个三角形中不可能有两个钝角。()
⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()
2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
3、游戏巩固。
由一个同学出题,其它同学回答。
(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。
(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
4、根据所学的知识算出四边形、正五边形、正六边形的内角和。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
反思:
在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。
三角形内角和教学设计 篇5
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( )
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的.顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教学设计 篇6
教学内容:
四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:
1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:
让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:
探究和验证“三角形内角和等于180°”。
教学准备:
学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:
一、创设情境,产生疑问
1、理解内角和含义。
2、故事激趣
提问:三兄弟围绕什么问题在争吵?你有什么看法?
二、自主学习,合作探究
1、提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?
指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2、进行验证。
(1)验证教师提供的三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?
拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?
②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?
解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证
出来不是1800的吗?
提问:你又能得到什么结论?还有怀疑吗?
3、得出结论。
指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。
说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。
解决争吵:学生用三角形内角和的知识劝解三兄弟。
三、巩固应用,深刻感悟
1、算一算:求三角形中未知角的`度数。
2、拼一拼:用两块相同的三角尺拼成一个三角形。
思考:拼成的三角形内角和是多少?
3、画一画:(1)你能画出一个有两个锐角的三角形吗?
(2)你能画出一个有两个直角的三角形吗?
(3)你能画出一个有两个钝角的三角形吗?
四、全课总结,课后延伸
1、学生自主总结一节课的收获。
2、介绍帕斯卡。
3、用三角形拼成四边形、五边形、六边形,引发新的问题。
