六年级下册数学教案

知远网

2025-11-10教案

知远网整理的六年级下册数学教案(精选56篇),希望能帮助到大家,请阅读参考。

六年级下册数学教案 篇1

1、教学目标

1、在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

2、进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

3、向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

2、新设计

1、串联信息,整合单元复习内容。

2、沟通联系,自主搭建知识网络。

3、聚焦对比,分析说理易混知识。

4、数形结合,提炼方法优化思路。

3、学情分析

厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的'应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

4、重点难点

教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

六年级下册数学教案 篇2

教学内容:

第43页例4,完成“试一试”“练一练”和练习十的1~4题。

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重、难点

理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程:

一、创设情境,教学比例的基本知识。

1、复习:

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5

2、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3 :5 = 18 :30 学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3 :5 = 18 :30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

二、教学例4

1、提问:你能根据图中的数据写出比例吗?

(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

2、学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

3、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组):

1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5

学生验证。

⑵学生任意写一个比例并验证。

教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交叉连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的`分子、分母交叉相乘,结果相等。

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

读书P44页,勾画

5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

6、比例的基本性质的应用

(1)比例的基本性质有什么应用?

(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

A、先假设这两个比能组成比例:

让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

B、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

C、根据比例的基本性质判断组成的比例是否正确。

三、综合练习:

1、完成练一练

(1)学生尝试练习。

(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在( )里填上合适的数。

1.5:3=( ):4

12:( )=( ):5

先让学生尝试填写,再交流明确思考方法。

3、补充一组灵活训练题:

A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

四、全课小结:

同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

五、课堂作业。

1、做练习十第1、3题

2、独立完成2、4题

板书设计:

比例的基本性质

3 :5 = 18 :30

内项

外项

6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4

3×4=6×2

a:b=c:d ad=bc

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

六年级下册数学教案 篇3

教学要求:

1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

教学重点:认识解比例的意义。

教学难点:应用比例的基本性质解比例。

教学过程:

一、复习引新

1.做第32页复习题。

出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

2.根据比例的基本性质把下面的`比例改写成积相等的式子。(口答)

4:3=2:1.5=x:4=1:2

提问;根据积相等的式子,你能求出最后一题里的x吗?

3.引入新课。

在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

二、教学新课

1、教学例2。

出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2、教学例3。

出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3、教学“试一试”。

提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

4、小结方法。

提问:你认为根据比例的基本性质要怎样解比例?

三、巩固练习

1、做“练一练”。

指名四人板演。其余学生分两组,每组两道题,做在练习本上。

2、做练习六第8题。

让学生做在课本上,指名口答。

3、做练习六第l0题。

学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

4、做练习六第11题。

学生口答、老师板书,看能写出多少个比例。

四、讲解思考题

提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例,

六、布置作业

课堂作业:练习六第6题第(1)~(4)题,第7题。

家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

教学目标:

1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3、培养学生的判断分析推理能力。

六年级下册数学教案 篇4

教学目的:

1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。

教学重点:

掌握用转化的策略解决分数问题的方法,增强策略意识。

教学难点:

根据具体问题,确定转化后要实现的目标和转化的具体方法。

教学过程:

一、看谁的联想最多?

出示:男生人数是女生的2/3看到含有分率的句子,你能想到些什么?

学生可能说:

(1)把女生人数看作“1” ——找单位“1”

(2)男生人数有这样的2份,女生人数有这样的`3份。

(3)一共有这样的5份

(4)女生比男生多1份——份数

(5)男生人数占全班人数的2/5.女生人数占全班人数的3/5

(6)女生是男生的3/2 ——分数

小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。

二、新授

1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”

2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。

3、学生独立完成,教师巡视指导。

4、指名交流解题思路。

5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?

6、学生独立完成,小组交流。指名交流。

学生可能想到:

(一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”

50÷(3+2)=10(人) 10×3=30(人)

(二)将关键句转化成分数来理解“女生占全班人数的3/5”

50×3/5=30(人)

7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。

8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)

三、巩固练习

1、练一练:学校美术组有35人,是合唱组人数的5/8 。学校合唱组有多少人?

(1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)

(2)反思:为什么把美术组人数是合唱组的5/8转化为合唱组的人数是美术组的8/5.

(3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。

板书:问题转化成已知条件的几分之几。

2、练习十四5:

(1)看图填空。

绿彩带

红彩带

绿彩带比红彩带短2/7,红彩带比绿彩带长()/() 。

(2)一杯果汁,已经喝了2/5,

喝掉的是剩下的()/(),剩下的是喝掉的()/() 。

3、练习十四6

(1)白兔和黑兔共有40只,黑兔的只数是白兔的3/5 。黑兔有多少只?

黑兔只数占白兔、黑兔总只数的()/() 。

(2)小明看一本故事书,已经看了全书的3/7,还有48页没有看。小明已经看了多少页?

已经看的页数是没有看的页数的()/() 。

4、只列式,不计算。(说说你是怎样转化的)

(1)修一条长30千米的路,已经修的占剩下的2/3,已经修了多少千米?

(2)山羊有120只,比绵羊少1/6,绵羊有多少只?

(3)甲数是乙数的2/3.乙数是丙数的3/4.甲、乙、丙三数的和是180.甲、乙、丙三个数各是多少?

5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有1/3是白子。这三堆棋子一共有白子多少枚?

6、思考题:

有两枝蜡烛。当第一枝燃去4/5,第二枝燃去2/3时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。

全课小结:今天这节课,我们学习了什么知识?你有哪些收获?

板书设计:

用转化思路解答分数除法应用题

繁简

用方程解答:用乘法解答:

解:设女生有x人。

x+2/3 x=35

5/3x=35 35×3/5=21(人)

x=21

答:女生有21人

六年级下册数学教案 篇5

教学目标

1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

教学重点

理解对称图形的概念及性质,会找对称轴。

教学难点

准确找全对称轴。

教学准备

1、教具:投影片、图片、剪刀、彩纸。

2、学具:蝴蝶几何图片、剪刀、白纸。

教学过程

(一)导入新课

你们看这些图形好看吗?观察这些图形有什么特点?

(图形的左边和右边相同。)

你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

你怎么知道图形的左边和右边相同?(看出来的……)

还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

(二)讲授新课

1、对称图形的概念。

(1)对称图形和对称轴的定义。

以剪出的图形为例,贴在黑板上。

问:你们剪出的这些图形都有什么特点?

(沿着一条直线对折,两侧的图形能够完全重合。)

师:像这样的图形就是对称图形。(板书课题)

折痕所在的这条直线叫做对称轴(画在图上)。

问:现在谁能准确说出什么是对称图形?什么是对称轴。

板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

(2)加深理解概念。

以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

(3)巩固概念。(投影)

①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

生边回答老师边填在投影片上,并用小棒摆出对称轴。

回答:

1°任意三角形不是对称图形。

2°等腰三角形是对称图形,有一条对称轴。

3°任意梯形不是对称图形。

4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

8°等腰梯形是对称图形,有一条对称轴。

③小结。

问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

④练一练

打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

2、对称图形的性质。

(1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

(2)测量并归纳性质。

打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)

认真度量,结果填在书上,你发现什么?

投影订正。填后的结果:

A点到对称轴的距离是0.6厘米。

B点到对称轴的距离是1.2厘米。

C点到对称轴的距离是0.6厘米。

D点到对称轴的`距离是1.2厘米。

问:根据测量的结果你发现什么?

(A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0.6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)

问:根据度量结果,你们能总结出对称图形的性质吗?

板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

(3)验证性质。

量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

(三)课堂总结

今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

(四)巩固练习

1、第127页1题,画出对称轴。

2、在你周围的物体上找出三个对称图形。

3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

4、你能否应用对称图特点,剪出美丽的窗花或五角星。

六年级下册数学教案 篇6

教学目标:

1.通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。

2.经历探索活动,了解反比例曲线图的特征。

教学重点:

探究长方形面积不变时,长与宽的关系。

教学难点:

发现表示反比例曲线图的特征。

教学过程:

一、旧知铺垫。

1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?

2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的方格圈起来,可以连成什么线?

3、说一说。

(1)两个乘数的变化情况。

(2)两个乘数成什么关系?

(3)你有什么猜想?

二、探索新知。

用X、Y表示面积为24平方厘米的`长方形相邻的两条边长,他们的变化关系如下表。

x/cm 1 2 3 4 6 8 12 24

y/cm 24 12 8 6 4 3 2 1

1、说一说长与宽的变化情况。(小组交流)

2、这里哪个量一定?

3、面积一定时,长方形的长与宽有什么关系?(小组讨论)

板书:长×宽=长方形面积(一定)

4、根据上面的数据,在方格纸上画出8个长方形。(每格代表1 cm2)

过程要求

(1)出示方格纸,并标明X、Y轴上的数字。

(2)教师边讲解,边画长方形。

(3)学生接着画。(直接在课本上完成)

5、连接图中的点A,B,C,D……

(1)猜一猜:图中的点A,B,C,D……在一条直线上吗?

(2)师生一起连线,验证自己的猜想。

三、课堂小结

说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。

四、巩固练习

面包的总个数不变,每袋装的个数与袋数如下表。

每袋个数2 3 4 6 8 12 24

袋数12 8 6 4 3 2 1

(1)每袋个数与袋数有什么关系?说明理由。

(2)把上面的数据制成图表。

六年级下册数学教案 篇7

【教材分析】

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

【学情分析】

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

【设计理念】

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

【教学目标】

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

【教学重点】

理解正比例的意义。

【教学难点】

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【教学准备】

教学课件。

【教学过程】

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的`量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

【板书设计】

正比例的意义

两种相关联的量

六年级下册数学教案 篇8

教学内容:

课本第79——80页例3和“练一练”,练习十三第3-5题。

教学目标:

1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的'习惯,

增强学生应用数学的意识。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、复习导入

王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?

全校的三好学生共有96人,其中男生占3/8,女生有多少人?

学生独立解答后,让学生说说想的过程。

二、教学例3

出示题目,要求学生默读。

指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?

教师指导学生画线段图。

教师再根据线段图引导学生分析题意。

“要求今年有多少班,可以先算什么?

请你试着把这道题做一下。

教师找出不同的解法进行板演,并让学生说说思路。

三、完成”练一练“

1、做第1题。

(1)引导学生画线段图理解题意

(2)看线段图分析

(3)学生独立完成,指名板演,集体评讲。

2、做第2、3题。

(1)让学生独立完成,指名板演,集体评讲。

(2)让学生说说自己的想法。

四、巩固提高

1、完成练习十三第3题。

学生直接把结果写在书上,集体核对。

2、练习十三第4题。

3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

集体评讲。

五.本课总结。

通过这节课的学习,你有什么收获呢?

六、布置作业

练习十三第5题。

六年级下册数学教案 篇9

教学目标

1、通过观察和操作等活动,感受并能用自己的语言描述长方形、正方形的特征,能判断一个图形或物体的某一个面是不是长方形或正方形。

2、通过观察、测量等活动,在获得直观经验的同时发展空间观念。

教学重点及难点

重点:使学生掌握正方形和长方形的特征。

难点:正方形和长方形特征的归纳总结。

教学准备

长方形纸片,正方形纸片,直尺1把,三角尺1块,钉子板,橡皮筋。

教学过程

一、激情导入

1.幻灯片播放正方形、长方形图片,吸引兴趣

2.在生活中很多东西都是由正方形和长方形组成,你们通过观察发现了什么:引发学生思考。

二、实际操作,验证猜想

1、观察拿出长方形和正方形,猜猜它们有什么特点呢?你有办法证明自己的猜想是正确的`吗?同桌交流。

2、操作验证

(1)拿出自己的学具,用自己的办法验证。

(2)把自己的猜想和验证向小组汇报。

3、反馈

(1)对长方形的边你有什么发现?相机板书。你是怎样证明的?(量、折、比等)相机教学“对边”。指一指长方形的对边在哪里,一个长方形有几组对边?长的一条边,请你给它起个名字,你会叫它什么?短的一条边呢?

(2)对长方形的角你有什么发现?相机板书。你是怎样证明的?(量、折等)

(3)正方形的边你发现了什么?相机板书。怎样来证明?正方形的边你会叫它什么?

(4)正方形的角你发现了什么?相机板书。怎样来证明?

4、归纳通过刚才的活动,你对长方形和正方形有了哪些新的认识?

练习:

1、在钉子板上围出一个长方形,再把这个长方形变成一个正方形,再说说它们的特点。

2、在书上p64第7题的方格纸上画一个长方形和一个正方形。再说说小青菜提的问题。

3、完成书上p64第4题。先自己拼一拼,再与同桌交流一下。

(1)用6个一样的小正方形,拼成一个长方形。

(2)用16个一样的小正方形,拼成一个大正方形,再拼出几个不同的长方形。

4、思考:你能用一张长方形的纸折出一个最大的正方形吗?

三、课堂小结

向同学们提问通过今天的学习有什么收获。

四、布置作业

1.完成课后的习题

2.把不理解的地方标画在书上。

六年级下册数学教案 篇10

教学内容:

课本第99页例9和“练一练”,练习十六第7-10题。

教学目标:

懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

教学重点:

按折扣进行计算。

教学难点:

对折扣的理解,并正确列出算式。

课前准备:

课件

教学过程:

一、创设情境,引入新课

春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

二、实践感知,探究新知

1、提问:看到“打折”两个字,你会想到什么?

学生全班交流。

小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。

出示:华联超市的毛衣打“六折”出售。

提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

小结:“几折”就是十分之几,也就是百分之几十。

提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

学生交流课前搜集到的有关打折信息的意思。

提问:说一说下面每种商品打几折出售。

①一辆汽车按原价的90%出售。

②一座楼房按原价的96%出售。

③一只旧手表按新手表价格的80%出售。

2、教学例9。

学生自己读题。

出示例9的`场景图。让学生说说从图中获取到哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

学生独立尝试。

全班交流算式和思考过程

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8

ⅹ=15

答:《趣味数学》的原价是15元。

3、引导检验,沟通联系。

启发:算出的结果是不是正确?你会不会对这个结果进行检验?

先让学生独立进行检验,再交流交验方法。

启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

4、指导完成“练一练”。

先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

三、巩固练习

1、做练习十六第7题。

指名口答。

2、做练习十六第8题。

让学生独立解答,再对学生解答的情况适当加以点评。

四、课堂总结

提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

五、布置作业

练习十六第9、10题。

六年级下册数学教案 篇11

教学内容:

课本第79——80页例3和“练一练”,练习十三第3-5题。

教学目标:

1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,

增强学生应用数学的意识。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、复习导入

王芳看一本120页的`故事书,已经看了全书的1/3,还有多少页没有看?

全校的三好学生共有96人,其中男生占3/8,女生有多少人?

学生独立解答后,让学生说说想的过程。

二、教学例3

出示题目,要求学生默读。

指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?

教师指导学生画线段图。

教师再根据线段图引导学生分析题意。

“要求今年有多少班,可以先算什么?

请你试着把这道题做一下。

教师找出不同的解法进行板演,并让学生说说思路。

三、完成”练一练“

1、做第1题。

(1)引导学生画线段图理解题意

(2)看线段图分析

(3)学生独立完成,指名板演,集体评讲。

2、做第2、3题。

(1)让学生独立完成,指名板演,集体评讲。

(2)让学生说说自己的想法。

四、巩固提高

1、完成练习十三第3题。

学生直接把结果写在书上,集体核对。

2、练习十三第4题。

3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

集体评讲。

五.本课总结。

通过这节课的学习,你有什么收获呢?

六、布置作业

练习十三第5题。

六年级下册数学教案 篇12

教学目标知识目标:

理解比例的意义,认识比例各部分的名称。

能力目标:

能运用比例的意义判断两个比能否组成比例,并会组比例。

情感目标:

感受数学的奥秘,培养数学兴趣。

教学重、难点教学

重点:理解比例的意义。

教学难点:能根据比例的意义写比例.

突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。

教学媒体多媒体课件、小黑板

教学活动及主要语言预设学生活动预设

一、创境激疑

上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。

回顾

产生疑问

二、互动解疑

1、比例的意义

在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。

(1)写出每个图片的长与宽的比

(2)求出各比的比值

(3)观察特点,写出规律

板书:

图片A:6:4=3:2=1.5

图片B:3:2=1.5

图片C:8:3=2.66……

图片D:12:8=3:2=1.5

图片E:12:2=6

比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。

结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。

巩固练习:

(1)要求每个学生写出一个比例,教师巡视指导且批阅。

(2)要求每个学生写出一个比例,同桌交流。

(3)做一做教材表格的题,完成后由教师批改。

2、认识比例各部分名称

组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。

在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:12:6=8:4中12和4是比例6和8是比例

观察

先独立思考

指名汇报

共同发现、小结

理解

自主思考

小组内交流探究

汇报交流

独立填写

同桌交流

指名汇报

三、启思导疑

1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)

2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)

指名谈发现

理解

识记

四、实践运用

(一)填一填。

1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。

2、用6,3,9,8组成一个比例是( )。

(二)下列那几组的两个比可以组成比例?为什么?

(1)4:5和8:20

(2)15:30和18:36

(3)0.7:4.9和140:20

(4)1/3:1/9和1/6:1/8

(三)按要求写一写。

1、先写出比值是3的两个比,再组成比例。

2、根据1.2×25=0.6×25写出两个比例式。

独立思考

指名汇报

评价订正

五、总结评价

这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?

自由小结

板书设计:比例的认识

12:6 = 8:4

6:4 = 3:2

六年级下册数学教案 篇13

教学内容:

课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

教学目标:

1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

教学重点:

掌握百分数在实际生活中的应用。

教学难点:

渗透生活即数学的教学思想。

课前准备:

课件

教学过程:

一、认识、了解纳税

教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

二、教学新课

1、教学例7。

出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

指名学生读题后全班学生再次读题。

提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

学生尝试练习。

学生可能有下面两种方法:

方法1:引导学生将百分数化成分数来计算。

方法2:引导学生将百分数化成小数来计算。

集体订正,教师板书算式。说说这题你是根据什么来列式的?

强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额

2、做“试一试”。

提问:这道题先求什么?再求什么?

生:先求5000元的20%是多少?再求实际获得的奖金。

学生板演与齐练同时进行,集体订正。

3、完成练一练后全班交流。

三、反馈练习

只列式不计算。

1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

四、课堂总结

提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

五、布置作业

练习十六第1—3题。

六年级下册数学教案 篇14

第一课时

教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。

教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。

教学重点:使学生认识圆柱的特征。

教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的.关系。

教学过程:

一、复习

我们已经认识了长方体和正方体。

谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?

谁能说一说我们学习了长方体和正方体的哪些知识?

二、 新授

教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。

1、 初步印象

教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?

(圆柱是由2个圆,1个曲面围成的。)

2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?

3、 交流和汇报

(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。

(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。

4、 举例说明进一步明确特征

六年级下册数学教案 篇15

教学目标:

1、知识与技能:使学生经历简单数据的收集、整理和分析的过程,学会用统计表表示数据整理的结果,体验统计结果在不同分类标准下的多样性。

2、过程与方法:能从统计的角度提出并解决与数据信息有关的问题,发展数学思考。

3、组织学生参与合作交流的学习活动,培养数学学习的积极情感和良好的合作学习的习惯,获得成功的体验。

教学重、难点:

重点:让学生经历统计活动的过程,体验不同标准下统计结果的多样性。

难点:根据统计需要,正确地分类收集整理数据。

教具准备:

多媒体课件、统计表格。

教学过程:

一、创设情境,导入新课

师:同学们,有谁知道2008年的奥运会是在哪里举行的?(北京)知道在这届奥运会上我国运动员获得多少金牌吗?(51)我们伟大的祖国已经成为世界体育强国,今后还会不断有重大国际赛事在我国举行的,大家喜欢运动吗?(喜欢)运动有什么好处吗?对,从小锻炼身体,增强体质,长大后在赛场上还可以为国争光!

这不,森林动物运动会也拉开了序幕。瞧,运动场上小动物们赛得可热闹了,我们一起来看看比赛的情况吧。(电脑出示主题图)

师:看了这幅图,你想知道些什么?

生1:我想知道猴子有几只?小兔有几只?小狗有几只?

生2:我想知道一共有多少只小动物?

生3:我想知道有哪些比赛项目?每个比赛项目分别有多少小动物参加?

二、合作学习,探索新知

师:这次比赛的裁判是大象,它想给参加跳高的每只动物发一只喜羊羊玩具,给参加长跑的发一只美羊羊玩具,同学们说该怎样来统计呢?

我们可以根据比赛项目来统计。

师:知道了跳高和长跑的动物只数,我们就可以知道什么啦?(一共有多少个动物参加比赛)对,在统计表中就用“合计”来表示。

师:小猪是这次比赛的厨师,他要为动物们准备午餐,我又该按什么标准来进行统计呢?(动物的种类)真棒!

师:好了,现在我们就可以用学过的统计知识完成上面两张统计表。请同学们在小组内合作完成老师为大家准备的统计表。

汇报交流:看了两张统计表中你知道了什么?

有什么相同的'地方和不同的地方?

生1:统计的标准不同。

生2:合计都是13。

生3:统计的标准可以不同,合计数应该不变。小结:同一个场景,我们在统计时分类的标准不同,出现了不同的结果。那如果两张表的合计数不一样,说明什么呢?(必定有一张统计错了,我们可以根据两次的合计数是否相同来检查统计的结果是否正确。)

三、应用实践,巩固新知

1、完成想想做做第一题。

师:运动员们的比赛很激烈,很多小动物口渴了,要喝水,大象说,咦,茶杯在哪儿呢?小猪说,还在商店里哪!于是它们又到商店里选茶杯了,大象评委只关心茶杯的形状,猪厨师很会精打细算,它关心的是茶杯的价格。你们会把统计表填完整,并向它们介绍一下吗?然后以小组为单位完成统计表。

交流:合计栏是怎么算的?

比比两次统计的结果,说说你知道了什么?

2、想想做做第2题

师:分类统计的方法你们学会了吗?老师可要考考你们了。请做想想做做第2题。学生独立思考填写统计表。

①出示图,看了这幅图你想如何统计一共有多少个图形?

②请你按照形状分类和颜色分类进行统计表。

③比一比两张统计表的结果,说一说你知道了什么?

④说说这两张统计表分别适合哪种需要?

四、巩固升华,拓展延伸

师:师:今天来这里和同学们共同学习分类统计,对大家的表现非常满意,为了记住同学们,我还想了解咱们班有多少男生,有多少女生,同学们能帮老师选择合适的统计表并完成统计,尽快将结果给我吗?

[设计理念:这一环节的设计,重在让学生真正体会到学了数学知识要会用,学习数学的真正目的是为了解决生活中的问题。]

五、回顾总结

这节课,我们学了哪方面的知识?通过这节课的学习,你知道了什么?

六、布置课后任务

我还想知道每组同学的年龄,8岁的有几人,9岁的有几人,10岁的有几人,请同学们课后将统计结果填好,交给老师,大家能完成吗?

六年级下册数学教案 篇16

教学目标

1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

教学重难点

重点:理解反比例的意义、正反比例的比较。

难点:正确判断两个量是否成反比例

教学工具

PPT课件

教学过程

(一)、回忆旧知,引出新课。

1、复述回顾:

(1)、什么叫做成正比例的量?

(2) 判定两种量成正比例的关键是什么?

(3)、判定下面两种量是否成正比例?

A、轮船行驶的速度一定,行驶的路程和时间。

B、每小时织布的米数一定,织布总米数和时间。

C、当圆柱体的高度一定时,体积和底面积。

2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? ﹙板书:成反比例的量﹚

(二)、自主学习,探索新知。

1.探究反比例的意义

今天老师给大家带来了一个实验,在实验之前,提出实验要求。

(1)、记录杯子里水的高度,把表格中补充完整。

(2)、观察水的高度是如何变化的?

教师播放实验。

水的高度是怎样随着底面积的变化而变化的?

3、观看实验记录单,回答三个问题。

①表格中有哪两种量?

② 水的高度是怎样随着底面积的变化而变化的?

③相对应的杯子的底面积和水的高度的乘积分别是多少?

教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。

3.说一说:生活中还有哪些量成反比例关系?

师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

(1)学生自由举例。

(2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

三、巩固练习。

(一)、基础练习

1、判断下面每题中的两种量是不是成正比例,并说明理由。

(1)轮船行驶的速度一定,行驶的路程和时间。

(2)每小时织布的米数一定,织布总米数和时间。

(3)当圆柱体的高度一定时,体积和底面积。

(1)、表格中有( )和( )两种相关联的量。

(2)、写出这两种量中相对应的两个数的积,并比较大小。

(3)、这个积表示( )。

(4)、表中的相关联的两种量成反比例吗?为什么?

2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

(1)煤的量一定,每天的烧煤量和能够烧的天数. ( )

(2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )

(3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )

(4)华容做12道数学题,做完的题和没有做的题. ( )

四、积极应用,拓展新知。

出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

学生小组内讨论,得出答案。

五、拓展练习。

1、判断下面每题中的两种量成比例吗?并说明理由。

(1)、长方形的面积一定,它的长和宽。 ( )

(2)、轮船行驶的速度一定,行驶的路程和时间。 ( )

(3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )

(4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )

(5)、矿泉水瓶中喝掉的水和剩下的水。 ( )

(6)、圆的半径和它的面积。 ( )

(7)、铺地面积一定,方砖面积与所需块数。 ( )

六、课堂小结。

通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

六年级下册数学教案 篇17

教学要求:

1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

教学重点:认识解比例的意义。

教学难点:应用比例的基本性质解比例。

教学过程:

一、复习引新

1.做第32页复习题。

出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的`前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

4:3=2:1.5=x:4=1:2

提问;根据积相等的式子,你能求出最后一题里的x吗?

3.引入新课。

在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

二、教学新课

1、教学例2.

出示例2.提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2、教学例3.

出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3、教学“试一试”。

提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

4、小结方法。

提问:你认为根据比例的基本性质要怎样解比例?

三、巩固练习

1、做“练一练”。

指名四人板演。其余学生分两组,每组两道题,做在练习本上。

2、做练习六第8题。

让学生做在课本上,指名口答。

3、做练习六第l0题。

学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

4、做练习六第11题。

学生口答、老师板书,看能写出多少个比例。

四、讲解思考题

提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例,

六、布置作业

课堂作业:练习六第6题第(1)~(4)题,第7题。

家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

教学目标:

1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3、培养学生的判断分析推理能力。

六年级下册数学教案 篇18

教学目标

1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

3、培养学生分析和解决实际问题的能力,发展学生的思维;

4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

教学关键 培养学生分析和解决实际问题的能力

教学重点 复习分数乘除法应用题,掌握解题方法。

教学难点 找准单位“1”

教学步骤 教学过程 教学课件演示 教学意图

一、基础训练导入。

师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

专项训练:

课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

二、根据看线段图列式

师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

三、基础练习

基础练习只列式不计算

师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

【教学课件演示】

培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

四、对比练习

1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

六年级下册数学教案 篇19

教学内容:

教科书第十二册P.110整理与反思以及P.110111练习与实践13题。

教学目标:

1、用上、下、前、后、左、右描述物体的位置;

2、用东、南、西、北描述物体的方向;

3、用数对表示物体的具体位置;

4、比例尺的知识

教学目标:

1、使学生通过复习,比较系统地综合地运用各种描述的方法描述并确定物体的位置,体会用不同的方法确定位置的特点和作用;能综合地运用比例尺的知识确定物体之间的图上距离或实际距离。

2、在复习中训练并培养学生的方向感和空间观念、综合运用所学知识解决实际问题的能力以及识图、作图的能力。

3、在复习中让学生感受数学与生活的关系,利用数学自身的魅力发展学生对数学积极的情感,激发学生学习数学的积极性。

重点难点:

1、能根据文字描述在图上正确找出指定位置

2、能用数学语言准确描述图形中指定的位置。

教具学具:

教学光盘

教法写学法:

可以先复习确定物体位置的方法。比如,教师可以提问,我们已经学过哪几种确定物体位置的方法,由学生说出一种是用数对,一种是用方向和距离,由此引出东、南、西、北和东北、西北、东南、西南八个方向的复习。

然后出示课本上的街区平面图,可以先让学生说说街区图的内容,特别是比例尺1∶10000表示图上1 cm相当于实际距离多少米。然后由学生自己提出问题,请同学看图回答。以提问从阳光小区到邮局怎样走为例,如果学生回答:出小区穿过马路向左拐弯,到四季路再向右拐弯;沿着和平路向西,到四季路向北都应认可。当说出行进距离时,学生之间有时会出现较大误差。由此可以让学生看课本第106页下面街区图的局部放大图,看看该示意图是怎样量的,使学生明确通常是量目标位置所在的点到路的中轴线的距离。有了这个统一的约定,一般可要求六年级学生将图上距离的测量误差控制在2 mm之内。

复习时,也可以先讨论课本上两个少先队员的对话内容,再请学生提出问题。还可以在学生说出街区图的内容时,由回答比例尺1∶10000表示图上1 cm相当于实际距离多少米的提问,引出图上测量的问题。让学生看课本第106页下面街区图的局部放大图,搞清楚该怎样量,然后再看着第106页上面的街区图,提出问题,或讨论课本上两个少先队员对话中的问题。

六年级下册数学教案 篇20

课前准备

教师准备 PPT课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的`意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

六年级下册数学教案 篇21

教学内容:

课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

教学目标:

1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

教学重点:

掌握百分数在实际生活中的应用。

教学难点:

渗透生活即数学的教学思想。

课前准备:

课件

教学过程:

一、认识、了解纳税

教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

税收是国家财政收入的'主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

二、教学新课

1、教学例7。

出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

指名学生读题后全班学生再次读题。

提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

学生尝试练习。

学生可能有下面两种方法:

方法1:引导学生将百分数化成分数来计算。

方法2:引导学生将百分数化成小数来计算。

集体订正,教师板书算式。说说这题你是根据什么来列式的?

强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额

2、做“试一试”。

提问:这道题先求什么?再求什么?

生:先求5000元的20%是多少?再求实际获得的奖金。

学生板演与齐练同时进行,集体订正。

3、完成练一练后全班交流。

三、反馈练习

只列式不计算。

1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

四、课堂总结

提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

五、布置作业

练习十六第1—3题。

六年级下册数学教案 篇22

教学内容:

教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。

教学目标:

1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

2.体会数据对决策的作用,体会统计在现实生活中的应用价值。

教学重点:

进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

教学难点:

会根据扇形统计图前后的变化进行对比分析。

教学准备:

教具:多媒体课件。

教学过程:

一、复习引入

教师:扇形统计图有什么特点呢?

教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。

板书课题:扇形统计图

二、自主探索,学习新知

1.教学例2

(1)先后出示两个统计图。

先出示第一幅扇形统计图。

教师:从这幅图中我们能获得哪些信息?

根据学生的回答在课件中点出相关部分。

教师:这些都是什么时候的数据?

再出示第二幅扇形统计图。

教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?

教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。

将两幅图放在一块观察。

教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。

学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与20xx年底相比土地的变化情况)。

(2)进一步了解扇形统计图的作用。

教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?

请一两位同学相互补充,找到统计图中发生变化的项目。

小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的'量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。

教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的领导面对20xx年底的统计图你又会作哪些思考?

(3)根据扇形统计图解决问题。

教师:观察扇形统计图,你还能提出并解决哪些数学问题?

学生先独立思考并解答,教师巡视找出典型的问题并进行解析。

2.课堂总结

教师:今天我们学习了什么?(扇形统计图)你又有什么收获?

三、课堂活动

教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?

教师:仔细观察这些统计图,你有哪些发现?

教师引导:重点分析中国人口多耕地少的基本国情。

教师:面对我国人口多耕地少的局面,你会做哪些思考?

四、练习应用,促进发展

1.完成练习十五第3题

出示题中的两幅扇形统计图,引导学生对比。

(1)从两幅统计图中,你获得了哪些信息?

(2)算一算:从1996年到20xx年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?

学生独立计算,教师巡视,抽几个学生上台板演,集体评议。

(3)议一议:你对这种变化有什么看法?

2.完成练习十五第4,5题

六年级下册数学教案 篇23

教学目标

1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2。初步学会用负数表示一些日常生活中的实际问题。

3。能借助数轴初步理解正数、0和负数之间的关系。

重点难点

负数的意义和数轴的意义及画法。

教学指导

1。通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2。把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3。培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

课时安排

共分3课时

教学内容

负数的初步认识

(1)(教材第2页例1)。

教学目标

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

重点难点体会负数的重要性。

教学准备多媒体课件。

情景导入

1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

3。引出课题并板书:负数的.初步认识

(1) 新课讲授教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

课堂作业

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

答案:—18℃温度低。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

六年级下册数学教案 篇24

教学内容:

P702– 75

教学目标:

1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;

2、培养学生仔细审题,认真思考,探索规律的良好习惯。

教学重难点:

理解正比例的意义和性质。

教学过程:

一、复习引入:

我们已学了一些常见的数量关系,谁能来说一说:

1、路程、速度、时间;

2、单价、数量、总量;

3、工作效率、工作时间、工作总量;

……

二、先观察、后概括:

1、例1:一列火车行驶的时间和路如下表:

观察上表,回答下列问题:

⑴、表中有哪两个量是相关联的?

⑵、路程是怎样随着行车时间的变化而变化的?

⑶、相对应的路程和时间的比分别是多少?比值是多少?

从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。

写成关系式是:=速度(一定)

2、新改例2:一种铅笔,支数与总价如下表:

由上表可以发现什么特征?

(哪几个量是相关联的?这两个相关联的量之间有什么关系?)

写成关系式是:=单价(一定)

比较例1、例2,它们有什么共同点?

概括:

⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。

⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:

= K(一定)

(结合例1、例2说一说)

3、练一练P75

三、巩固练习:

1、 P76看后判断,并连起来说一说。

2、 P76 – 2先观察,再分析。

3、 P76 – 3

四、小结:

要判断两个量是否成正比例,依据什么来判断?

1、两个相联的量?

2、一个量随着另一个量的变化而变化,并且它们的比值一定。

五、作业:

P76 3 4

六年级下册数学教案 篇25

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:

圆柱体体积的计算.

教学难点:

理解圆柱体体积公式的推导过程.

教具:

多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师:大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的.体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高......

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

V=Sh

5、巩固公式

①V、S、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

六年级下册数学教案 篇26

教学内容:

课本第99页例9和“练一练”,练习十六第7-10题。

教学目标:

懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

教学重点:

按折扣进行计算。

教学难点:

对折扣的理解,并正确列出算式。

课前准备:

课件

教学过程:

一、创设情境,引入新课

春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

二、实践感知,探究新知

1、提问:看到“打折”两个字,你会想到什么?

学生全班交流。

小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。

出示:华联超市的毛衣打“六折”出售。

提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

小结:“几折”就是十分之几,也就是百分之几十。

提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

学生交流课前搜集到的有关打折信息的意思。

提问:说一说下面每种商品打几折出售。

①一辆汽车按原价的90%出售。

②一座楼房按原价的96%出售。

③一只旧手表按新手表价格的80%出售。

2、教学例9。

学生自己读题。

出示例9的场景图。让学生说说从图中获取到哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

学生独立尝试。

全班交流算式和思考过程

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8

ⅹ=15

答:《趣味数学》的原价是15元。

3、引导检验,沟通联系。

启发:算出的结果是不是正确?你会不会对这个结果进行检验?

先让学生独立进行检验,再交流交验方法。

启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

4、指导完成“练一练”。

先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

三、巩固练习

1、做练习十六第7题。

指名口答。

2、做练习十六第8题。

让学生独立解答,再对学生解答的情况适当加以点评。

四、课堂总结

提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

五、布置作业

练习十六第9、10题。

六年级下册数学教案

作为一位杰出的教职工,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!下面是小编为大家整理的六年级下册数学教案,欢迎阅读与收藏。

六年级下册数学教案 篇27

教学内容:第43页例4,完成“试一试”“练一练”和练习十的1~4题。

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重、难点:理解并掌握比例的基本性质;引导观察,自主探究发现比例的基本性质。

教学过程:

一、创设情境,教学比例的基本知识。

1、复习:

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

1/3∶1/4和12∶9 1∶5和0.8∶4 7∶4和5∶3 80∶2和200∶5

学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4=12∶9 7∶4≠5∶3 1∶5=0.8∶4 80∶2=200∶5

2、认识比例各部分的名称

(1)介绍“项”:组成比例的四个数,叫做比例的项。

(2)3 :5 = 18 :30 学生尝试起名。

师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

3 :5 = 18 :30

内项

外项

(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

出示:3/5=18/30

(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

二、教学例4

1、提问:你能根据图中的数据写出比例吗?

(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

2、学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

3、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组):

1/3∶1/4和12∶9; 1∶5和0.8∶4; 7∶4和5∶3; 80∶2和200∶5

学生验证。

⑵学生任意写一个比例并验证。

教师将学生所举比例故意写成分数形式,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书。通过交*连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交*相乘,结果相等。

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

引导学生得出:你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

⑶如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成什么。

(4)完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

读书P44页,勾画

5、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

6、比例的.基本性质的应用

(1)比例的基本性质有什么应用?

(2)做“试一试”:出示“3.6 :1.8和0.5 :0.25”。

A、先假设这两个比能组成比例

:让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:3.6 :1.8和0.5 :0.25能组成比例吗? 根据比例的基本性质,能判断两个比能不能组成比例吗?

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

C、根据比例的基本性质判断组成的比例是否正确。

三、综合练习:

1、完成练一练

(1)学生尝试练习。

(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

2、在( )里填上合适的数。

1.5:3=( ):4

12:( )=( ):5

先让学生尝试填写,再交流明确思考方法。

3、补充一组灵活训练题:

A、如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

B、你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

C、你能从3、4、5、8中换掉一个数,使之能组成比例吗?

四、全课小结:

同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

能告诉我比例的基本性质是什么吗?你觉得学了它有什么用处?

五、课堂作业。

1、做练习十第1、3题

2、独立完成2、4题

板书设计:

比例的基本性质

3 :5 = 18 :30

内项

外项

6:4=3:2 4:6=2:3 4:2=6:3 3:6=2:4

3×4=6×2

a:b=c:d ad=bc

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

六年级下册数学教案 篇28

教学目标:

1.知道扇形统计图,能说出其特点;

2.会画出简单的扇形统计图;

3.能从扇形统计图中尽可能多地得到信息。

教学准备:

两幅扇形统计图。

教学过程:

一、复习引新

1.复习旧知。

提问:在简单的统计里我们学习过哪些知识,其中条形统计图和折线统计图各有什么特点?

2.引入新课。

出示两幅扇形统计图。说明:这也是一种统计图,叫做扇形统计图。(板书:扇形统计图)哪位同学来说一说,这里的扇形统计图各表示的什么意思?说明:扇形统计图究竟有什么特点呢?它是怎样绘制出来的呢?这就是本节课要学习的内容。

二、教学新课

1.说明扇形统计图及其特点。

说明:从上面的扇形统计图可以看出:它是用一个圆表示各个部分的总数量,在圆里用大小不同的扇形表示出各个部分的数量占总数量的百分之几。这种统计图清楚地反映出各个部分数量同总数量之间的关系。

2.教学例题。

(1)出示例题.根据扇形统计图的表示形式,讨论制成扇形统计图的步骤。引导学生交流各自的想法

(2)要求学生自己完成第一步,在练习本上计算出各部分数量占总数量的百分之几。同时指名一人板演,然后集体订正,用加法检验各部分百分比的和是不是100%。

(3)先说明一个圆的度数是360度,再让学生按总数量的百分之几求出表示各部分数量扇形的圆心角度数。学生口答,老师板书算式和结果。检验几部分圆心角的和是不是360度。

(4)分割成扇形。

老师说明画法,同时板书:先画一个圆,说明表示总数量;再分割成3个扇形,说明各表示哪个数量。

(5)标明各部分数量名称和百分数。

指名学生说说每个扇形各表示哪个数量,占百分之几,老师在图中板书。让学生自己画圆、分扇形并标明各个部分数量的名称和百分数。

(6)区分各部分并写出统计图名称。

说明要用阴影或不同颜色区分不同的扇形,写出统计图名称,并让学生自己完成。指名一人板演,其余学生完成在自己的`统计图上。集体订正。

(7)小结过程。

提问:谁来看图说说刚才制作这幅统计图的过程?你能说一说这幅统计图的意思吗?扇形统计图有什么特点?

三、课堂练习

1.做课后习题第1题。

提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算后填写课本上的表格。出示表格,指名口答结果,老师板书。让学生说说每一个数量是怎样计算出来的。

2.做课后习题第2题。

提问:这个圆等分成多少份?每份所对扇形的圆心角多少度?请大家先计算每项收入相应的扇形圆心角度数,再画出扇形统计图。老师巡视辅导。提问学生每一部分所占扇形是图的20等份里的几份。

四、课堂小结

扇形统计图有什么特点?怎样根据统计数据来制作扇形统计图?

六年级下册数学教案 篇29

教学目标:

1、使学生进一步理解比例的意义,懂得比例各部分名称。

2、经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3、能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1、什么叫做比例?

2、应用比例的意义,判断下面的比能否组成比例。

和5:2

1/2:1/3 和6 : 4

和1:4

二、探索新知

1、比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如: = 60:40

内项: 6o

外项: 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如: : = 60:40

外 内 内 外

项 项 项 项

2、比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的`补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是

两个内项的积是

外项的积等于内项的积。

(4) 举例说明,检验发现。

1

两个外项的积是

两个内项的积是

外项的积等于内项的积。

如果把比例改成分数形式呢?

如: = 60/40

3、

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4、填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

六年级下册数学教案 篇30

【教材分析】

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

【学情分析】

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

【设计理念】

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自己,建立自信心。

【教学目标】

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的.体验,激发对数学学习的兴趣。

【教学重点】

理解正比例的意义。

【教学难点】

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【教学准备】

教学课件。

【教学过程】

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

【板书设计】

正比例的意义

两种相关联的量

六年级下册数学教案 篇31

教学目标:

通过复习使学生进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以及各图形的联系。‘

教学过程:

1、直线、射线、线段。

提问:

1)分别说一说什么叫直线、射线、线段?

2)直线、射线和线段有什么区别?

完成123页上面的“做一做”。(学生笔做)

提问:

1)什么叫做角?

2)角的大小与什么有关?

整理:把表中的空格填写完整。

完成123页下面“做一做”的1题、2题。

2、锐角直角钝角平角周角

大于0°

小于90°

垂直与平行

提问:

1)在同一平面内,两条直线的相互位置有哪几种情况?

2)什么样的两条直线叫做互相垂直?

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

完成教材124页的“做一做”

提问:

1)什么叫做三角形?

2)在下面的三角形中,顶点A的.对边是指哪一条边?

动笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

在下面的表中填写三角形的名称和各自的特征。

名称

图形

特征

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

3、四边形

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

完成125页“做一做”中的1、2题。

六年级下册数学教案 篇32

教学内容:

课本第31页例3和“练一练”,练习五第10-15。

教学目标:

1、使学生结合具体情景,继续学习用分数乘法解决求“一个数的几分之几

是多少”的简单实际问题,丰富对用分数表示的数量关系的认识,拓展对分数乘法意义的理解。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

教学重难点:

分数乘法的意义以及计算方法。

课前准备:

多媒体课件

教学过程:

一、教学导入

出示例3中的条形图。

问:从图中你能知道什么?

引导学生用分数描述图中的数量关系。

如:把黄花看作单位“1”,红花是黄花的11/10,绿花是黄花的6/10(3/5);把红花看作单位“1”,黄花是红花的10/11,绿花是红花的6/11等。

二、组织探究

1、教学例3。

出示题目:黄花有50朵,(1)红花比黄花多1/10,红花比黄花多多少朵?

引导学生看图思考:红花比黄花多的朵数是图中的哪个部分?它是那种花朵数的1/10?也就是多少朵的1/10?

追问:50朵的'1/10是什么?指出:“红花比黄花多1/10 “,是把黄花朵数看作单位”1“,也就是红花比黄花多的朵数是50朵的1/10 。

指名列式。

问:列式时是怎样想的?

学生完成计算。

2、学第(2)小题。

出示:绿花比黄花少2/5,绿花比黄花少多少朵?

学生尝试解答,指名板演。

追问:绿花比黄花少2/5这个条件中,要把哪个数量看作单位”1“?要求”绿花比黄花少多少朵“,就是求多少朵的2/5?

反思:你认为理解用分数表示的数量关系时,关键是什么?

指出:理解用分数表示的数量关系时,关键是弄清这个分数是哪两个数量比较的结果,比较时把哪个量看作单位”1“的。

3、做”练一练“

学生独立完成。对有困难的学生,提示可以先按要求画一画,再完成填空。

三、巩固训练

1、做练习五第10题。

先说出每个分数的意义,再把数量关系写完整。

2、做练习五第11、12题

独立解答,交流思考过程,集体订正

四、课堂总结

通过本节课的学习,你有什么收获?你在今天课堂上的表现怎样?

五、布置作业

练习五第13-15题。

教学反思:

通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

3、练习五第6、7题。

四、课堂总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、布置作业

练习五第8、9题。

六年级下册数学教案 篇33

教学目标

1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2。初步学会用负数表示一些日常生活中的实际问题。

3。能借助数轴初步理解正数、0和负数之间的关系。

重点难点

负数的意义和数轴的意义及画法。

教学指导

1。通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2。把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3。培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的'思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

课时安排

共分3课时

教学内容

负数的初步认识

(1)(教材第2页例1)。

教学目标

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

重点难点体会负数的重要性。

教学准备多媒体课件。

情景导入

1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

3。引出课题并板书:负数的初步认识

(1) 新课讲授教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

课堂作业

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

答案:—18℃温度低。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

六年级下册数学教案 篇34

教学内容:

比例的意义:

使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:

比例的意义。

教学难点:

找出相等的比组成比例。

教学过程:

一、旧知铺垫

什么是比?什么叫比值?怎样求比值?

2.求下面各比的比值。

12:16

3/4:1/8

4.5:2.7

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=3/2

操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

学生回答长、宽比值。

2.4:1.6=3/2

两面国旗的长和宽的比值相等。

板书:2.4:1.6=60:40

也可以写成:2.4/1.6.=60/40

(4)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?

如:5:10/3=15:10

5:10/3=2.4:1.6

15?10=2.4/1.6

15/10=60/40

(5)什么是比例?

表示两个比相等的式子叫做比例。

(6)1:2是是比例吗?你能把它组成一个比例吗?

(7)完成教材“做一做”。

第1题。

什么样的比可以组成比例?

把组成的比例写出来。

说一说你是怎么找的。

同学之间互相交流,检验各自所写的比例。

第2题。

学生独立写比例,看谁写得多。

同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三、巩固练习

完成课文练习六第1~3题。

第一课时教学反思

复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。

在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式.在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)

做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = 1.5∶3、4∶2 = 3∶1.5、2∶1.5 = 4∶3、1.5∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、 3:4=1.5:2。为什么仅仅相换了等号两边的比,就应该算作不同的'比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。

练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。

练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。

六年级下册数学教案 篇35

教学要求:

1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

教学重点:认识解比例的意义。

教学难点:应用比例的基本性质解比例。

教学过程:

一、复习引新

1.做第32页复习题。

出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

4:3=2:1.5=x:4=1:2

提问;根据积相等的式子,你能求出最后一题里的x吗?

3.引入新课。

在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

二、教学新课

1、教学例2。

出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2、教学例3。

出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3、教学“试一试”。

提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

4、小结方法。

提问:你认为根据比例的基本性质要怎样解比例?

三、巩固练习

1、做“练一练”。

指名四人板演。其余学生分两组,每组两道题,做在练习本上。

2、做练习六第8题。

让学生做在课本上,指名口答。

3、做练习六第l0题。

学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

4、做练习六第11题。

学生口答、老师板书,看能写出多少个比例。

四、讲解思考题

提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

五、课堂小结

这堂课学习的什么内容?应用比例的基本性质怎样解比例,

六、布置作业

课堂作业:练习六第6题第(1)~(4)题,第7题。

家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

教学目标:

1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3、培养学生的判断分析推理能力。

六年级下册数学教案 篇36

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的`积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,ab=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

六年级下册数学教案 篇37

教学内容:

教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。

教学目标:

1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

2.体会数据对决策的作用,体会统计在现实生活中的应用价值。

教学重点:

进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

教学难点:

会根据扇形统计图前后的变化进行对比分析。

教学准备:

教具:多媒体课件。

教学过程:

一、复习引入

教师:扇形统计图有什么特点呢?

教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。

板书课题:扇形统计图

二、自主探索,学习新知

1.教学例2

(1)先后出示两个统计图。

先出示第一幅扇形统计图。

教师:从这幅图中我们能获得哪些信息?

根据学生的回答在课件中点出相关部分。

教师:这些都是什么时候的数据?

再出示第二幅扇形统计图。

教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?

教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。

将两幅图放在一块观察。

教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。

学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与20xx年底相比土地的变化情况)。

(2)进一步了解扇形统计图的作用。

教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?

请一两位同学相互补充,找到统计图中发生变化的项目。

小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。

教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的'领导面对20xx年底的统计图你又会作哪些思考?

(3)根据扇形统计图解决问题。

教师:观察扇形统计图,你还能提出并解决哪些数学问题?

学生先独立思考并解答,教师巡视找出典型的问题并进行解析。

2.课堂总结

教师:今天我们学习了什么?(扇形统计图)你又有什么收获?

三、课堂活动

教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?

教师:仔细观察这些统计图,你有哪些发现?

教师引导:重点分析中国人口多耕地少的基本国情。

教师:面对我国人口多耕地少的局面,你会做哪些思考?

四、练习应用,促进发展

1.完成练习十五第3题

出示题中的两幅扇形统计图,引导学生对比。

(1)从两幅统计图中,你获得了哪些信息?

(2)算一算:从1996年到20xx年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?

学生独立计算,教师巡视,抽几个学生上台板演,集体评议。

(3)议一议:你对这种变化有什么看法?

2.完成练习十五第4,5题

六年级下册数学教案 篇38

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。

(3)在比例尺1:40000的`地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

六年级下册数学教案 篇39

教学内容:

课本第78——79页例2和“练一练”,练习十三第1、2题。

教学目标:

1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的意识。

2、发展思维、提高分析问题、解决问题的能力,进一步体会数学知识之间的'内在联系。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、谈话导入

谈话,并出示例题。

学生自由读题,了解题意。

二、探索新知

1、出示例2,问:从题中你知道了什么?要我们解决什么问题?

说出题目的已知条件和所求问题。

谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。

教师一边讲解一边示范画线段图的过程,学生和教师一起操作,完善线段图。

2、问:要求女运动员有多少人,可以先算什么?在图上指出来。

各自列式解答,指名板演,期于学生同时列式解答。

集体评讲。

探讨其他算法

设问:想一想还可以怎样算?

学生思考后交流。教师适当评讲。

三、巩固深化

1、完成“练一练”第1题。

让学生先说出自己的想法,然后再列式解答。

集体评讲。

2、完成“练一练”第2、3题。

学生弄清题意后独立解答。(要求学生画出线段图)

集体评讲。

四、课堂总结

通过今天的学习,你有什么收获呢?

五.布置作业

练习十三第1、2题。

教学反思:

六年级下册数学教案 篇40

教学内容:

课本第29——30页例2和“练一练”,练习五第6-9题。

教学目标:

1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

2、通过操作,观察,培养学生的推理能力,发展学生的思维。

教学重难点:

一个数乘分数的意义以及计算方法。

课前准备:

多媒体课件

教学过程:

一、创设情境

同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

复习:计算下面各题,并说出计算方法。

3/7 ×2 5/8 ×1 1/10 ×5

上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

二、探究新知

今天,我们来学习一个数乘以分数的意义和计算方法。

1、教学例2

出示例2的图,然后出示条件:

小芳做了10朵绸花,其中1/2是红花,2/5是绿花。

引导学生理解:“其中12 “是什么意思?

使学生明白是10朵中的1/2,然后出示问题

红花有多少朵?

引导学生看图理解:求红花有多少朵,就是求10朵的1/2

让学生应用已有的知识经验解决。

学生可能列式:10÷2=5(朵)

在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。

教师说明要求,学生列式解答。

在此基础上教学第(2)题,怎样解决

(2)绿花有多少朵?

可以先让学生在图中圈一圈,借助圈的.过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

10÷5×2=4(朵)

在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。

学生独立计算,订正时指出:

计算10×2/5可以先约分

2、引导学生进行比较

通过对上述两个问题的计算,你明白了什么?

小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。

计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。

引导小结:求一个数的几分之几是多少,可以用乘法计算。

三、巩固练习

1、做练一练的第1题。

先让学生根据题意涂色,然后列式解答。

2、做练一练的第2题。

通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

3、练习五第6、7题。

四、课堂总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、布置作业

练习五第8、9题。

教学反思:

六年级下册数学教案 篇41

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

4.介绍放大比例尺

出示图例2

“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的`制作图纸。“

学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5、总结

比例尺书写特征。

(1)观察:比例尺1:100000000

比例尺1/5000000

比例尺2:1

(2)看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

6、比例尺的化简和转化

“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

“现在单位统一了,是多少比多少,怎样化简?”

图上距离:实际距离=1:5000000

教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

三、巩固练习

1、做一做。

过程要求

(1)学生独立完成。(要求写出数值比例尺)

(2)同学之间互相交流。

(3)汇报交流结果。

2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

四、课堂小结

(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

教学目标:

1、理解比例的意义,会根据比例的意义组成比例。

2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

3、感受生活中处处有数学,激发学习数学的兴趣。

教学重、难点:理解比例的意义。

教学方法:自主合作,讨论交流。

教学过程:

一、复习旧知,目标展示。

1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

二、合作交流,探究新知。

〈一〉教学比例的意义。

1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

2、自主探究,初步形成印象。

(1)两个比相等可以用等号连接吗?

(2)你能在练习本上写出两个可以有用等号连接的比吗?

(3)和你小组内同学交流你写出的式子,并说明理由。

(4)学生汇报。

3、形成概念。

(1)像黑板上我们所列出的这些式子叫做比例。

(2)你能用自己的话说说什么是比例吗?

(3)老师小结:表示两个比相等的式子叫做比例。

4、深化概念,巩固练习。

(1)你认为组成比例的关键是什么吗?(两个比的比值相等)

(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

〈二〉教学比例各部分的名称。

1、比例各部分有自己的名称?你知道吗?

(预设:学生如果不清楚的话,教师说明比例各部分的名称)

2、找出黑板上这几个比例的内、外项。

3、比可以写成分数的形式,比例也可以写成分数形式。

(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

(2)找出它们的内、外项。

(3)你发现什么规律了吗?

〈三〉比和比例的区别。

1、小组讨论、交流。

2、全班交流。

3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

三、巩固练习。

1、填空。

(1)、表示()的式子叫做比例。

(2)、判断两个比能否组成比例,要看它们的()是不是相等。

(3)、写出比值是的两个比():()和():(),写成比例是()。

(4)、选取48的4个因数组成一个比例是()。

2、课本32页国旗尺寸成比例吗?

3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

(1)学生独立思考后,小组交流。

(2)全班交流。

(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

六年级下册数学教案 篇42

教学内容

(1)负数的初步认识

(2)(教材第3页例2)。

教学目标

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

重点难点

体会引入负数的必要性,初步理解负数的含义。

情景导入

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)

新课讲授

1。教学例2。

(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。

(3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。

2。归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗小组讨论交流。

(2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的`数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我

们把它叫做负数。

(3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

归纳:0既不是正数也不是负数,它是正数和负数的分界点。

(4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。

课堂作业

完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:

4 +41 51负数有:—7?

3正数有:+

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

第2课时负数的初步认识

(2)正数:+8负数:—8

+4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20

0既不是正数也不是负数。

第3课时在数轴上表示正数、0和负数

教学内容

借助数轴理解正数和负数的意义(教材第5页例3)。

教学目标

1。借助数轴初步理解正数、0、负数。

2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

重点难点

认识数轴、0。

情景导入

教师用CAI课件演示教材第5页的主题图。

教师:如何在一条直线上表示出他们运动后的情况呢

新课讲授教学例3。

(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。

(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

(5)引导学生观察数轴:

①从0起往右依次是从0起往左依次是你发现什么规律

②在数轴上分别找到

和对应的点。如果从起点分别到和处,应如何运动

师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

课堂作业

1。完成教材第5页的“做一做”。学生独立练习,指名汇报。

2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

答案:

1。略

2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

第3课时在数轴上表示正数、0和负数

上面这样的直线叫做数轴。

六年级下册数学教案 篇43

教学目标

1. 在具体情境中,通过画一画的活动,初步认识正比例图像。

2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的

变量的值。

3.利用正比例关系,解决生活中的一些简单问题。

教学重点

1.在具体情境中,通过画一画的活动,初步认识正比例图象。

2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

教学难点

1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

2.利用正比例关系,解决生活中的一些简单问题。

教学过程

一、复习

活动一:判断下面的量是否成正比例关系?

1.每行人数一定,总人数和行数。

2.长方形的长一定,宽和面积。

3.长方体的底面积一定,体积和高。

4.分子一定,分母和分数值。

5.长方形的周长一定,长和宽。

6.一个自然数和它的倒数。

7.正方形的边长与周长。

8.正方形的边长与面积。

9.圆的半径与周长。

10.圆的面积与半径。

11.什么样的两个量叫做成正比例的`量?

二、新授

活动二:探索一个数与它的5倍之间的关系。

1.求出一个数的5倍,填写书上表格。自己独立完成。

2.判断一个数的5倍和这个数有怎样的关系?说说你判断的理由。

(一个数和它的5倍之间具有正比例关系。)

3.根据上表,说出下图中各点的含义。(图见书上P22)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

4. 连接各点,你发现了什么?

(所描的点都在同一条直线上。)

5.利用书上的图,把下表填完整。

6.估计并找一找这组数据在统计图上的位置。

自己独立完成。

7.在统计图上估计一下,看看自己估计的是否准确。

三、练习

活动三:试一试。

1. 在下图中描点(图见课本P22),表示第20页两个表格中的数量关系。

2. 思考:连接各点,你发现了什么?

活动四:练一练。

1. 圆的半径和面积成正比例关系吗?为什么?

教师讲解:因为圆的面积和半径的比值不是一个常数。

2. 乘船的人数与所付船费为:(数据见书上)

(1)将书上的图补充完整。

(2)说说哪个量没有变?(每人所需的乘船费用没有变化。)

(3)乘船人数与船费有什么关系?(乘船费用与人数成正比例。)

(4)连接各点,你发现了什么?(所有的点都在一条直线上。)

3. 回答下列问题:

(1)圆的周长与直径成正比例吗?为什么?

(圆的周长与直径成正比例关系。)

(2)根据右图,先估计圆的周长,再实际计算。

① 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

② 直径为15厘米的圆的周长估计值为(),实际计算值为( )。

4.把下表填写完整。试着在上页第(1)题的图中描点表示上表中的数量关系,并连接各点,你发现了什么?(表格见书上)

(所有的点都在同一条直线上。)

四、课堂小结

同学们,这节课我们再次巩固练习了正比例的相关知识。大家有什么收获?

六年级下册数学教案 篇44

教学目标

1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

3、培养学生分析和解决实际问题的能力,发展学生的思维;

4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

教学关键 培养学生分析和解决实际问题的能力

教学重点 复习分数乘除法应用题,掌握解题方法。

教学难点 找准单位“1”

教学步骤 教学过程 教学课件演示 教学意图

一、基础训练导入。

师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

专项训练:

课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

二、根据看线段图列式

师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

三、基础练习

基础练习只列式不计算

师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的.可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

【教学课件演示】

培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

四、对比练习

1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

六年级下册数学教案 篇45

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

4.介绍放大比例尺

出示图例2

“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

相同点:都表示图上距离与实际距离的比。

不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

5、总结

比例尺书写特征。

(1)观察:比例尺1:100000000

比例尺1/5000000

比例尺2:1

(2)看一看,比例尺书写形式有什么特征。

为了计算方便,通常把比例尺写成前项或后项是1的比。

6、比例尺的化简和转化

“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

“现在单位统一了,是多少比多少,怎样化简?”

图上距离:实际距离=1:5000000

教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

三、巩固练习

1、做一做。

过程要求

(1)学生独立完成。(要求写出数值比例尺)

(2)同学之间互相交流。

(3)汇报交流结果。

2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

四、课堂小结

(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

教学目标:

1、理解比例的意义,会根据比例的意义组成比例。

2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

3、感受生活中处处有数学,激发学习数学的兴趣。

教学重、难点:理解比例的意义。

教学方法:自主合作,讨论交流。

教学过程:

一、复习旧知,目标展示。

1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

二、合作交流,探究新知。

〈一〉教学比例的意义。

1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

2、自主探究,初步形成印象。

(1)两个比相等可以用等号连接吗?

(2)你能在练习本上写出两个可以有用等号连接的比吗?

(3)和你小组内同学交流你写出的式子,并说明理由。

(4)学生汇报。

3、形成概念。

(1)像黑板上我们所列出的这些式子叫做比例。

(2)你能用自己的话说说什么是比例吗?

(3)老师小结:表示两个比相等的式子叫做比例。

4、深化概念,巩固练习。

(1)你认为组成比例的关键是什么吗?(两个比的比值相等)

(2)你能抓住这个关键写几个比例式吗?(2分钟的`时间看谁写得多,并且和别人的不一样。)

〈二〉教学比例各部分的名称。

1、比例各部分有自己的名称?你知道吗?

(预设:学生如果不清楚的话,教师说明比例各部分的名称)

2、找出黑板上这几个比例的内、外项。

3、比可以写成分数的形式,比例也可以写成分数形式。

(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

(2)找出它们的内、外项。

(3)你发现什么规律了吗?

〈三〉比和比例的区别。

1、小组讨论、交流。

2、全班交流。

3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

三、巩固练习。

1、填空。

(1)、表示()的式子叫做比例。

(2)、判断两个比能否组成比例,要看它们的()是不是相等。

(3)、写出比值是的两个比():()和():(),写成比例是()。

(4)、选取48的4个因数组成一个比例是()。

2、课本32页国旗尺寸成比例吗?

3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

(1)学生独立思考后,小组交流。

(2)全班交流。

(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

六年级下册数学教案 篇46

第1课时

圆柱的认识

教学内容

人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。

内容简析

圆柱的认识:通过观察物体的形状,初步认识圆柱。

例1:通过观察圆柱,认识圆柱的侧面、底面和高。

例2:通过观察图形,掌握圆柱的侧面展开图。

教学目标

1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。

2.通过观察、发现、交流,让学生自主探究,掌握学习方法。

3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。

教学重难点

重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的关系。

难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。

教法与学法

1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。

2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。

承前启后链

教学过程

一、情景创设,导入课题

实物展示法:

教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)

学生1:圆柱由三部分组成:两个圆和一个曲面。

学生2:两个圆的面积相等。

学生3:……

教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】

课件展示法:

1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)

我看到了旋转门,想到了它转起来会形成一个圆柱。

2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。

今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】

动手操作法:

让学生拿出所带的硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。

小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】

二、师生合作,探究新知

◎教学例1

(1)整体感知圆柱

①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。

②找找圆柱,请同学找出生活中圆柱形状的物体。

引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。

(2)教学例1:

出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。

①认识圆柱的面。

师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。

师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)

②认识圆柱的高

引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)

讨论交流:圆柱的高的特点。

归纳小结并板书:圆柱的高有无数条,高的长度都相等。

总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

【品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】

◎教学例2:圆柱的侧面展开

(1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。

反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

(2)操作探究:展开的长方形的长和宽与圆柱的关系。

师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

(3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。

(4)引导学生自主阅读并观察教材第19页例2。

总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。

【品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的.时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的活动体验,让学生经历学习数学的过程。】

三、反馈质疑,学有所得

在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。

质疑一:圆柱是由几部分组成的?圆柱有什么特征?

师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?

师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。

四、课末小结,融会贯通

同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。

师生共同总结:

1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。

2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:

什么叫作圆柱的表面积?包括哪几个面?

五、教海拾遗,反思提升

回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。

反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。

六年级下册数学教案 篇47

教学内容:

教科书第十二册P.110整理与反思以及P.110111练习与实践13题。

教学目标:

1、用上、下、前、后、左、右描述物体的位置;

2、用东、南、西、北描述物体的方向;

3、用数对表示物体的具体位置;

4、比例尺的知识

教学目标:

1、使学生通过复习,比较系统地综合地运用各种描述的方法描述并确定物体的位置,体会用不同的方法确定位置的特点和作用;能综合地运用比例尺的知识确定物体之间的图上距离或实际距离。

2、在复习中训练并培养学生的方向感和空间观念、综合运用所学知识解决实际问题的能力以及识图、作图的能力。

3、在复习中让学生感受数学与生活的关系,利用数学自身的魅力发展学生对数学积极的情感,激发学生学习数学的积极性。

重点难点:

1、能根据文字描述在图上正确找出指定位置

2、能用数学语言准确描述图形中指定的位置。

教具学具:

教学光盘

教法写学法:

可以先复习确定物体位置的方法。比如,教师可以提问,我们已经学过哪几种确定物体位置的方法,由学生说出一种是用数对,一种是用方向和距离,由此引出东、南、西、北和东北、西北、东南、西南八个方向的.复习。

然后出示课本上的街区平面图,可以先让学生说说街区图的内容,特别是比例尺1∶10000表示图上1 cm相当于实际距离多少米。然后由学生自己提出问题,请同学看图回答。以提问从阳光小区到邮局怎样走为例,如果学生回答:出小区穿过马路向左拐弯,到四季路再向右拐弯;沿着和平路向西,到四季路向北都应认可。当说出行进距离时,学生之间有时会出现较大误差。由此可以让学生看课本第106页下面街区图的局部放大图,看看该示意图是怎样量的,使学生明确通常是量目标位置所在的点到路的中轴线的距离。有了这个统一的约定,一般可要求六年级学生将图上距离的测量误差控制在2 mm之内。

复习时,也可以先讨论课本上两个少先队员的对话内容,再请学生提出问题。还可以在学生说出街区图的内容时,由回答比例尺1∶10000表示图上1 cm相当于实际距离多少米的提问,引出图上测量的问题。让学生看课本第106页下面街区图的局部放大图,搞清楚该怎样量,然后再看着第106页上面的街区图,提出问题,或讨论课本上两个少先队员对话中的问题。

六年级下册数学教案 篇48

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的`单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

六年级下册数学教案 篇49

一、学生基本情况分析:

②情况分析(学科特点与班级情况“个性”的分析)

智的学生。这些学生都来自服务半径“三村一段”,学生的基础成绩都比较好。该班级学生经过半年的共同学习生活,已经形成了勤奋学习、积极向上、团结友爱、关心集体、尊敬师长的良好道德品德;他们已经形成了良好的学习习惯,具有较强的学习能力,学习比较刻苦,成绩比较稳定。

二、总的教学目的要求:

1.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题。

2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;

3、使学生初步学会用“替换”的.策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

4、在具体的情境中,初步理解图形的放大和缩小,.理解比例的意义和性质,初步理解比例尺的意义,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。

5、初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。

6、让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问

题中数量关系、空间形式和数据信息的理解,提高综合应用数学知识和方法飞能力。

三、各单元教学目的要求与教学进度安排(附后)

四、提高教学质量的主要措施和研究课题:

1、创设愉悦的教学情境,激发学生学习的兴趣。

2、提倡学法的多样性,关注学生的个人体验。

3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。

4、加强基础知识的教学,使学生切实掌握好这些基础知识。本学期要以新的教学理念,为学生的持续发展提供丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,密切数学与生活的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技能,培养学生创新意识和实践能力的目的。

六年级下册数学教案合集15篇

作为一位杰出的教职工,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?下面是小编帮大家整理的六年级下册数学教案,仅供参考,希望能够帮助到大家。

六年级下册数学教案 篇50

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

(二)核心能力

在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

(三)学习目标

1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

(四)学习重点

引导学生把具体问题转化为“抽屉原理”。

(五)学习难点

找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.情境导入

师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

师:神奇吧!你们想不想表演一个呢?

师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

2.探究新知

(1)学习例3

①猜想

出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

预设:2个、3个、5个…

②验证

师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

可以用表格进行整理,课件出示空白表格:

学生独立思考填表,小组交流。

全班汇报。

汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

课件汇总,思考:从这里你能发现什么?

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

③小结

师:为什么球的个数一定要比抽屉数多?而且是多1呢?

预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

师:说得好!运用学过的知识、逆推的`方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

(2)引导学生把具体问题转化成“抽屉原理”。

师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

思考:①摸球问题与“抽屉原理”有怎样的联系?

②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

3.巩固练习

(1)完成教材第70页“做一做”第1题。

(2)完成教材第70页“做一做”第2题。

4.课堂总结

师:这节课你学到了什么知识?谈谈你的收获和体验。

(三)课时作业

1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

答案:5只。

解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

答案:16条。

解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

六年级下册数学教案 篇51

教学目标:

1、让学生在已有的分数乘整数的基础上,通过小组合作,自主探究建构,使学生理解一个数乘分数的意义,掌握分数乘分数的计算方法,能够应用分数乘分数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的`魅力,领略到美。

教学重点:让学生理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:总结分数乘分数的计算方法。

教学过程:

一、复习引入,提出学习目标。

1、复习。

计算下列各题并说出计算方法。

1/10× 5/8×5 3/7×

上面各题都是分数乘以整数,说一说分数乘整数的意义。

2、揭题:分数乘分数

3、提出学习目标。

让学生先说一说,再出示学习目标

(1)一个数乘分数的意义与分数乘整数的意义是否相同。

(2)分数乘分数的计算方法

二、展示学习成果。

1、小组内个人展示

学生独立自学、完成课本10页例3、“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)一个数乘分数的意义展示

1/5×3/4就是求1/5的3/4是多少; 1/3×1/4就是求1/3的1/4是多少

(2)算法展示

生1:不能约分,直接分子乘分子,分母乘分母。

1/5×3/4=1×3/5×4=3/20

生2:先计算出结果,再进行约分。

8/9×3/10=8×3/9×10=24/90=4/15

生3:在计算过程中能约分的先约分,再计算。

8/9×3/10 3与9先约分,8与10先约分,再计算。

2)比较二、三两种计算方法,选择算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:约分后,把分子与分子相加,分母与分母相加;错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

4、引导归纳一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母,能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12至13页练习二第3、6题。

2、生活中的数学

(1)一个长方形长3/5分米,宽1/2分米,它的周长、面积各是多少?

(2)用三个同样大小的正方形可以拼成一个新的图形。如果正方形的边长是3/5分米,那么拼成的新图形的周长是多少?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)的是多少?

(2)千克的是多少?

(3)小时的是多少?

2、智力冲浪:甲乙两个仓库,甲仓存粮30吨,如果从甲仓中1/5取出放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?(A类同学做)

六年级下册数学教案 篇52

教学内容:

课本第99页例9和“练一练”,练习十六第7-10题。

教学目标:

懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

教学重点:

按折扣进行计算。

教学难点:

对折扣的理解,并正确列出算式。

课前准备:

课件

教学过程:

一、创设情境,引入新课

春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

二、实践感知,探究新知

1、提问:看到“打折”两个字,你会想到什么?

学生全班交流。

小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。

出示:华联超市的.毛衣打“六折”出售。

提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

小结:“几折”就是十分之几,也就是百分之几十。

提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

学生交流课前搜集到的有关打折信息的意思。

提问:说一说下面每种商品打几折出售。

①一辆汽车按原价的90%出售。

②一座楼房按原价的96%出售。

③一只旧手表按新手表价格的80%出售。

2、教学例9。

学生自己读题。

出示例9的场景图。让学生说说从图中获取到哪些信息。

提问:你知道“所有图书一律打八折销售”是什么意思吗?

提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

学生独立尝试。

全班交流算式和思考过程

解:设《趣味数学》的原价是ⅹ元。

ⅹ×80%=12

ⅹ=12÷0.8

ⅹ=15

答:《趣味数学》的原价是15元。

3、引导检验,沟通联系。

启发:算出的结果是不是正确?你会不会对这个结果进行检验?

先让学生独立进行检验,再交流交验方法。

启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

4、指导完成“练一练”。

先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

三、巩固练习

1、做练习十六第7题。

指名口答。

2、做练习十六第8题。

让学生独立解答,再对学生解答的情况适当加以点评。

四、课堂总结

提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

五、布置作业

练习十六第9、10题。

六年级下册数学教案 篇53

教学目标

1. 理解圆柱体积公式的推导过程,掌握计算公式。

2. 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

3. 感受探索数学奥秘的乐趣,培养学习数学的积极情感,

教学重难点

教学重点:掌握和运用圆柱体积计算公式

教学难点:圆柱体积公式的推导过程

教学过程

一、复习导入

同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

出示学习目标:

理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

二、图柱转化,自主探究,验证猜想。

(一)猜想。

1、下面长方体、正方体和圆柱的底面积都相等,高也相等

(1).长方体和正方体的体积相等吗?为什么?

(2).猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?

2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的`迁移。]

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

(二)操作验证。

1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

在操作时,学生分组边操作边讨论以下问题:

①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

2、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

3、电脑演示操作

(1)电脑演示圆柱体转化成长方体的过程:

仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

(分的分数越多,拼成的图形就越接近长方体)

(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

V=Sh

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

三、练习巩固,灵活应用

闯关1.

1、填表。(课件)

2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

让学生试做,集体反馈。

闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

学生讨论、交流、汇报。

小结:解决以上问题的关键是先求出什么?(生:底面积)

闯关3.

1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。

2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米

学生在练习本上独立完成,集体反馈。

3、我是小法官

1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )

2.长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )

3.圆柱体的底面积越大,它的 体积越大。( )

4.圆柱体的高越长,它的体积越大。( )

5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.( )

4、填空

1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。

2. 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。

拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

四、课堂小结

学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

五、布置作业

教科书第21页练习三第1-4题。

六年级下册数学教案 篇54

【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

【教学目标】

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

【教学重点】图形的放大与缩小。

【教学难点】按一定的比把图形放大或缩小。

【教学准备】多媒体

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的`比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获 畅谈感想

这节课,你有什么收获?听课随想

六年级下册数学教案 篇55

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

六年级下册数学教案 篇56

教学目标:

通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。

通过例2的复习进一步掌握求稍复杂的平均数问题的方法。

通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。

教学过程:

复均数。

出示例1

问:要求七个班的平均人数,该怎样算?让学生自己算出结果。

想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。

通过计算让学生总结出求平均数问题的计算方法。

出示例2

学生想:要求五年级平均每人做多少个,必须先求出( )和( )

让学生自己列式解答。

让学生总结求较复杂平均数问题的计算方法。

完成137页的“做一做”

复习统计表

出示137页的例题。

让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。

完成138页的“做一做”

第二课时

复习统计图

教学目标:

通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。

教学过程:

复习

回答

你学过哪几种统计图?

出示某电子仪器一厂和二厂在三个方面的统计图。

回答四个问题

从折线统计图中可以看出,哪个厂的产值增长和快?

从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多?

从扇形统计图中可以看出,哪个厂的外销产品占销售总数的百分比大?

综合上面的分析,你认为哪个厂的生产搞得好?为什么?

引导学生把三种统计图的特点和作用进行概括和总结。

让学生看书或出示140页三种统计图的特点和作用表。

大家都在看