知远网整理的数学面积的教学设计(精选24篇),希望能帮助到大家,请阅读参考。
数学面积的教学设计 篇1
教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:
知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。
能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。
情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。
教学重点:掌握并理解圆面积的计算公式。
教学难点:引导学生用多种方法推导概括圆面积公式。
教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。
教学过程:
一、创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
二、回顾旧知,孕优新知
在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)
以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。
三、研究新知,加深理解
1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)
出示自学提纲:
(1)什么叫圆的面积?
(2)书上是怎样推导圆面积的?
(3)为什么是近似的平行四边形?
2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。
出示小组合作学习提纲:(指生读)
(1)你摆的是什么图形?
(2)你摆的图形的面积与圆的面积有什么关系?
(3)所摆图形的各部分相当于圆的什么?
(4)你是如何推导出圆的面积的?圆的面积公式是什么?
(5)你能不能转化成其它图形推导圆面积公式?
(你想把圆转化成什么图形)
3、哪个小组愿意把你们的研究成果给大家展示一下?
请大家关注同学们的发言,从中你一定会受到启发或发现问题。
小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)
4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)
如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?
好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)
(2)如果给出直径你会算吗?出示例1。(指生读题)
四、巩固深化,实际应用
(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。
(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)
(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?
(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?
五、发散思维,拓展知识
小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?
六、总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
圆面积教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的
自主探究创造条件。
1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的`面积作好铺垫。
2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实
数学面积的教学设计 篇2
一、设计理念
新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”
二、教学策略
1.创设生活情景,激励自主探索。
2.创建探究空间,主动发现新知。
3.自主总结规律,验证领悟新知。
4.解决生活问题,深化所学新知。
三、教材分析
《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
四、教学目的:
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
五、教学难点:
理解和掌握求圆柱表面积的计算方法。
六、教具准备:
圆柱表面积展开模型电脑课件
学具准备:
易拉罐、白纸壳、剪子
七、教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)
(二)创设探究空间,主动发现新知
1、认识圆柱的表面积
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的`!
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X 2 + 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形的面积 = 长 × 宽
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律,验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)
(四)解决生活问题,深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
(评析:教师让学生合作学习,自主发现问题,交流解决。)
课件出示例四,读题明题意,学生试做,全班交流。
课件出示第16页第七题,学生试做,全班交流。
讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。
八、板书设计
S表面积=S侧+2S底
=2πrh+2πr
数学面积的教学设计 篇3
教学目标:
1、认识圆环的特征,掌握圆环面积的计算方法,合理地进行计算。
2、培养和发展学生的逻辑推理和概括的能力,运用所学的'知识解决简单的实际问题。
教学重点:圆环面积公式的推导。
教学难点:圆环面积公式的应用。
教具准备:光盘。
教学过程:
一、复习。
1、口算:
32 42 52 82 92 202
2π 3π6π 10π 7π 5π
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
三、新课。
1、教学环形面积。
(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米 r=2厘米 求: s=?
3.14×62 3.14×22
=3.14×36 =3.14×4
=113.04(平方厘米) =12.56(平方厘米)
113.04-12.56=100.48 (平方厘米)
第二种解法:3.14×(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
S=πR2-πr2 或 S=π×(R2-r2)
2、完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、巩固练习。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.84÷3.14÷2)2×3.14
B、(18.84÷3.14)2×3.14
C、18.842×3.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积 S=πr2
已知直径求面积 S=π()2
已知周长求面积 S=π()2
(3)环形面积: S=π(R2-r2)
四、总结
这节课我们学习了什么内容?谈谈你有什么收获?
五、作业
课本P70第4、6、7题。
数学面积的教学设计 篇4
一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。
二、学习目标:
知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。
情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
三、教学重难点:
教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。
教学难点:理解三角形面积计算公式的推导过程。
四、教学准备:
课件、三角形纸片、剪刀等。
五、教学过程:
一、复习引入
亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。
让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?
其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?
通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah
今天就让我们一起来学习这些平面图形中的三角形的.面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。
二、新课探究
请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。
请先看操作要求。
操作要求:
1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。
2.按照商讨的方案,动手操作,验证商讨方案。
3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。
现在请带着这样几个问题开始操作吧。
问题:
1.你们用两个怎样的三角形拼图?能拼出什么图形?
2.拼出的图形的面积你会算吗?
3.拼出的图形与原来的三角形有什么联系?
请各小组选派一名同学来说一说。
让学生按照问题去说,一边说一边指着图形。
现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。
拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。
拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。
拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。
同学们那你们现在能得出三角形的面积计算公式吗?
大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?
这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。
同学们现在你们知道三角形的面积该怎么计算了吗?
那现在老师考考大家。
三、巩固练习
请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。
同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。
同学们真棒,会计算红领巾的面积了。
看来大家掌握地还不错,那同学们老师再考考大家一点简单的。
二.我会填
(1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?
(2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。
三.我是小法官。(对的打“?”,错的打“×”)
(1)两个直角三角形一定可以拼成一个长方形。
(2)两个三角形的面积相等,形状一定也相同。
(3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。
同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?
四、课堂小姐
同学们,通过这节课的学习你有什么收获?
同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。
同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。
今天的课就上到这,同学们再见。
六、布置作业:数学课本第93页习题。
七、板书设计:三角形的面积
学生作品展示
三角形的面积公式:S=ah÷2
教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。
数学面积的教学设计 篇5
【教材解读】
自读:例5教学面积公式的应用。求出学生最熟悉的数学书封面的面积大小,并用数学书封面的面积去测量课桌的面积。
做一做,用学生身上的尺子来测量长度,进而求出教室的面积。(反思:知道了这样做,要再深入问:为什么要这样做?)
细读:例5的编排意图与前面“做一做”的编排意图基本相同。在计算数学书封面面积后,又安排利用计算结果估计桌面面积的活动,一方面体现了上面计算的价值;另一方面提示,可用自己熟悉的物品面积作为“非标准”的面积单位,估计其他面积,从而发展学生的估测意识与能力。
“做一做”利用学生自己的“步长”作为单位,测量教室的长和宽,并估测教室面积。目的是使学生进一步了解自己,用自己随身携带的“标尺”,随时随地地认识更多的事物,积累更多的实践经验,发展学生的估测意识与估测能力。
【教学目标】
使学生进一步理解面积公式的`含义;
使学生进一步掌握面积公式的计算;
【教学流程】
一、面积公式的复习
1.出示:练习十五的第1题。
学生独立计算
如果满铺是这样的 如果半铺又是怎样的 你会选择铺吗?
2.完成练习第2题
出示:两个信息,学生提出问题?
二、教学例5
1.出示题目
读题计算
468平方厘米到底有多大呢?
我们熟悉的数学书封面是500平方厘米,估计一下我们的课桌面积大约有多少?
师:你是怎么估测的呢?
小结:我们可以用尺子量出长和宽计算出桌面面积的大小;但当没有尺子时,可以用已知的数学书封面面积来测量桌面面积。
2.做一做
如果没有尺子,如何测量我们教室的面积呢?
生预:用课本面积;
生预:用课桌面积;
生预:用身上的尺子。(脚步的“尺子”)
小结:用自己随身携带的“标尺”,随时随地地认识更多的事物。
3.目测实物面积和测量计算面积
黑板的面积;长方形的面积;地面方格的面积。
猜测 依据 测量。
三、巩固练习
1.练习第7题,面积和周长(练习本上)
2.第9题,知道周长,如何求面积?
3.第8题,选择。1.全部的面积;2.正方形的面积;3.剩下的面积
四、拓展题
练习第10题:面积减去后,面积相等,周长变了。
数学面积的教学设计 篇6
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、 出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、 课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、 这个长方形的宽与原来的`平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、 那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、 完成后让学生看书第65页例1
12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
数学面积的教学设计 篇7
教学内容:义务教育课程标准实验教科书五年级上册第26-27页
教材分析:这是一次实践与综合应用,主要让学生利用已经掌握的五种平面图形的面积公式,通过割、补等操作活动,对图形进行分解与组合,计算稍复杂的不规则图形的面积,从而提升对常用面积公式的掌握水平,并在校园中进行一些实际的测量和计算,以提高综合应用数学知识和方法解决实际问题的能力。?教材共安排三项活动:想想算算、量量算算、画画算算。想想算算活动引导学生独立思考、交流理解割、补方法计算面积,量量算算活动要求学生自选草坪花圃先估计再测量计算,画画算算活动是学生自主设计、创新练习。在三个层次的活动中,不仅为学生综合应用面积公式提供了有意义的场景,而且可以促使学生进一步感受数学知识和方法的价值。
教学目标:
1、在活动中,认知并理解使用割补的方法来计算图形的面积;
2、在实际测算活动中,发展学生灵活地应用相关数学知识和方法的能力,进一步引导学生感受数学知识和方法的价值;
3、在创新设计活动中,激发学生学习兴趣以及学生合作意识。
教学重难点:
重点:理解割补求组合图形面积的方法
难点:结合学过的多边形面积知识进行有关的图案设计。
教学准备:
几何画板软件、电教设备、纸片若干、校园平面图、测绳米尺等。
教学过程:
一、谈话引入:
1.播放一段校园的录像。
2.出示校园一角的照片,提出“假如你是设计师,会怎样在校园一角进行绿化设计;假如你是预算员,会怎样进行绿化面积的测算呢”。
3.揭示课题:校园绿化面积
二、活动一:想想算算
1、出示问题并贴出示意图:华风小学校园里有一块草坪,你能算出它的面积有多大吗?
师:我们已经会计算长方形、三角形、平行四边形、梯形等一些基本平面图形的面积,而这个图形不是这些基本图形,你会计算它的面积吗?
你准备怎样算?请你先在小组里交流,再算出结果。
2、小组交流,教师巡视。
3、分类汇报,集中整理。
教师在黑板上贴出几张同样的画有草坪平面图的纸片,让学生把方法表示出来。
生A:可以看成由一个长方形和一个梯形合成的.。(图2)
生B:可以看成由一个长方形和一个三角形合成的。(图3)
生C:可以看成从一个梯形和一个三角形合成的。(图4)
生D:可以看成从一个长方形里去掉一个梯形。(图5)
生E:可以看成从一个梯形里去掉一个三角形。(图6)
师:你还有什么方法?
(如果有学生说出把图形分成三部分来算,也同步图片出示)
4、找出数据,计算面积
集中练习:以图2的方法为例。先让学生说说长方形的长宽、梯形
的上底下底和高。
学生口述,教师列式。
方法一:长方形面积:12×4=48(㎡)
梯形面积:(12+15)×6÷3=81(㎡)
草坪的面积:48+81=129(㎡)
自由练习,找出有关的数据。并计算出面积。
5、比较方法,归纳提高。
比较几种方法的区别和联系。
小组讨论,先对几种方法分类,再概括。
方法一二三都是把图形分割成两个基本图形,方法四五是先补它补上一部分变成基本图形。教师板书“割”和补“”,然后把画有方法的纸片分类排放。说明割补是为了把组合图形转化成简单的基本图形,充分利用已经掌握的数学知识解题。
三、活动二:量量算算
师谈话:校园绿化、因地制宜、个性化
出示一块花圃平面图:这是一块花圃,我们要想知道这块地的面积,需要测量哪些数据?
学生交流不同的测量。
教师出示标明数据的图片,学生交流不同的割补的方法计算面积。
问题:怎样测量三角形的底和高?平行四边形呢?
师:课后以小组为单位,在校园里找出一块合适的草坪或花圃,先估计它的面积大约是多少,再测量计算面积所需要的数据,算出结果。“合适”的意思是,形状为已经学过的图形,并且不太复杂,最好是平行四边形、三角形或梯形的;面积不要过大,也不要过小,便于估计和测量;测量长度方便、安全。我校的绿化区,有几块草坪图案中包含圆半圆等形状,关于圆的知识我们现在还没有学习。你可以重新选择地块,也可以向高年级的同学请教。
填写完整实践活动记录单。(实践活动过程记录要反映估计、测量、计算、交流和示意图等内容)实践活动记录单
参与人员活动时间
实践内容实践地点
实践活动过程
四、活动三:画画算算
在实际活动中,你可能会觉得这个花园设计还可以更美观实用一些,你可以大胆想像,重新设计一下。把设计方案画在提供的方格纸上。我们下周组织展览评比。
议一议:设计图上要表出哪些内容?
五、活动总结(略)
数学面积的教学设计 篇8
教学目标:
(一)知识目标
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱侧面积和表面积的计算方法。
3、会正确计算圆柱的侧面积和表面积。
(二)能力目标
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点:
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备:
1、教师、学生每人用硬纸做一个圆柱体模型。
2、投影片。
教学过程:
课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么?
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……
师:我坚信你们一定不会让老师失望的。
一、引入新课:
师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的.高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)
投影呈现例一:一个圆柱,底面直径是0.4米,高是1.8米,求它的侧面积。
(1)学生独立解答
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)
数学面积的教学设计 篇9
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图
教学过程:
一、以新引旧、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。
5、转化后的图形与原来的图形面积相等吗?
6、(出示图形):这是什么图形?圆和我们以前学过的`平面图形有什么不同?
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容
数学面积的教学设计 篇10
教材分析
学习内容与任务说明
1.学习内容:
①什么是平面图形的周长与面积?比较周长和面积的区别。
②用网络图形构建平面图形周长与面积推导公式体系图,揭示知识间的内在联系。 ③平面图形周长与面积在实际生活中的应用。
2.任务说明:通过平面图形周长与面积的复习,使学生能应用基础知识,基本技能和方法解决生活中的实际问题,培养学生运用数学知识解决实际问题的能力及自主学习,合作学习的能力。
3.完成任务的过程:
①各小组同学明确学习目标,利用网络自主学习,组内协作,共同完成任务。
②组长巡视,组织本组同学完成学习目标,汇总本组观点。
③老师巡回指导,答疑解惑,汇总本组的观点。
④老师根据学生的汇报结果总结、评价、提升。
学情分析
从学生的年龄特征与身心发展来看,本课的复习对象是即将毕业的六年级学生。虽然,这一阶段学生的思维能力仍以具体形象思维为主,但抽象逻辑思维能力已获得了一定的发展。他们已具备了主动学习,自主思考的能力。对于老师提出的学习任务,他们有主动回忆,主动复习的内驱力。他们能对具体要求有序地进行思考、讨论,获得丰富的知识再现。并且学生已具有一定的计算机操作能力,渴望与他人进行网上交流和合作学习。网络环境下的课程学习是一种新型的学习方式,是信息技术与学科整合的应用,学生兴趣很浓,但对信息的分析能力欠缺,基于以上思考,我拟采用情景教学法和自主学习法为主,利用情境、合作、会话等学习环境要素充分发挥学生的主动性,让学生主动探究、主动发现,主动建构知识意义,完成学习目标。
教学目标
学习目标:
1.知识目标:
①引导学生回忆、整理平面图形的周长和面积的意义及计算公式的推导过程,并能熟练运用公式进行计算。
②引导学生探究知识间的相互联系,构建知识网络,从而加深对知识的理解,并从中学习整理知识,领会学习方法。
2.能力目标:
①让学生在设计的网页上浏览复习内容,初步培养他们获取信息、分析信息、比较信息的能力。
②培养学生解决实际问题的能力,培养学生自主学习,合作学习的能力。
3.情感态度与价值观目标:
①从贴近学生实际的身边出发,通过形象的动画演示,丰富的网络资源,使学生体验自主探究和合作学习的.过程,激发学生的求知欲,充分体现以人为本的素质教育思想。
②渗透“事物之间是相互联系”的辩证唯物主义观点,引导学生探寻知识间的相互联系;体验数学与生活的联系,培养学生数学来源于生活,又运用于生活的数学意识。
教学重点和难点
学习重点:引导学生探究平面图形的周长和面积,根据它们间的联系构建知识网络,并应用平面图形周长与面积的知识解决生活中的问题。
对策:
①给学生提供相关资料,提出学习目标,让学生自己上网学习,获取信息,分析归纳形成结论。
②在老师引导下,通过交流协作,应用所学的知识解决实际问题。
学习难点:
①在网络教学中,根据学生的知识能力差异,完成自主协作学习。
②教师怎样扮演好课堂的组织者、指导者、促进者的角色。
对策:
①巡视了解,观察学生的反馈状况,及时辅导、调整。
②激励措施,调动学生积极参与在线测试。
③学习内容与学习任务的具体化。
数学面积的教学设计 篇11
教学内容:苏教版小学数学第六册85—89页。
教学目标:
1、通过直观观察、动手操作活动理解面积的意义。
2、认识并体验常用的面积单位:平方厘米、平方分米、平方米,获得关于它的实际大小的空间观念,发展学生的形象思维。
3、使学生认识到知识来源于实践,服务于实践。
教具准备:在课本后面剪下1平方分米一个,1平方厘米8个(一排)
教学过程:
谈话导入:蒋老师了解到同学们都有早起的好习惯,我们起床以后做什么呢?(洗脸、刷牙)对,我们洗过脸以后,为了保护皮肤,还要在脸上擦一些面油,对不对?大家觉得老师每次擦得多一些,还是这位同学擦得多一些?为什么呢?(也就是老师脸的表面比较大,这位同学脸的表面比较小。)板书:表面。
1、观察实物,认识物体表面。
师:不光我们的脸有表面,其他物体也有表面。今天老师带来了一些物体,(篮球、苹果、杯子、数学书、乒乓球)这些物体都有表面,(教师演示:这是篮球的表面,这是苹果的表面,)现在,请同学们拿出你带来的物体,我们就来找一找这些物体的表面,看一看,摸一摸,每一样都摸一摸,感觉一下这些物体的表面,再看看这些物体的表面有什么不同?
2、讨论物体的表面有大小。
学生自由发言后教师小结:通过刚才的研究我们发现:物体的表面有大小,(物体的表面的大小)在数学上,我们就称之为:他们的面积。(板书:叫做它们的面积)
3、运用面积。
师:谁会用面积来说一说你手中的两个物体表面的大小,要说清是哪一个面。如:课桌上面的面的面积比课本的封面面积大。
看投影:
(1)热水瓶和煤气瓶,哪一个表面面积比较大?(显示一下)
(2)排球和篮球,哪一个用的皮要多一点?
4、认识平面图形的大小。
师:老师还给大家带来了一些图形,你还知道那些图形?
这些图形都是围成的平面图形,教师出示
这两个图形和刚才的图形有什么不同?
请大家看:现在有一块黑色的图形移过来,盖住了这个正方形,再看,这个图形又盖到了长方形上,有没有完全盖住呢?这是为什么呢?
小结:看来围成的平面图形也有大小,也叫做它们的面积。(板书:围成的平面图形的大小)
5、谁来比较这些图形的面积大小?
总结:刚才我们知道物体的表面的大小,是他们的面积,围成的平面图形的大小,也就是他们的面积,谁会把这两句话概括成一句话?学生概括后教师加上一个“或”字。
二、比较面积的大小。
(1)拿出发给你们的1号、2号纸,看一看,能判断哪个大,哪个小吗?可以不可以证明一下?用重叠比较他们的大小。
(3)数方格:电脑出示两个大小不明显的纸片,让学生猜一猜他们面积的大小,再重叠一下,仍不能比较大小,问学生有没有更好的方法,让学生先数一数方格,比较大小,然后教师把长方形的方格移过来,再确认一下。
变换:电脑先出示第一个正方形,然后告诉学生:第二个长方形有6个方格,让学生猜一猜:哪一个大?再出示第二个图,问:这是什么原因?
讨论:用数方格的'方法有什么要求?
小结:用数方格的方法计量面积的大小,要有一个统一的标准。可以用一样的正方形。
三、认识面积单位。
1、出示小方块:这个纸片的面积是1平方厘米,可以用它来量面积的大小。大家看,它是什么形状?是正方形,哪它的边长是多少呢?量一量它的边长。
小结:边长1厘米的正方形,它的面积是1平方厘米,这就是厘米与平方厘米的联系。生活中有那些东西的表面面积大约是1平方厘米呢?(用小方块比一比。)
(开关按钮、手指甲、相互笑一笑露出大门牙等)
用1平方厘米的小正方形量火柴盒,他的面积是多少?
2、刚才同学们用1平方厘米的小正方形量出了火柴盒的一个面的面积,如果要你用它来量大一些的面,比如课桌面的面积,方便吗?为什么?怎么办?(可以用大一点的正方形),这里有一个大一点的方块,它的面积是1平方分米。拿出同学们自己的1平方米,量一量他的边是多少。 哪些东西的表面大约是1平方分米呢?你自己身上有没有大约1平方分米的地方?(脸、开关等)
如果要你量这个课桌面的面积,你觉得用1平方厘米、1平方分米哪一个比较好?为什么?一起来量一量。看怎样量比较好?
3、中期小结:刚才同学们用来量面积大小的两个正方形面积是1平方厘米、1平方分米,这个1平方厘米,1平方分米都是面积单位。
4、如果老师要同学们用这两个面积单位来量一量这个教室的面积?你觉得行不行?
(1)挂出1平方米的教具,让学生用手比划:横的是一米,竖这是一米,下面要封口。
(2)看一看1平方米上面可以站多少同学。(把纸取下来)
(3)沿着一平方米的地方走一走,只能走四步,有什么感觉?
(4)介绍我们的小足球场大约是20xx平方米左右
(5)根据1平方米的大小,估计一下我们的教室大约是多少平方米?
四、练 习:投影。
五、全课小结:
1、今天我们学习了什么内容?
六、实践任务:
用1平方米的教具,下课以后想办法量一量我们教室的面积大约有多少,看谁会想到猜得对?
数学面积的教学设计 篇12
教学内容
教材第89页:长方体和正方体的表面积
教学目标
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题;能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
教学重难点
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学准备
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
教学设计
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境、引入问题
老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1、探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的`总面积,叫做它的表面积。
师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
〔着重引导学生体会:求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数据放到长方体相应的位置。
2、探究每个面的长和宽与长方体的长、宽、高有什么关系?
师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?
多媒体展示,引导学生讨论:
上、下每个面的长和宽分别是长方体的()和();
前、后每个面的长和宽分别是长方体的()和();左、右每个面的长和宽分别是长方体的()和()。
小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:
上、下每个面的长和宽分别是长方体的(长)和(宽);
前、后每个面的长和宽分别是长方体的(长)和(高);左、右每个面的长和宽分别是长方体的(高)和(宽)。
3、尝试计算
问:现在你能求出做这纸盒至少需要多大面积的纸板吗?
学生尝试计算,出示活动要求:
(1)小组讨论,想办法求出做这个纸盒需要多大面积的纸板。
(2)把自己的计算方法和小组内的同学交流。
教师参与学生的活动。
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问
学生板演后说明想法:
生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。
生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。
教师注意引导学生语言叙述的完整性,准确性。
师多媒体展示学生的汇报结论。
指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
4、探究正方体的表面积计算方法。
多媒体出示:棱长为5厘米的正方体的表面积是多少?
学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6。
四、巩固新知、拓展运用
1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。
2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。
3、课件出示“聪明的你”,引导学生注意:
(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);
(2)计算时,关键是找准数据。
学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。
4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。
五、课堂小结
通过学习,你有哪些收获?还有那些不懂的问题?
数学面积的教学设计 篇13
设计说明
在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:
1.动手实践,多维探究。
数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。
2.分层运用新知,逐步理解内化。
新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。
课前准备
教师准备 PPT课件 学情检测卡 课堂活动卡 平行四边形卡片 剪刀
学生准备 练习卡片 平行四边形卡片 剪刀
教学过程
⊙创设情境,导入新课
1.常用的面积单位有哪些?
2.出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?
根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。
(板书课题:平行四边形的面积)
设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。
⊙操作实践,探究新知
一、数方格法。
1.复习旧知。
师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。
(出示方格纸)
师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)
师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?
师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。
2.填写并观察表格。
设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。
二、割补法。
1.讨论:你们准备怎样将平行四边形转化成长方形呢?
预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。
2.组织学生操作,教师巡视指导。
3.教师示范平行四边形转化成长方形的过程。
(1)先沿着平行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的'边重合为止。
4.观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)
(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?
(2)这个长方形的长与原来的平行四边形的底有什么关系?
(3)这个长方形的宽与原来的平行四边形的高有什么关系?
(4)思考后填空。
①原来的平行四边形的底与长方形的( )相等。
②原来的平行四边形的( )与长方形的( )相等。
③这两个图形的( )相等。
数学面积的教学设计 篇14
一、教材内容分析
人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。
二、学情分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。
三、教学目标知识与技能
1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。
2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观
让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和
教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。
五、教学准备
教学用具,圆形卡片学具
六、教学过程
关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流
一、创设情境,揭示课题
1,创设情境
学校的花坛的半径为10米,我们能求出它的面积吗?
2,揭示课题
为了解决这个问题这节课我们一起学习“圆的面积”好不好?
板书:圆的面积
3,说一说
师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?
生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。
二、动手操作,实践探究
1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法
2、动手操作,尝试转化
1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?
2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导
3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)
4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?
3、探究联系,推导公式
现在来看拼成的长方形面积与圆的面积有什么联系?长方形的'长和宽与圆的周长和半径有什么关系呢?
1),猜测,再一次观察老师的示范
2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品
3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。
4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。
5),观察,小组讨论得出公式:(板书)
长方形的面积 = 长 × 宽
圆的面积 = 周长的一半 × 半 径
S =πr ×r = πr2
三、运用公式,解决问题
1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识
2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。
四、课堂小结
(一)组织交流
回顾一下这节课我们学习的内容。
(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(二)总结
平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、
圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!
七,板书设计圆的面积(1) 长方形的积 = 长 × 宽
圆的面积 = 周长的一半×半 径
S = πr×r = πr2 八、教学评价设计
在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。
《圆的面积》教学反思
蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面
数学面积的教学设计 篇15
教学内容:
长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)
教学目标:
① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。
② 会用求长方体表面积的方法解决生活中的简单问题。
③ 培养学生的分析能力,同时发展他们的空间观念。
教学重点:长方体表面积的计算方法。
教学难点:长方体表面积的计算方法。
教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:
一、预习提纲:
1、预习教材第33~34页例题1。
2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。
3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。
4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?
5、练习:
观察下面纸箱
二、展示汇报:
1、什么是长方体的长、宽、高?长方形的面积怎么计算?
2、交流汇报。
(1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:
A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。
B、 每个面的长和宽与长方体的长和宽有什么关系?
3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的'表面积。
学生齐读概念后,教师板书课题:长方体和正方体的表面积。
(1)下面这个纸盒的表面积要怎么求呢?
前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m
左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m
这个包装箱的表面积是:
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
=0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4
=1.66m
或者:
(0.7×0.5+0.7×0.4+0.5×0.4)×2
=(0.35+0.28+0.2)×2
=0.83×2
=1.66 m 答:至少要用1.66 m 硬纸板。
(2)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂小结。
1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
2、你发现长方体表面积的计算方法了吗?
结论: = 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、巩固练习。
完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?
五、检测、反馈:
(一)完成P36练习六T1~3。
2、选择:
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
A、 2×7×2+6×7×2+6×2
B、(2×7+2×6+6×7)×2
C、2×7+2×6+6×7
3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)
A、(1×1+1×3+1×3)×2
B、1×1×2+1×3×4
C、1×1×2+1×4×3
讨论得出:底面周长×高=4个侧面的面积
4、思考题:
我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?
板书设计:
长方体和正方体的表面积的概念
= 长×宽×2+长×高×2+宽×高×2
长方体的表面积
= (长×宽+长×高+宽×高)×2
课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。
数学面积的教学设计 篇16
【设计说明】
《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69页例2的教学内容。环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。
教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?
充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。
【教学设计】
教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69页例2。
教学目标:
1.认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。
2.学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。
3.培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的良好习惯。
教学重点:探究圆环面积的计算方法。
教学难点:理解环形的形成过程,掌握环形面积的计算方法。
教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。
【教学过程】
一、复习旧知,引入新知
1.计算圆的面积
(1)半径是5厘米
(2)直径8厘米
2.说一说圆的面积计算公式
二、自主探究,掌握方法
1.认识环形
(1)我们来欣赏一组美丽的图片。
(课件演示:环形花坛、奥运五环标志、光盘等环形图案)
(2)图片的形状和我们学过的什么图形很相似?(圆)
(3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)
(4)学生找生活中的环形。
2.建立环形表象
(1)利用手边的工具自己做出一个圆环。
(2)学生可利用工具剪出环形或画出环形。
3.发现环形特点
老师拿着学生制作的环形提问:
“这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)
(1)解释什么叫外圆半径和内圆半径。
(2)求环形面积是求哪部分面积?
(3)你怎样求这个环形的面积?
(要求学生先独立思考,再在小组内交流)
(4)师:谁能总结一下环形的面积是怎样计算的?
(学生讨论、交流、总结,教师点拨、总结,板书:环形的面积=外圆面积—内圆面积:S=πR2-πr2)
师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?
4.教学例2内容
光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的'?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生讨论。
(3)学生试做,指生演板。
(4)交流算法,学生将列式板书:
3.14×(6×6)-3.14×(2×2)
=113.04- 12.56
=100.48(平方厘米)
3.14×(6×6 -2×2)
=3.14×32
=100.48(平方厘米)
(5)比较两种算法的不同。
三、应用新知,解决问题
1.计算阴影部分的面积
(半个环形:R=10厘米,r= 6厘米)
2.判断正误
(1)在圆内剪去一个小圆就得到一个圆环。()
(2)环宽=外圆半径-内圆半径。()
3.一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?
四、反思体验,总结提高
学生畅谈本节课的学习收获,教师适当总结归纳。
【教学反思】
《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。
一、在直观演示中,培养学生的思维能力
1.深入了解学生,找准教学的起点
这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。
2.深入钻研教材,促进学生思维的发展
在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。
二、在动手操作中,培养学生的观察能力
师:请同学们拿出做好的环形,说说你是怎样去做的?
生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。
生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。
师:前两位同学都说到了哪几点?
生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。
师:说说日常生活中有哪些物体的表面是环形的?
生:光盘、环形垫片等。
在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。
三、在探究发现中,碰撞学生的智慧的火花
师:判别下列图形中,哪些是环形?
师:观察得真仔细!环形的宽度相等。
师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?
(生纷纷作答)
师:环形的面积与什么有关?
生1:环形的面积与环形的宽度有关。
生2:环形的面积与外圆、内圆的面积有关。
生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。
(这位学生博得了全班学生热烈的掌声)
师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?
生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。
生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。
上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性
数学面积的教学设计 篇17
教学内容
教材第89 页:长方体和正方体的表面积
教学目标
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
教学重难点
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学准备
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
教学设计
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境 、引入问题
老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1. 探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。
师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数据放到长方体相应的位置。
2.探究每个面的长和宽与长方体的长、宽、高有什么关系?
师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?
多媒体展示,引导学生讨论:
上、下每个面的长和宽分别是长方体的()和();
前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。
小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:
上、下每个面的长和宽分别是长方体的(长)和(宽);
前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。
3、尝试计算
问:现在你能求出做这纸盒至少需要多大面积的纸板吗?
学生尝试计算,出示活动要求:
(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。
(2) 把自己的计算方法和小组内的同学交流。
教师参与学生的活动。
反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问
学生板演后说明想法:
生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的.面积加起来。
生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。
教师注意引导学生语言叙述的完整性,准确性。
师多媒体展示学生的汇报结论。
指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。
4探究正方体的表面积计算方法。
多媒体出示:棱长为5厘米的正方体的表面积是多少?
学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.
四,巩固新知、拓展运用
1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。
2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。
3、课件出示“聪明的你”,引导学生注意:
(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);
(2)计算时,关键是找准数据。
学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。
4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。
五、课堂小结
通过学习,你有哪些收获?还有那些不懂的问题?
数学面积的教学设计 篇18
【教材解读】
自读:例5教学面积公式的应用。求出学生最熟悉的数学书封面的面积大小,并用数学书封面的面积去测量课桌的面积。
做一做,用学生身上的尺子来测量长度,进而求出教室的面积。(反思:知道了这样做,要再深入问:为什么要这样做?)
细读:例5的编排意图与前面“做一做”的编排意图基本相同。在计算数学书封面面积后,又安排利用计算结果估计桌面面积的活动,一方面体现了上面计算的价值;另一方面提示,可用自己熟悉的物品面积作为“非标准”的面积单位,估计其他面积,从而发展学生的估测意识与能力。
“做一做”利用学生自己的“步长”作为单位,测量教室的长和宽,并估测教室面积。目的是使学生进一步了解自己,用自己随身携带的“标尺”,随时随地地认识更多的事物,积累更多的实践经验,发展学生的估测意识与估测能力。
【教学目标】
使学生进一步理解面积公式的含义;
使学生进一步掌握面积公式的计算。
【教学流程】
一、面积公式的复习
1.出示:练习十五的`第1题。
学生独立计算。
如果满铺是这样的如果半铺又是怎样的你会选择铺吗?
2.完成练习第2题
出示:两个信息,学生提出问题?
二、教学例5
1.出示题目
读题计算
468平方厘米到底有多大呢?
我们熟悉的数学书封面是500平方厘米,估计一下我们的课桌面积大约有多少?
师:你是怎么估测的呢?
小结:我们可以用尺子量出长和宽计算出桌面面积的大小;但当没有尺子时,可以用已知的数学书封面面积来测量桌面面积。
2.做一做
如果没有尺子,如何测量我们教室的面积呢?
生预:用课本面积;
生预:用课桌面积;
生预:用身上的尺子。(脚步的“尺子”)
小结:用自己随身携带的“标尺”,随时随地地认识更多的事物。
3.目测实物面积和测量计算面积
黑板的面积;长方形的面积;地面方格的面积。
猜测依据测量。
三、巩固练习
1.练习第7题,面积和周长(练习本上)
2.第9题,知道周长,如何求面积?
3.第8题,选择。
1)全部的面积;
2)正方形的面积;
3)剩下的面积。
四、拓展题
练习第10题:面积减去后,面积相等,周长变了。
数学面积的教学设计 篇19
知识目标:
结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。
能力目标:
能够认识长方体和正方体,具有初步的立体空间想象能力。
情感目标:
使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
教学重点、难点:
能够准确的计算长方体和正方体的表面积。
教学方法:师生共同归纳和推理。
教学准备:长方体纸盒
教学过程:
一、复习导入:
教师让学生回顾上一节课学习的`长方体和正方体的表面积,并对学生进行提问。
学生回答(长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)
二、课堂练习:
学生做第1题,求出下列图形的表面积。教师注意观察学生运用公式是否正确,对出现错误的同学及时指导。
学生做第2题,本题目计算量比较大,防止学生出现计算错误。
学生做第3题,教师应该让学生知道电视机布罩只有5个面。
学生做第4题,这个题目的要点是只有5个面,学生要密切联系生活中的实际解决问题。
学生做第5题,教师让学生注意观察教室内墙面积。
学生做第6题,分小组讨论解决问题,教师巡视并进行必要的指导。
三、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
长方体的表面积
长方体的表面积=(长×宽+长×高+高×宽)×2
(10×4+10×8+8×4)×2
正方体的表面积=边长×边长×6
7×7×6
数学面积的教学设计 篇20
这部分内容主要引导学生通过观察和操作认识长方形和正方形的一些基本特征,体会两者之间的联系和区别。例题安排了三个层次的教学活动。第一层次从熟悉教室或类似的环境中找出哪些物体的面是长方形和正方形;第二层次,通过折纸的活动探索并发现长方形和正方形的基本特征。教材要求学生折一折、量一量、比一比,看看它们的边和角有什么特点,再组织交流进一步明确各自特征。第三层次,把这两种图形特征进行比较,引导学生体会相互间的联系,并在此基础上揭示长方形的长、宽及正方形的边长等概念。
目标预设:
1.使学生在观察、操作等活动中,感知并初步整理长方形和正方形的基本特征,知道长方形长、宽及正方形边长的含义;初步体会长方形与正方形的联系和区别。
2.使学生进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
3.使学生在学习活动中体会图形与现实生活的联系,感受平面图形的学习价值,增强对数学学习的兴趣,提高合作探究能力。
重点、难点:
感知并初步初步整理长方形和正方形的基本特征,体会两者之间的联系和区别。
长方形和正方形基本特征的推导和归纳
设计理念:
本课的教学对象是三年级的孩子,根据他们的年龄特征,学生对抽象的图形认识往往空洞不感兴趣,课堂上“无意注意”占有一定的优势。根据这一特点,在本课教学设计中,我想到恰当的运用多媒体,让“静”的知识“动”起来。通过引导他们观察直观的图形及动态演示、操作,刺激学生的多种感官,促使学生积极思考,进而激发他们探索求知的欲望,并发展他们的空间观念。设计思路:
这节课主要引导学生通过“猜想---操作----验证”认识长方形和正方形的基本特征,进一步拓展学生的空间观念,提高他们的综合解题能力,发展他们的数学思维。教学过程:
一、谈话导入
1.欣赏图片。
师:老师拍了很多生活中的图片,你们愿意通过自己的观察来找出有关的数学知识吗?
2.揭题
师:今天我们主要来研究长方形和正方形的特征。
(以谈话导入激发学生的学习兴趣,引导学生通过自己的观察,了解有关数学知识,学生兴趣浓厚,思维也随之活跃。)
二、探索新知
1.长方形的特征
⑴猜想。
谈话:我们先来研究长方形的特征,仔细观察黑板面、课桌面以及画在黑板上的长方形,你发现了长方形的边和角有什么特征?(让学生分组交流说一说)
⑵验证。
谈话:同学们的猜想到底是对还是错呢?我们能用什么办法证明一下呢?请同学们四人一组互相讨论,想办法验证一下长方形是不是真的具有这些特点。
量一量,折一折,比一比(学生说,电脑演示)通过验证发现长方形的对边确实相等
可以用三角尺的直角去比一比。得出:
4个角都是直角
(课件演示,验证长方形对边是否相等。使原本抽象的数学知识,变得直观、形象,学生亦能更轻松,自主地获取知识。)
⑷小结:我们把相对的边叫做对边,相邻的两条边叫做邻边。刚才同学们用折、量、比的方法说明了长方形的对边相等,4个角都是直角。
2.正方形的特征。
师:刚才我们通过仔细观察,大胆猜想,认真验证得出了长方形的`特征。你会用同样的方法来学习正方形的特征吗?
(1)独立思考后,小组交流。
(2)汇报。
(学生掌握的不止是知识,还有获得知识的方法,这里让学生运用自己已有的本领,小组学习探讨,解决新知,学生真正成为学习的主人。)
3.师:你知道长方形和正方形有什么相同的地方?(课件填写实验报告表)
4.教学长、宽及边长。
讲述:通常我们把长方形长边的长叫做长,短边的长叫做宽。而正方形的四条边都相等,我们把它们称为边长。
5.比较:长方形与正方形的关系。(课件演示长方形的长缩短到与宽等长,或长方形的宽延伸到与长等长。)
数学面积的教学设计 篇21
教材分析
在此之前学生已经认识了长方形、正方形等平面图形,知道了什么是周长,掌握周长计算方法。在这些经验的基础上,教材引导学生在生活中找、摸物体的表面,比较物体表面及平面图形的大小,理解面积的概念,为今后学习面积单位进率,探究长方形、正方形等平面图形面积计算公式奠定基础。
教材十分重视学生的认知特点,从直观的黑板、电视机、数学书表面到抽象的长方形、正方形等封闭图形,通过摸一摸物体的表面、说一说等活动,初步感知什么是面积,然后通过比较面积大小,拓展学生对面积的感性认识,丰富面积概念的表象,深入理解面积的意义,并在比较的过程中渗透“统一面积单位”的重要性。
教材还安排学生认识常见的`面积单位,但我认为把面积和面积单位合在一起则使本课内容过于繁琐,考虑学生接受知识的能力,我将面积单位纳入下一课时。
教学目标
1.通过比较物体表面和封闭图形大小的活动,丰富面积的表象,理解面积的意义。
2.经历面积大小的比较过程,体验策略的多样化。
3.在活动中培养学生动手操作能力和初步的空间观念。
由于三年级学生思维处于具体形象思维向抽象思维过渡阶段,再加之本课内容是由线到面,学生理解起来有困难,所以感知与理解面积的意义既是本节课的重点,也是本课要突破的难点。
教学过程
说课回眸
在本堂课中,我力求体现以下几点
(1)以平面图形作为面积概念掌握的主要材料
情境导入时,用正方形卡纸激起学习兴趣,以长方形、正方形作为面积大小比较的素材,小正方形、长方形、圆片、方格纸为工具,引导学生小组合作。借助这些感性材料理解面积。
(2)重视体验与直观演示相结合
通过观察正方形,生活中找一找、摸一摸物体表面,借助学具铺一铺、数一数,比较面积大小,并结合多媒体演示,加上画图工具的辅助,实现多层次的互动。
(3)引导学生动手摸、动口说、动脑想,实现多种感官参与活动。
数学面积的教学设计 篇22
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是xxx 、xxx和xxx。
2、底面是xxxx形,它的面积=xxx。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由xxx和xxx组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=xxx
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的'xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。
列式计算:
① 帽子的侧面积=xxx
② 帽顶的面积=xxx
③ 这顶帽子需要用面料=xxx
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
数学面积的教学设计 篇23
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的`合作精神和创新意识。
教学重点:推导出圆的面积公式及其应用。
教学难点:圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
数学面积的教学设计 篇24
教学目标
1。使学生知道常用的土地面积单位——公顷,知道1公顷有多大,1公顷与平方米之间的关系。
2。培养学生的空间观念与动手操作能力。
教学重点
1公顷有多大的空间观念。
教学难点
平方米与公顷之间的换算。
教具准备
标杆与绳子。
教学过程()
一、复习准备。
1。什么叫面积?常用的面积单位有哪些?(物体的表面或平面图形的大小,叫做它们的面积。常用的面积单位有平方米、平方分米、平方厘米。)
2。什么是1平方米?什么是1平方分米?什么是1平方厘米?(边长1米的正方形,它的面积是1平方米;边长1分米的正方形,它的面积是1平方分米;边长1厘米的正方形,它的面积是1平方厘米。)
3。1平方米=( )平方分米
3平方米5平方分米=( )平方分米
1平方分米=( )平方厘米
1500平方厘米=( )平方分米
二、学习新课。
1。谈话引入:
计算一般物体的面积有平方米、平方分米、平方厘米。今天我们要学习计算土地的面积单位———公顷。(板书课题:土地面积单位———公顷)
2。公顷的认识。
(1)教师谈话:计算土地的面积有平方米和公顷。1平方米有多大,大家都知道了,边长1米的正方形,它的面积是1平方米。那么1公顷有多大呢?咱们去实际测量一下。
(2)实际测量。
带领学生到操场,先量出边长1米的正方形土地,用标杆和绳子围起来,说明这么大的土地是1平方米。
再量出边长是10米的正方形土地,用标杆和绳子围起来,提问学生这块土地有多少平方米?让学生在这块土地四周看一看,这么大是100平方米。然后教师说明100个100平方米这么大的土地是1公顷,让学生闭眼想一想1公顷有多大。
(3)公顷与平方米之间的关系。
回到教室,教师提问,唤起学生的想象:
①刚才在操场第一次围出的正方形有多大?它们的边长是多少?
②第二次围出的正方形边长是多少?面积有多大?(教师板书:100平方米)
③1公顷有几个这样的`正方形土地?(100个)
④1公顷有多少平方米?你是怎样推想出来的?(100×100=10000)
教师板书:1公顷=10000平方米。
教师说明:教室的面积一般有50平方米,200个教室面积大约是1公顷。
1公顷=10000平方米,那么2公顷等于多少平方米?
30000平方米=( )公顷。
(4)练一练。
4公顷=( )平方米 50000平方米=( )公顷
3。教学例题。
(1)教师说明:丈量土地时,一般用米做长度单位来丈量,算出面积是多少平方米之后,再换算成公顷。
(2)出示例题:一个长方形果园,长250米,宽120米,这个果园有多少公顷?
提问:
①长方形面积怎样求?
②怎样由平方米换算成公顷?
由学生列式计算。
(3)练一练。
一块边长是400米的正方形麦地,有多少公顷?
全体学生在本上做,由一名学生在投影片上做。订正时,提问学生怎样想的?已知正方形边长,可以求出什么?怎样换算成公顷?
三、巩固反馈。
1。课内练习。
(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合( )平方米。
(2)北京故宫是世界上最大的宫殿,占地面积720000平方米,合( )公顷。
2。课后练习。
(1)量学校操场的长和宽,计算它的面积,看够不够1公顷。
(2)7公顷=()平方米 60000平方米=()公顷
(3)一个飞机场新建一条跑道,长250米,宽80米。占地多少公顷?
板书设计
土地面积单位——公顷
例。一个长方形果园,长250米,宽120米,这个果园有多少公顷?
250×120=30000(平方米)
30000平方米=3公顷
答:这个果园有3公顷。
土地面积单位有:平方米、公顷
1公顷=10000平方米
