知远网整理的分数除法教案(精选57篇),希望能帮助到大家,请阅读参考。
分数除法教案 篇1
教学设计
(一)教学内容
北师大版五数上册P39-40
(二)、本课的基本理念
在分饼具体活动中, 通过自主合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳、交流的能力。
(三)教材分析
教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:12=1/2,73=7/3。再引导学生观察比较这两组关系式,发现分数与除法的关系,并得出分数与除法的关系式。
(四)学情分析
学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作画图能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。假分数与带分数的互化在以后的应用较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。
(四)教学目标
1、结合具体的情境观察比较,理解分数与除法的关系,会用分数表示两数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,理解假与带分数的互化算理,会正确进行互化。
3、培养学生分析问题的`能力,能够解决生活中的实际问题。
(五)、教学重难点:
教学重点:目标1。
教学难点:目标2。
(六)、教法选择
教师结合实际情境,引导学生参与探索分数与除法关系的过程,在归纳出关系式后,先引导学生用自己的话说一说这个关系式的意思,再引导学生思考分数的分母能不能是0?。可以利用分数与除法的关系来理解,因为在除法中,0不能作除数,分数中的分母相当于除法中的除数,所以分母也不能是0。最后再讨论探索出假分数的方法,并练习巩固。
(七)教学准备:圆片若干
(八)、教学过程
A、复习引入。
1、师:同学们,在昨天的学习中,你认识了些什么?
2、能来试一试吗?(出示小黑板)
2个1/3是( )。 ( )个1/8是3/8。 14个1/9是 ( )。
4/5里有4个( )。 15/8里有 ( )个。 2里面有 ( )个1/4。
B、探索新知。
1、分数与除法的关系
①解决问题1:
( 出示小黑板)把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?
师:老师这儿有些数学问题,你能列出算式来解决吗?
(学生独立在草稿本上完成,教师巡视)。
抽生全班集体交流,同时集体订正。(要组织引导学生说清其算式的意义和商的由来等)。
②解决问题2:把7块蛋糕平均分给3个小朋友,每人可以分到几块蛋糕?(方法同上)
③(师指板书上的算式与商)师:同学们仔细观察,你发现分数与除法有什么关系?和同学交流一下
(生独立在草稿纸上写,师巡视)。
④抽生交流,师适时板书
被被除数除数 = (除数不为0)
⑤并组织学生讨论:分数的分母能不能是0?为什么?
⑥师:除法与分数有什么区别?
⑦练习1:将下列除法算式改写成分数,把分数改写成除法算式(独立练习后订正,1小题和5小题说方法)
4/5= 19/8= 21/3= 13/5= 15= 417= 2489= 122=
2、假分数与带分数互化的方法。
①师:你能运用除法与分数之间的关系来试一试解决问题吗?翻开书P39,试一试1题。(学生独立完成后集体订正。)
②师(指板书):这样把7/3化成带分数?小组讨论后汇报。8/4呢?
③师生小结:把假分数化成带分数,要用分子去除以分母。能整除的,所得的商就是整数;不能整除的,除得的商就是带分数的整数部分,余数是分数部分的分子,分母不变。
④练习2: 把21/3,19/8化成带分数或整数?
⑤你能把二又三分之一化成假分数吗?小组讨论后汇报
⑥归纳小结:把带分数化成假分数,用原来的分母做分母,用分母与整数的乘积再加上原来的分子做分子。
⑦练习3: 把三又五分之二 ,四又九分之一化成假分数。同桌互说方法。
C、练习巩固
书P40 24 题。( 独立练习后集体订正等。)
D、全课总结
(九)、板书设计
分数与除法
被除数(分子)
联系: 被被除数除数 = (除数不为0)
除数(分母)
区别: 是一种运算 是一个数
分数除法教案 篇2
一、教学目标:
1、知识与技能:
(1)会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。
(2)会列式解答分数乘除法应用题。
2、过程与方法:
通过整理、交流、合作、探究,体验探究的乐趣,感受数学的价值,培养学生“学数学,用数学”的意识。
3.情感与态度:激发学生对找单位“1”的情感体验,有意培养学生的解答应用题意识,并最终养成正确解答应用题的良好习惯。
二、教学重点:
会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。
三、教学难点:
会列式解答分数乘除法应用题,用所学知识解决实际问题。
四、教学过程:
一、预学
课前学生诵读“数学经典”
师生谈话:
师:同学们都看过西游记吗?最喜欢里面哪个人物?为什么?
生:看过,最喜欢孙悟空的勇敢机智,不怕困难的精神。
师:今天老师就带大家一起重温西游戏故事,体验成功的乐趣,大家喜欢吗?
(一)四基训练
根据已知条件先找出“1”的量,再找出数量关系。
1、花果山有45只小猴子,老猴子的只数是小猴子的4/5
()×4/5=()
2、水帘洞里有12只大石碗,相当于小石碗数量的1/3
()×1/3=()
3、孙悟空体重40千克,占猪八戒体重的1/5
()×1/5=()
(二)自主探究
1、镇元大仙的人参果树上结了80个人参果,孙悟空一棒子打落了3/8,打落了多少个人参果?
2、师徒四人在翻越"狮驼岭"大战时,猪八戒消灭了150个妖怪,是沙僧消灭妖怪数量的5/7,沙僧消灭了多少个妖怪?
3、孙悟空在车迟国与虎力大王斗法比求雨.孙悟空施法时,大雨整整下了48小时。虎力大王求雨的时间比孙悟空少5/8,虎力大王求雨时大雨下了多少小时?
4、孙悟空在狮驼岭与大鹏妖怪斗法,大鹏每秒可飞行48千米,要比孙悟空的速度快1/5,孙悟空施展法力时每秒可飞行多少千米?
问题:
(1)找出各题里的“1”,说说它是已知还是未知,用方程解答还是用算术方法解答呢?
(2)找出数量关系。
A:()×3/8=()
B:()×5/7=()
C:虎力大王求雨的时间=()Ο()×5/8
D:()Ο()×1/5=大鹏的速度
(3)列式或列方程
学生首先自主学习十分钟,当有质疑时可互学或小组内组学,从而进入互学环节。
二、互学
(一)小组交流,展示点评:
先在小组内交流
小组长组织,组内成员依次交流
小组内讨论导学目标中的每个问题,组长并记录好。
(二)由小组在班内展示,学生点评
提示:台上交流的小组交流时,其他小组要与台上小组做好互动,如果有同学说错了(及时指正)或不完整要做好补充。
中心发言组发言结束后,由主持人或组长总结本组学习的内容或本组在发言时的表现。然后由各位学生对这个小组做出评价,老师可以进行总评,适当的发言。
预设:
虎力大王求雨的.时间=()+()×5/8
有少数学生不会判断加还是减,关键在于不知道哪个量多哪个量少。
1、找数量关系。
A:树上结的果子数×3/8=打落的果子数
B:沙僧消灭妖怪的数量×5/7=猪八戒消灭妖怪的数量
C:虎力大王求雨的时间=孙悟空求雨的时间-孙悟空求雨的时间×5/8
D:孙悟空的速度+孙悟空的速度×1/5=大鹏的速度
(3)列式或列方程
A:80×3/8
师点拨板书:
以a为单位1,a已知,求b(另一个量)b=a×()/()
B:解:设沙僧消灭妖怪的数量为X个5/7X=150
师点拨板书:
以a为单位1,a未知,求a,设a为XX×()/()=b(是已知的另一个量)
C:48-48×5/8
师点拨板书:稍复杂的
以a为单位1,a已知,求b(另一个量)b=a+(-)a×()/()
D:解:设沙僧的速度为XX+1/5X=48
师点拨板书:稍复杂的
以a为单位1,a未知,求a,设a为XX+(-)X×()/()=b(另一个量)
三、评学:
(一)巩固反馈
1、孙悟空在王母娘娘的蟠桃园里捣乱,打落了120个红色的桃子,打落的青色的桃子比红色的桃子还要多1/3,孙悟空打落了
多少个青色的桃子?
2、唐僧的体重为60千克,比孙悟空体重多1/5,孙悟空的体重是多少千克?
3、花果山的猴子真多,老猴子和小猴子共有81只,其中老猴子的只数是小猴子只数的4/5。花果山里老猴子和小猴子各有多少只?
(1)找出各题中的“1”,是已知还是未知?你确定可以用什么方法解决问题更合适?
(2)你能准确的找出题里的数量关系吗?请根据数量关系列式或列方程。
(二)拓展提升
孙悟空和猪八戒比法力,在一座高大的山中间要开出一条平整的大路。孙悟空单独做用8分钟就可以完工,猪八戒单独做得用12分钟才可以完工。如果孙悟空先开凿3分钟后,猪八戒再加入合作,他们师兄二人还需要几分钟就可以完工?
属于哪类型的分数应用题?
解决此类应用题要注意哪些问题?
(三)随堂检测
1、松树有80棵,是柳树的棵数的5/8,柳树有多少棵?
2、美术小组有25人,手工小组的人数比美术小组少1/5,手工小组多少人?
3、松树有80棵,比柳树的棵数多5/8,柳树有多少棵?
分数除法教案 篇3
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的'相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
关于分数除法教案模板集合10篇
作为一位杰出的教职工,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!下面是小编为大家整理的分数除法教案10篇,欢迎阅读,希望大家能够喜欢。
分数除法教案 篇4
一、借助实物,初步理解。
1、创设情境,出示问题:老师出示一个苹果,提出问题:如果把这个苹果平均分给两个同学,每人分几个?谁来分一下?
生:用小刀把苹果从中间切开,平均分成两份。
说明每份是这个苹果的二分之一。
师:谁能列式?
生:1÷2=0.5(个)。
师:谁能用分数来表示商?
生:二分之一。
师:计算除法,在得不到整数商时,除了可以用小数外,还可以用分数表示,今天我们来研究分数与除法的关系。
评:开头点题,节省了时间,用学生熟悉的事情吸引了学生的注意力,激发了学生的兴趣。
2、观察实物,探索原理。
师:如果我们把这个苹果平均分成4份,该怎样分?
学生上台分一分。学生边分边说:把一个苹果平均分成4份,每份是四分之一个。
评:借助实物操作与演示,学生很容易直观理解一个的二分之一就是二分之一个、一个的四分之一就是四分之一个的道理。并且能够迁移类推得出结论:一个的几分之几就是几分之几个。
二:合作交流,解决问题。
1、讲故事,提出问题。
昨天晚上,老师做了3张饼,可香了,刚要吃饭的时候,对门家的小姑娘来了,进门便是客,我们一家三人热情地邀请她与我们共进晚餐,吃完饭后,我一看,三张饼全吃完了,你能计算出我们平均每人吃几张饼吗?
评:简短的小故事,吸引了学生探索的积极性与主动性。
2、合作交流,解决问题。
⑴想:教师出示三张圆形纸片,说明:用三张圆形纸片代替三张饼,现在如果要平均分给你们组四个人,你该怎样分?每人想出一个办法。
⑵评:小组内交流,在组长的带领下,评选出你们认为最合理、最简单的方法。
⑶分:根据刚才选出的办法,利用手中的学具(三张圆形纸片、剪刀、彩笔)剪一剪、分一分,并且把组长的'那份涂色。
⑷汇报:小组间交流汇报,争论、补充。
生1:我们小组是一张饼、一张饼的分,把每张饼都平均分成4份,每人吃一份。三张饼都吃完后,就是每人吃了3个四分之一,也就是四分之三张。
生2:我们是把3张饼摞起来,再平均分成4份,每人吃四分之一,再拼起来就是四分之三张。
生3:我们是先把2张饼从中间切开,每人分半个饼,再把第三张饼平均分成4份,每人一份,又分了四分之一,前面的半个是四分之二张,一共每人吃了四分之三张。
⑸评价:自由发表意见,评价哪组的分法最好。
生1:我认为第一种分法最好,因为我们吃的时候就是这样分的。
生2:我认为第2种方法好,因为这样分简单,而且先分好了再吃更显得公平。
师总结:刚才同学们都说的很有道理,而且你们说的清楚明白。说明我们同学的语言表达能力越来越强了。
师生一起板书出答案。
评:学生获得知识的过程不单是知道什么,更重要的是知道为什么,小组合作过程是本节课的创新之处,也是学生求知的内在需要和渴望。小组合作过程分:想、评、分、汇报、评价五步完成,要求具体,分工明确,既有独立思考的时间,又有交流、操作的时间,使各个环节都高效有序地进行。体现了小组学习的实效性。
3、观察比较,寻求规律
师:观察黑板上三个算式,找出被除数、除数与商中的分子、分母有什么关系。
学生回答,得出结论:被除数÷除数=被除数/除数
师:如果用字母a、b表示,该怎样表示?
生:a÷b=a/b
师:在除法中,对除数是怎样规定的?
生:除数不等于0。
师:那么,分数中应该谁有限制呢?
生:b≠0。
评:打破原有学习模式,放手让学生自己通过观察,得出公式,这样在学生头脑中留下深刻的印象。
三、练习巩固,加深理解。
1、阅读课本102—103页内容。
2、练习题略。
四、学生回顾,全课小结。
师:在这节课,你学到了什么知识?你能用这节课学到的知识,编出不同的数学问题来吗?
总评:“新课标”的重要理念之一是关注学生的生活体验和也已有的生活经验。课始就设计分苹果,既贴近学生生活,又直观容易理解。这样在课的开始,就激发了学生的学习兴趣,使学生获得了愉悦的数学学习体验,同时促进学生主动构建相关的数学知识。
教学整个过程注重了学生兴趣的激发与主动性的参与,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与别人交流,动手操作。“动手实践、自主探索与合作交流是学生学习数学的重要方法。”在教学设计中注意体现这一理念,在主动的、互相启发的学习活动中是学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。
分数除法教案 篇5
一、借助实物,初步理解。
1、创设情境,出示问题:老师出示一个苹果,提出问题:如果把这个苹果平均分给两个同学,每人分几个?谁来分一下?
生:用小刀把苹果从中间切开,平均分成两份。
说明每份是这个苹果的二分之一。
师:谁能列式?
生:1÷2=0.5(个)。
师:谁能用分数来表示商?
生:二分之一。
师:计算除法,在得不到整数商时,除了可以用小数外,还可以用分数表示,今天我们来研究分数与除法的关系。
评:开头点题,节省了时间,用学生熟悉的事情吸引了学生的注意力,激发了学生的兴趣。
2、观察实物,探索原理。
师:如果我们把这个苹果平均分成4份,该怎样分?
学生上台分一分。学生边分边说:把一个苹果平均分成4份,每份是四分之一个。
评:借助实物操作与演示,学生很容易直观理解一个的二分之一就是二分之一个、一个的四分之一就是四分之一个的道理。并且能够迁移类推得出结论:一个的几分之几就是几分之几个。
二:合作交流,解决问题。
1、讲故事,提出问题。
昨天晚上,老师做了3张饼,可香了,刚要吃饭的时候,对门家的小姑娘来了,进门便是客,我们一家三人热情地邀请她与我们共进晚餐,吃完饭后,我一看,三张饼全吃完了,你能计算出我们平均每人吃几张饼吗?
评:简短的小故事,吸引了学生探索的积极性与主动性。
2、合作交流,解决问题。
⑴想:教师出示三张圆形纸片,说明:用三张圆形纸片代替三张饼,现在如果要平均分给你们组四个人,你该怎样分?每人想出一个办法。
⑵评:小组内交流,在组长的带领下,评选出你们认为最合理、最简单的方法。
⑶分:根据刚才选出的办法,利用手中的学具(三张圆形纸片、剪刀、彩笔)剪一剪、分一分,并且把组长的那份涂色。
⑷汇报:小组间交流汇报,争论、补充。
生1:我们小组是一张饼、一张饼的分,把每张饼都平均分成4份,每人吃一份。三张饼都吃完后,就是每人吃了3个四分之一,也就是四分之三张。
生2:我们是把3张饼摞起来,再平均分成4份,每人吃四分之一,再拼起来就是四分之三张。
生3:我们是先把2张饼从中间切开,每人分半个饼,再把第三张饼平均分成4份,每人一份,又分了四分之一,前面的半个是四分之二张,一共每人吃了四分之三张。
⑸评价:自由发表意见,评价哪组的分法最好。
生1:我认为第一种分法最好,因为我们吃的时候就是这样分的。
生2:我认为第2种方法好,因为这样分简单,而且先分好了再吃更显得公平。
师总结:刚才同学们都说的很有道理,而且你们说的清楚明白。说明我们同学的语言表达能力越来越强了。
师生一起板书出答案。
评:学生获得知识的过程不单是知道什么,更重要的是知道为什么,小组合作过程是本节课的创新之处,也是学生求知的内在需要和渴望。小组合作过程分:想、评、分、汇报、评价五步完成,要求具体,分工明确,既有独立思考的时间,又有交流、操作的时间,使各个环节都高效有序地进行。体现了小组学习的实效性。
3、观察比较,寻求规律
师:观察黑板上三个算式,找出被除数、除数与商中的分子、分母有什么关系。
学生回答,得出结论:被除数÷除数=被除数/除数
师:如果用字母a、b表示,该怎样表示?
生:a÷b=a/b
师:在除法中,对除数是怎样规定的?
生:除数不等于0。
师:那么,分数中应该谁有限制呢?
生:b≠0。
评:打破原有学习模式,放手让学生自己通过观察,得出公式,这样在学生头脑中留下深刻的`印象。
三、练习巩固,加深理解。
1、阅读课本102—103页内容。
2、练习题略。
四、学生回顾,全课小结。
师:在这节课,你学到了什么知识?你能用这节课学到的知识,编出不同的数学问题来吗?
总评:“新课标”的重要理念之一是关注学生的生活体验和也已有的生活经验。课始就设计分苹果,既贴近学生生活,又直观容易理解。这样在课的开始,就激发了学生的学习兴趣,使学生获得了愉悦的数学学习体验,同时促进学生主动构建相关的数学知识。
教学整个过程注重了学生兴趣的激发与主动性的参与,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与别人交流,动手操作。“动手实践、自主探索与合作交流是学生学习数学的重要方法。”在教学设计中注意体现这一理念,在主动的、互相启发的学习活动中是学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。
分数除法教案 篇6
教学目标:
1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。
2、引导同学通过动手操作、探索分数除以整数的算理,归纳计算方法,并能根据题目特点灵活选用较合适的`计算方法。
3、能够运用分数除以整数的方法解决简单的实际问题。
4、将计算与生活紧密结合,培养同学的数学应用意识。
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程:
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以和小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)
引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/71/2=2/7
有关分数除法教案范文10篇
作为一位优秀的人民教师,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。快来参考教案是怎么写的吧!以下是小编为大家收集的分数除法教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。
分数除法教案 篇7
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χ×2/9=6
χ×2/9÷2/9=6÷2/9
χ×=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的`人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χ×1/5=30 χ×2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
分数除法教案 篇8
教学目标
1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。
2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学重难点
能比较熟练地求比值和把一个比化成简单的整数比。
能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学过程
一、揭示课题
二、整理知识
三、组织练习
四、课堂小结
本单元我们学习了什么?你学习了哪些内容?
这节课我们先复习分数除法的有关概念和计算。
通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。
1、复习分数除法的意义
问:分数除法表示的意义是什么?
你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?
指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。
2、复习分数除法计算法则
提问:我们在分数除法里,学过哪几种情况的计算?
分数除法计算的方法是怎样的?
3、笔算练习
做复习第2题
指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。
4、复习比的意义
问:什么叫比?比的各部分名称是什么?请你举个例子来说明。
比与除法、分数有什么联系?请你根据4:5来说明。
5、做复习第3题
6、复习比的基本性质
提问:化简比和求比值各是依据什么来做的?
1、做复习第5题
2、做复习第6题
3、做复习第7题
指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。
4、做复习第8题
指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。
这节课复习了什么内容?你进一步明确了哪些知识?
课后感受
教学效果较好,同学们所做的题目的正确率较高。
分数除法教案 篇9
教学内容:
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
教学目标:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。
教学难点:
理解列方程解决简单分数实际问题的思路。
教学过程:
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题
二、教学例5
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的`,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
板书设计:
(略)
分数除法教案 篇10
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的'过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2.分数除以整数的计算法则是什么?(学生总结)
五、作业布置
分数除法教案(合集15篇)
作为一名教职工,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?下面是小编为大家收集的分数除法教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数除法教案 篇11
【学习目标】
1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。
2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。
3、通过练习,培养计算能力及初步的逻辑思维能力。
【学习重难点】
1、重点是确定运算顺序再进行计算。
2、难点是明确混合运算的顺序。
【学习过程】
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;
如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面
的,最后算中括号外面的。
2、整数四则混合运算定律在分数四则运算中同样适用。
3、说出下面各题的运算顺序。
(1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4
(3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)
二、探索新知
1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。
A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3
算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
2、列出综合算式,想一想它的运算顺序,再独立计算。
3、独立完成P34 “做一做”第1、2题
4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。
三、知识应用:独立完成练习九第1题,组长检查核对,提出质疑。
四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。
(1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第7题:“60瓦”与计算无关。
(3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1. 342
五、总结梳理:回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)
分数除法教案 篇12
教学内容:
分数与除法的关系
教学目标:
1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。
教学过程:
一、复习
1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。
2、看句子说把()看作单位“1”,平均分成()分,()占其中的()份。
二、教学应用题
例2把1米长的钢管平均截成6段,每段长多少米?
分析:求每段长多少米,就是求每份数
列式:1÷6=1/6(米)
根据分数的意义,把一米长的钢管看作单位“1”,平均分成6份,表示这样1份的数
二、引入新课
1、分数与除法有什么关系?
2、教学例3
把3只月饼平均分成4份,每份是多少只?
分析:(1)每份是多少?就是计算3÷4得多少
(2)图示,把3只月饼平均分成4份,每人得到的`1份,是3只月饼的1/4,也就是一只月饼的3/4。
因此:3÷4=3/4(只)
3、找一找
(1)分数与除法的关系
两个自然数相除,它们的商可以用分数表示。
被除数÷除数=被除数/除数
(2)想一想,分数的分母能是0吗,为什么?
三、巩固练习
例4五年级同学参加登山活动,男同学有36人,女同学有9人
(1)男同学人数是女同学的几倍?
(2)女同学人数是男同学的几分之几?
分析:男同学人数是女同学的几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。
答:男同学人数是女同学的4倍。
女同学人数是男同学的9/36。
四、总结归纳
1、求一个数是另一个数的几分之几,用除法计算的道理。
2、让学生应用求一个数是另一个数的算理。
五、布置作业
……
反思:
这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。
分数除法教案 篇13
练习目标:
1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;
2运用所学的分数除法的知识,解决相应的实际问题.
练习过程:
一、基础知识练习:
1、计算:
⑴2/1328/943/1035/11522/232
⑵3/10223/242617/21518/9713/154
(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)
2、通过计算下面的题,请你想一想,除数是整数和除数是分数的`除法在计算上有什么相同的地方?
引导学生小结:除以一个不等于0的数,等于H这个数的倒数.
二深入练习
1、计算下面各题,比较它们的计算方法.
5/6+2/35/6-2/35/62/35/62/3
2、
(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)
根据学生的回答,教师作如下板书:
一个数除以小于1的数,商大于被除数;
一个数除以1,商等于被除数;
一个数除以大于1的数,商小于被除数。
三、解决问题:
练习八第7至8题。
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
1、33页第5、9题。
2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?
五、教学反思:
分数除法教案 篇14
练习目标:
1、在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;
2、运用所学的分数除法的知识,解决相应的实际问题。
练习过程:
一、基础知识练习:
1、计算:
⑴2/1328/943/1035/11522/232
⑵3/10223/242617/21518/9713/154
(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的)
2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?
引导学生小结:除以一个不等于0的'数,等于H这个数的倒数。
二深入练习
1、计算下面各题,比较它们的计算方法。
5/6+2/35/6-2/35/62/35/62/3
2、(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)
根据学生的回答,教师作如下板书:
一个数除以小于1的数,商大于被除数;
一个数除以1,商等于被除数;
一个数除以大于1的数,商小于被除数。
三、解决问题:
练习八第7至8题。
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
1、33页第5、9题。
2、一个商店用塑料袋包装120千克水果糖。如果每袋装1/4千克,这些水果糖可以装多少袋?
分数除法教案 篇15
一 教学内容
分数与除法
教材第66页的例3及做一做。
二 教学目标
1 .使学生掌握分数与除法的关系。
2 ,培养学生的应用意识。
三 重点难点
1 .理解、归纳分数与除法的关系。
2 .用除法的意义理解分数的意义。
四 教具准备
圆片。
五 教学过程
(一)引入。
老师:5 除以9 ,商是多少?(板书:5 ÷ 9 = )如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的`关系
(二)教学实施
1 .学习例3 。
( 1 )板书例题。
小新家养鹅7 只,养鸭10 只。养鹅的只数是鸭的几分之几?
( 2 )指名读题,理解题意并列出算式。板书:7÷10
( 3 )利用除法和分数的关系得出结果。
7 ÷ 10 =
所以养鹅的只数是鸭的 。
三)思维训练
1 .把8 米长的绳子平均分成13 段,每段长多少米?
2 .把一个5 平方米的圆形花坛分成大小相同的6 块,每一块是多少平方米?(用分数表示)
四)课堂小结
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
后记:
分数除法教案 篇16
一、复习
1、口算分数乘法
前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:
(出示)4/71/3203/43/8162/33/2
2、(复习倒数)其中当计算完2/33/2时提问:
看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))
说得不错,下面就请同学们说说下面各数的倒数分别是什么?
(出示)3/8412/9
3、把100千克的一桶油平均分成2分,每份是100千克的()/(),求100千克的1/2,列式为——
把24千克的一袋面粉平均分成3份,每份是24千克的()/(),求24千克的1/3,列式为:——
同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。
二、新授
(一)教学例1
1、教学第一种算法
例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
读题
提问:怎样列式?(4/52)
怎样计算呢?
(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)
从图中你能看出每份是多少米?(板书:2/5升)
那么2/5升是怎样算出的呢?
4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)
(2)补充例证
如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?
怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?
(3)观察比较
提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数板书课题)
(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。
2、教学第二种算法
(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)
(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。
(3)让学生做试一试的题(自主选择计算方法)
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
(4)你能用简炼的语言概括一下这种方法吗?
教师板书:分数除以整数,等于分数除以整数的倒数
(5)你认为这个计算方法有什么重要的地方需要提醒大家。
教师用红笔标注。
三、巩固练习
老师也为同学们准备了一套星级赛题,你们有信心挑战吗?
一星题:
1、课本56页的练一练第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
二星题:
2、这里还有6道题,哪些同学愿意到前面来解答的?
练一练第2、3题
让学生能根据题目灵活选择计算方法
做好以后进行集体讲解和订正
三星题:
3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?
8/94=8/91/4=2/92/73=2/73=6/7
8/94=8/91/4=2/93/73=3/71/3=1/7
师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。
四星题:
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
五星题:
1、如果a是一个不等于0的自然数,13a等于多少
问:你能用具体的数来检验这个结果吗?
2、()/()3=5/187/()=()/24
四、小结
本课我们学习了什么内容?
分数除法教案 篇17
本课题教时数:1本教时为第1教时备课日期10月22日
教学目标
1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。
2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学重难点
能比较熟练地求比值和把一个比化成简单的整数比。
能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 揭示课题
二、整理知识
三、组织练习
四、课堂小结
本单元我们学习了什么?你学习了哪些内容?
这节课我们先复习分数除法的有关概念和计算。
通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。
1、复习分数除法的意义
问:分数除法表示的意义是什么?
你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?
指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。
2、复习分数除法计算法则
提问:我们在分数除法里,学过哪几种情况的计算?
分数除法计算的方法是怎样的?
3、笔算练习
做复习第2题
指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。
4、复习比的意义
问:什么叫比?比的各部分名称是什么?请你举个例子来说明。
比与除法、分数有什么联系?请你根据4:5来说明。
5、做复习第3题
6、复习比的基本性质
提问:化简比和求比值各是依据什么来做的?
1、做复习第5题
2、做复习第6题
3、做复习第7题
指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。
4、做复习第8题
指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。
这节课复习了什么内容?你进一步明确了哪些知识?
课后感受
教学效果较好,同学们所做的题目的正确率较高。
分数除法教案 篇18
教学目的:使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。
教学过程
一、复习
1.口算下列各题。
2.把下列假分数改写成带分数。
3.把下列带分数改写成假分数。
让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。
二、新课
1.教学例5。
教师出示例5:
教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)
教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)
教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。
2.做教科书第39页中间做一做的题目。
让学生独立完成。做完后集体订正。
3.教学例6。
(1)准备题。
①的3倍是多少?②的是多少?③的是多少?
教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)
教师让学生计算后集体订正。
(2)教学6。
教师出示例6:
教师指名说题目的'条件和问题。
教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)
教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)
教师:应该设什么数为未知数x?(设这个数为未知数x。)
让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。
4.做教科书39页下面做一做题目。
让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。
三、巩固练习
1.做练习十第1题第1行的小题。
让学生装独立完成。做完后集体订正。
2.做练习十第2题的前2个小题。
让学生装独立完成,做完后集体订正。
3.做练习十第3题的第(1)~(3)题。
第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。
第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)
4.做练习十的第5题。
教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。
四、作业
练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。
分数除法教案 篇19
分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:
1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。
教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。
2.重视对相关概念、性质及某些知识间相互关系的复习。
教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。
3.重视对学生解决问题能力的培养。
教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。
相同点:题中的数量关系相同,解题思路相同。
不同点:①题表示单位“1”的量已知,用乘法计算。
②题表示单位“1”的量未知,列方程解答或用除法计算。
(3)总结解决分数乘、除法问题的方法和解题关键。
①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。
②关键:找准表示单位“1”的量。
设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的'方法和解题关键,提高学生解决问题的能力。
⊙巩固练习
1.完成教材115页6题。
地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?
2.完成教材116页8题。
(1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?
(2)四年级比六年级少收集了,四年级收集了多少个易拉罐?
3.完成教材116页10题。
一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?
4.完成教材116页11题。
(1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?
84÷2=42(cm) 长:42×=28(cm)
宽:42×=14(cm)
(2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?
[84÷(3+4+5)=7(cm) 7×3=21(cm)
7×4=28(cm) 7×5=35(cm)]
⊙课堂总结
通过本节课的复习,你有什么收获?
分数除法教案 篇20
教学目标:
能力目标:培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:
解决实际问题。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:
小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。
板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的`。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
分数除法教案 篇21
设计说明
苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。
另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣
课前准备
教师准备 PPT课件、长方形包装纸
学生准备 长方形纸
教学过程
⊙创设情境,提出问题
1.问题导入。
师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。
请你们列出算式并计算。
(1)每人吃张饼,4个人共吃多少张饼?
(2)把2张饼平均分给4个人,每人分得多少张饼?
(3)有2张饼,每人分得张饼,可以分给几个人?
(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)
2.揭示分数除法的意义。
讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。
⊙合作交流,探究新知
1.引导参与,探究新知。
(1)出示教材55页例题。
师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?
(2)动手操作,分一分,涂一涂。
师:请大家拿出一张长方形纸,涂色表示出这张纸的。
(学生动手操作,教师巡视指导)
师:把一张长方形纸的`平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。
(学生活动,教师指导)
(3)观察发现。
师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?
预设
(教师利用课件配合学生汇报)
生1:把平均分成2份,每份是2个小格,占这张纸的。
生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。
设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。
2.初探算法。
师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?
预设
生:分母不变,被除数的分子除以整数得到的商作商的分子。
提出质疑,验证猜想,理解新知。
(1)尝试验证,发现问题。
师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?
(学生汇报验证的结果)
师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)
分数除法教案 篇22
【教学内容】
【教学目标】
知识目标:
体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
能力目标:
培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
【教学重点】整数除以分数的计算法则推导过程。
【教学难点】理解一个数除以分数的计算法则的推导过程,
【教学过程】
一、创设情境导入新课
唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?
二、自主探究合作交流
1、小组活动
(1)出示教材27页“分一分”的第(1)、(2)题
学生拿出准备好的圆片代表饼,动手分一分。
每2张一份,可以分成多少份?4÷2=2(份)
每1张一份,可以分成多少份?4÷1=4(份)
师:每1/2张一份,可以分成多少份?
学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)
师:每1/4张一份,可以分成多少份?
学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。
4÷1/4=16(份)
(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。
(2)学生独立完成教材28页“填一填”“想一想”
师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?
生:一个数除以分数等于乘这个分数的倒数。
1、学生独立完成28页的“试一试”。
集体反馈,同桌之间订正。
师:通过刚才的计算你发现了什么?
生:一个数除以一个数(零除外)等于乘这个数的倒数。
三、课堂练习,巩固运用
书本练一练
四、课堂小结畅谈收获
聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?
(学生谈收获)
【板书设计】
整数除以分数
a÷=a×(b、c≠0)
【教学反思】
本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:
第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。
第二层次:“画一画”的'活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。
第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。
第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。
分数除法教案 篇23
教学内容:
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
教学目标:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。
教学难点:
理解列方程解决简单分数实际问题的思路。
教学过程:
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题
二、教学例5
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的`,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
分数除法教案 篇24
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的`第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
1. 2.
3. 4.
5. 6.
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
五、板书设计
数学教案-分数乘、除法应用题的对比
分数除法教案 篇25
教学目标
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。
教学重难点
运算顺序,简便运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习引新
二、教学新课
三、
四、作业
1、说说下面各题的运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的`规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
分数除法教案 篇26
教学目标
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学工具
多媒体课件,圆形纸片,剪刀
教学过程
一、创设情境,导入新课,
师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)
1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:8÷4=2(个)
2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?
怎么列式?生:1÷4=
二、动手操作,探索新知
1、探索一个物体平均分,体会分数与除法的关系。
(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考
生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕
(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?
生独立思考并回答。
全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)
2、探索多个物体平均分,体会分数与除法的关系。
师:把3个蛋糕平均分给4个人,每人分得多少个?
师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。
(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。
方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。
方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。
(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)
(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4
(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。
学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)
3、总结概括分数与除法之间的关系。
1÷4=(个)3÷4=(个)
5÷7=(个)3÷5=(个)
师:观察黑板上的'这些算式,你发现了什么?
三、观察算式,概括分数与除法的关系。
(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。
(2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。
师强调:相当于
(3)师:请每个同学看着这些算式说一说分数与除法的关系。
(师板书):被除数÷除数=被除数/除数
提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?
生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。
(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b
讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)
师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)
小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。
三、练习巩固应用
1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=
2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?
把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
四、全课小结今天这堂课你有什么收获?还有什么问题吗?
分数除法教案 篇27
单元目标:
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:
理解并掌握分数除法的计算方法,理解比的意义,能用比的知识解决实际问题
单元难点:
理解分数除法的算理,列方程解答分数除法问题
第一课时:分数除法的意义和分数除以整数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重?300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
×3=(千克)÷3=(千克)÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
第二课时:一个数除以分数
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
第三课时:练习课
第四课时:分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4
(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)
3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?
二、新知探究
1、教师课件出示例4
2、课件出示自学提纲:
(1)例4中的哪些条件和复习中的3相同?问题相同吗?
(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……
(3)尝试说说自己的解题思路并解答。
3、学生根据提纲尝试解题。
4、全班汇报
(1)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m,每朵花用m彩带,可以先算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(2)说说运算顺序,再进行计算。
(1)计算1/5÷(2/3+1/5)×15
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6
楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图
1、在课初始,我便从复习整数及小数的运算顺序入手,
重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发
现分数的.运算顺序同整数、小数的运算顺序相同,继而配合课后练
习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问
题,让学生体会到数学知识的广泛性和严谨性
教学后记
第五课时:练习课
已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:
分数除法应用题的特点及解题思路和解题方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、根据题意列出关系式。
(1)一个数的3/4等于12.
(2)男生人数的11/12等于220人。
(3)甲数的5/8是40.
(4)乙数的4/5刚好是1/6.
2、解决问题
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?
(1)看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× =体内水分的重量
(2)指名口头列式计算。
二、新知探究
(一)教学例1.
1、课件出示自学提纲:
(1)这一例题和复习中的题有什么不同和相同呢?想一想。
(2)有几个问题?都和哪些条件有关?
(3)读题、理解题意,并画出线段图来表示题意
(4)独立解决第一个问题。
2、全班汇报
(1)学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。
小明的体重× =体内水分的重量
(2)相同点和不同点(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)。
(3)列方程来解决问题。这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,)
(4)用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)
3、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找关键句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸的体重× =小明的体重
①方程解:解:设爸爸的体重是χ千克。
χ= 35
χ=35÷
χ=75
②算术解:35÷ =75(千克)
4、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、当堂测评(课件出示)
1、根据题意列出算式,不必计算(每题15分)。
(1)一个数的2/5是40,这个数是多少?
(2)一个数的3/8是24,这个数是多少?
(3)甲数是100,占乙数的4/5,乙数是多少?
(4)甲数是乙数的2/3,已知甲数是12,乙数是多少?
2、解决问题(40分)。
某校有女生160人,正好占男生的8/9,男生有多少人?
学生独立完成,教师巡回指点,注重学困生的提高。
小组内订正、互评,做到兵强兵。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果关键句中的单位“1”是未知的话,可以用方程或除法进行解答。
设计意图:
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,以使学生很清晰地掌握解题思路,引导学生解决问题的同时教给他们此类问题的解决方法。
分数除法教案 篇28
教学目标
1、使学生理解两个整数相除的商可以用分数来表示。
2、明确分数与除法的关系,加深学生对分数意义的理解。
教学重点
理解、归纳分数与除法的关系。
教学难点
用除法的意义理解分数的意义。
教学步骤
一、铺垫孕伏。
1、读题说得数。
3.2+1.68、0.8x0.5、14-7.4、0.3÷1.5、4.8x0.02
7.8+0.9、1.53-0.7、0.35÷15、0.4x0.8、0.8-0.37
2、口述表示的意义。
3、列式计算。
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知。
1、新课导入。
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了。(板书、分数与除法)
2、教学例2。
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米。(板书米)
(2)学生完整叙述自己想的过程。
(3)反馈练习。
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3、教学例3。
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流。
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块。
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块。(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义。
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是。
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份。
(6)反馈练习:说说下面分数的两种意义
4、归纳分数与除法的关系。
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子。也就是说分数既表示分数的意义,又表示整数除法的商。
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习。
三、全课小结。
通过今天的学习,你明白了什么?
四、随堂练习。
1、填空。
分数可以用来表示除法算式的()。其中分数的分子相当于(),分母相当于()。
2、用分数表示下列各式的商。
4÷511÷1327÷35
9÷913÷1633÷29
3、列式计算。
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业。
用分数表示下面各式的商。
3÷47÷1216÷4925÷249÷9
分数除法教案 篇29
单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。
单元教学目标:
1、理解并掌握分数除法的计算方法,回进行分数除法计算。
2、回解答已知一个数的'几分之几是多少求这个数的实际问题。
3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值
4、能运用比的知识解决有关的实际问题。
学情分析:
本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。
教学目标:
1、让学生理解分数除法的运算意义。
2、掌握分数除以整数的计算方法。
3、培养学生的计算能力和分析能力。
教学过程:备注
活动一:
出示例1
每盒水果糖重100克,3盒有多重?
1、读题理解题意
2、列式100*3=300
3、把乘法算式改成两道除法算式
300/3=100300/100=3
4、用千克做单位怎样列式?
1/10*3=3/10
5、|用同样的方法改写成除法算
小结:分数除法的意义
活动二:
出示例2
把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算
1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5
2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2
3、根据上面的折纸实验和算式,你发现什么规律?
小结:(略)
活动三:
巩固练习:
1、31页做一做1、2
板书设计
略去设计
分数除法教案 篇30
教学目标
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。
3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。
教学重难点
理解分数与除法的关系
教学准备
每人准备4张同样大小的圆片
教学过程
一、引入情境,揭示例题
口答题
1、把8块饼干平均分给4个小朋友,每人分得几块?
2、把4块饼干平均分给4个小朋友,每人分得几块?
3、把3块饼干平均分给4个小朋友,每人分得几块?
怎样列式?板书3÷4
引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?
不满1块那该怎么表示呢?
生:小数或分数
二、实践操作探索研究
师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?
学生动手操作
教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的。把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。
师:接下来我们请同学汇报一下他们研究所得结果。
(生讲述这样分的理由)
教师总结:
(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。
(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。
总结:把3块饼干平均分给4个小朋友,每人分得3/4块
板书:3÷4=3/4(块)
师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?
学生口述理由。板书:3÷5
师:想想该怎么去分?把你的想法和同桌交流下。
指名让学生说说思考过程。
板书:3÷5=3/5(块)
师:如果分给7个小朋友呢?
学生口述3÷7=3/7(块)
三、归纳总结,围绕主题
师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。
板书课题:分数与除法的关系
生相互交流。教师板书:被除数÷除数=
师:除法算式又可以写成什么形式?
生补充:被除数÷除数=被除数/除数
师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?
生:a÷b=a/b
师:这里的a和b可以取任何数吗?为什么?
生:除数不能为0。
师:分数和除法之间的关系,你有什么好的方法记住它们吗?
生交流讨论并回答
师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。
四、巩固练习,拓展延伸
师:请大家把书本打开到第45页,马上完成“练一练”的.第一小题。
集体校对。
师引导:比较上下两行有什么不同?
在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。
师:接下来请大家独立完成“试一试”两小题。
然后小组交流你是怎么想的?
师:把7分米改写成用米作单位,可以列怎样的除法算式?
生:7÷10=7/10(米)
师:第二个呢?
生:23÷60=23/60(时)
师:独立完成“练一练”的第二题
集体讲评校对。
师:完成“练习八”的第一题口答
师:完成“练习八”的第三题
学生在书本上完成,教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?
五、课堂作业
完成“练习八”的第二题
分数除法教案 篇31
教学目标:
能力目标:培养学生动手动脑能力,以及计算能力。
知识目标:
体验整数除以分数的计算方法,并能正确的计算。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:整数除以分数的'计算方法。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。
6÷=÷=÷=÷=
2÷=÷=÷=÷=
通过提问,全班订正,导入新课。并评价。
二、用小黑板出示下列题目。
3x=x=10x=25x=
提问学生解方程的规律,并指名说一说第一小题的解法。
其它题目独立作,全班订正。
三、课本第三题
指名说出题目的意思,然后解答,全班判定。
四、第四题
1、先独立计算,全班订正。
2、小组间交流发现了什么规律。
3、全班交流。
4、教师小结。
板书设计:
整数除以分数
除以真分数商大于整数
整数除以分数除以1商等于整数
除以假分数商小于整数
分数除法教案 篇32
1、 分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)
2、口算下面各题
36
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:1003=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?3003=100(克)
B、300克水果糖,每盒100克,可以装几盒?300100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
3=(千克)3=(千克)3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28做一做
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、2==,每份就是2个。
B、2==,每份就是的`。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
分数除法教案 篇33
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的.优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法教案 篇34
教学目标:
使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。
教学重点:
整数除以分数的计算方法的推导。
教学难点:
理解“÷”转化为“×”的转化过程。
教学过程:
一、复习
1、说一说÷18的意义。
2、一辆汔车2小时行驶90千米,1小时行驶多少千米?
(1)口述算式和结果。
(2)板书:数量关系:速度=路程×时间
二、新授
今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?
板书课题:一个数除以分数
(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?
教师板书:18÷ (出示线段图)
(2)推导18÷的计算方法。
引导学生分两步进行计算
第一部分:求小时行多少千米。
提问
1)、小时里面有几个小时?
2)、2个小时行驶多少千米?
3)、1个小时行驶多少千米?即小时行驶多少千米?
明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。
提问
1)、1小时里面有几个小时?
2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?
明确
1) 为1小时5个小时,所以,要算18××5,也就是18×。
2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。
根据上面的推想,板书:18÷=18×,=45千米
答汔车1小时行驶45千米。
强调
1)18÷不便于直接除,把它转化乘法。
2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。
3)是的倒数,即的倒数是。
2、小结:引导学生归纳整数除以分数的计算方法。
板书:整数除以分数可以转化为乘以这个数的`倒数。
三、巩固练习
1、在( )里填上适当的分数,使等式成立。
15÷=15×( )10÷ =10×( )
8÷=8×( ) ÷9=×( )
2、列式计算。
(1)一堆煤,每次用去 ,多少次才能用完?
(2)王晶小时做15朵花,1小时做多少朵花?
3、教科书第29页的“做一做”
四、作业 练习八第1——4题。
分数除法教案 篇35
教学目标
使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的计算方法,提高学生四则计算的能力。
教学重难点
运算顺序,简便运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习引新
二、教学新课
三、
四、作业
1、说说下面各题的'运算顺序。
8÷2+9÷318÷(12-3)
2、引入新课
1、教学例1
这道题要先算什么,再算什么?
上下练习。
引导观察计算过程,说明递等式书写的规范过程,并说明理由。
2、组织练习。
练一练1
说顺序后练习。
3、例2
说运算顺序,这里除法的两步按照计算法则要怎样算?
观察转化成乘法后的算式,想一想,是不是可以简便运算?
上下用简便算法。
问:用了什么运算定律?
4、练习;
练一练2
这里除一个数要怎样算?
用简便算法。
说说各运用了什么运算定律,是怎样算的?
说说运算顺序,要注意什么?
练习111~3、4、5
课后感受
混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。
分数除法教案 篇36
教学内容
一个数除以分数
教材第31、第32页的内容。
教学目标
1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。
2.能够熟练、正确地进行计算。
3.渗透转化的数学思想。
重点难点
重点:理解一个数除以分数的算理,掌握计算方法。
难点:能够熟练、正确地进行分数除法的计算。
教具学具
练习题投影片。
教学过程
一、导入
1.口算。
3.解答应用题。
投影出示:小明步行2小时走了6千米。他每小时走多少千米?
学生计算后,说出这道题中的数量关系。
板书:路程÷时间=速度。
二、教学实施
揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。
板书课题:一个数除以分数
1.出示例2。
(1)学生读题,明确题意。
提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)
(2)列式。
提问:怎样求小明的速度和小红的速度?
引导学生利用“速度=路程÷时间”这个关系式列式。
了2千米”。
提问:1小时行多少千米,在图上怎样表示?
小时行了多少千米)
4.归纳方法。
老师:观察比较例2的'两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?
学生自由发言。
板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.练习。
(1)完成教材第32页“做一做”的第1、2、3题。
(2)完成教材第34页练习七的第1~8题。
学生独立完成,集体订正。
三、课堂作业新设计
在里填上运算符号,在()里填上适当的数。
分数除法教案 篇37
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的`3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
课后感受
本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。
分数除法教案 篇38
教学目标:
使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。
重点难点:
分数除以整数的计算法则
教学准备:
实物投影仪
教学过程:
一、复习。
1.根据算式32×25=800写出两道除法算式。
2.说出下面各数的倒数。
0.25 、3、 5、 1、
3.填空。
(1)30÷5表示把30平均分成( )份,
求其中( )份是多少。
(2)求18的. 是多少,可以用算式18×( ),
也可以用算式18÷( ),所以18÷3=18×( )。
二、新授。
1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?
大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?
板书:给小猴子做一件背心需要多少米花布呢?
怎样列算式呢?
师:小组讨论一下,怎样计算呢?
哪位同学上来交流一下你组的计算过程呢?
教师归纳总结:
(1) 可以根据题意画出线段图。
(2) 利用平均分的思想,把 米平均分成3段,实际上就是把9个 米平均分成3份,每份是3个 米,
(3)根据分数乘法的意义,把 米平均分成3份,求每份是多少,也就是求 的 是多少。
1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。
2、教学绿点部分。
现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)
学生独立操作解答。
此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。
师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。
最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
问:上述结语中为什么要添上“0除外”?
三、巩固练习。
1.课本第61页的第1、2题。
2.下面的计算有错吗?错的请改正。
3.填空。
四、作业。
1.自主练习第4、8、9题。
2.判断对错
分数除法教案 篇39
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的`等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χx2/9=6
χx2/9÷2/9=6÷2/9
χx=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χx1/5=30χx2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
分数除法教案(精选21篇)
作为一位杰出的教职工,时常需要用到教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编为大家收集的分数除法教案,欢迎大家分享。
分数除法教案 篇40
一、复习
1、口算分数乘法
前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:
(出示)4/71/3 203/4 3/816 2/33/2
2、(复习倒数)其中当计算完2/33/2时提问:
看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))
说得不错,下面就请同学们说说下面各数的倒数分别是什么?
(出示) 3/8 4 1 2/9
3、把100千克的一桶油平均分成2分,每份是100千克的( )/( ),求100千克的1/2,列式为___。
把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。
同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。
二、新授
(一)教学例1
1、教学第一种算法
例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
读题
提问:怎样列式?(4/52)
怎样计算呢?
(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)
从图中你能看出每份是多少米?(板书:2/5升)
那么2/5升是怎样算出的呢?
4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)
(2)补充例证
如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?
怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?
(3)观察比较
提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)
(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。
2、教学第二种算法
(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)
(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算
通过这两种交流,使学生知道分数除以整数的'方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。
(3)让学生做试一试的题(自主选择计算方法)
计算好了以后,再请学生说说你的思路是怎么样的
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
(4)你能用简炼的语言概括一下这种方法吗?
教师板书:分数除以整数,等于分数除以整数的倒数
(5)你认为这个计算方法有什么重要的地方需要提醒大家。
教师用红笔标注。
三、巩固练习
老师也为同学们准备了一套星级赛题,你们有信心挑战吗?
一星题:
1、课本56页的练一练第1题
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
二星题:
2、这里还有6道题,哪些同学愿意到前面来解答的?
练一练第2、3题
让学生能根据题目灵活选择计算方法
做好以后进行集体讲解和订正
三星题:
3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?
8/94=8/91/4=2/9 2/73=2/73=6/7
8/94=8/91/4=2/9 3/73=3/71/3=1/7
师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。
四星题:
4、练习十一第2题
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
五星题:
1、如果a是一个不等于0的自然数,13 a等于多少
问:你能用具体的数来检验这个结果吗?
2、( )/( )3=5/18 7/( )=( )/24
四、小结
本课我们学习了什么内容?
分数除法教案 篇41
教学内容:
教材第29~30页“分数除法(三)”。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。
2.在解方程中,巩固分数除法的计算方法。
教学重难点:
1.能够体会方程是解决实际问题的重要模型。
2.能够用方程解决实际问题。
教学过程:
一、创设情景激趣揭题
1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?
2.引入并板书课题。
二、扶放结合探究新知
1.根据这些数学信息,你能提出哪些数学问题?
2.引导学生逐一解答提出的问题。
3.重点引导:跳绳的有6人,是操场上参加总人数的`2/9,操场上有多少人?该怎样解答?
4.引导观察,找出有什么相同点和不同点?
三、反馈矫正落实双基
1.指导完成P29的试一试的1,2题。
2.你能根据方程
X×1/5=30
编一道应用题吗?
3.请你想一个问题情景,遍一道分数应用题。
四、小结评价布置预习
1.引导小结
通过本节课的学习你有哪些收获?
2.布置预习
整理前面所学知识。
板书设计:
分数除法(三)
跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?
参加活动总人数×2/9=跳绳的人数
解:设操场有X人参加活动。
分数除法教案 篇42
教材分析:
《分数与除法》是北师大版小学数学五年级上册第三单元《分数》第五课时的教学内容。
在学生第一学段初步认识分数、体验分数产生、理解分数的意义、读写一些简单分数的基础上,在本册教材的第三单元前四课时,学生结合具体情境,再次认识分数,大大丰富了学生的感性认识。本节教学内容重视引导学生在观察比较中发现分数与除法的关系,在此基础上探索假分数与带分数的互化方法。教材从分蛋糕的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。它是学生进一步学习分数基本性质的基础。
设计理念:
1、重视知识的获取过程,树立新的'教学观。
数学课程标准指出:把只关注知识结果转向要重视知识结果,更要关注获取知识的过程,以被动听讲和练习为主的方式,是难以引起学生思考的。这节课,我不想把知识、结果直接告诉给学生,而是为学生探索发现新知创造机会,给他们提供一些感兴趣的、有思考价值的数学材料,让学生通过观察、分析、比较、小组讨论等活动来获取知识。
2、重组教材,树立新的教材观。
新课程主张用教材教,而不是教教材。教师要由对教材的挖掘者、执行者走向课程开发的研究者、设计者。本节课,我对教材进行分析后,把原来教材2课时放在一个课时教学,体现了大容量的课堂。
教学目标:
1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。
教学重点:
1、掌握分数与除法的关系,会用分数表示除法的商。
2、运用分数与除法的关系,正确进行假分数与带分数的互化。
教学教法:
为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。
教学过程:
一、情境导入,引出新知。
课件播放分饼情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出除法与分数这两个教学内容的主角。
二、探究发现,归纳认知。
1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习
(1)、把a块饼平均分成8份,每份是多少块?
(2)、把a块饼平均分成b份,每份是多少块?
学生先写出除法算式,再用分数表示结果,教师板书
12=1/2块
94=9/4块
a8=a/8块
ab=a/b块
通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。
2、归纳认知,明确关系。
(1)、学生观察思考:分数和除法有怎样的关系?
(2)、汇报发现。
板书:被除数 除数=
(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?
学生讨论得出:分母不能为0。
板书:(除数不为0)。
3、尝试用字母表示。
4、及时练习。
23= 87= 165= 1012=
5/6= ()() 13/15=()( )
12/7= ()() 100/6= ()( )
(二)假分数与带分数的互化。
怎样把7/3化成带分数呢?怎样把 2 化成假分数?
1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。
2、检测合作学习效果。
3、师做针对性点评。
4、及时练习。
课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。
四、全课小结,学生谈收获。
学生总结出本课的知识点,对本节课的学习形成一个完整的认识。
板书设计:
板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。
分数除法教案 篇43
设计说明
苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。
另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣
课前准备
教师准备 PPT课件、长方形包装纸
学生准备 长方形纸
教学过程
⊙创设情境,提出问题
1.问题导入。
师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。
请你们列出算式并计算。
(1)每人吃张饼,4个人共吃多少张饼?
(2)把2张饼平均分给4个人,每人分得多少张饼?
(3)有2张饼,每人分得张饼,可以分给几个人?
(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)
2.揭示分数除法的意义。
讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。
⊙合作交流,探究新知
1.引导参与,探究新知。
(1)出示教材55页例题。
师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?
(2)动手操作,分一分,涂一涂。
师:请大家拿出一张长方形纸,涂色表示出这张纸的。
(学生动手操作,教师巡视指导)
师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。
(学生活动,教师指导)
(3)观察发现。
师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?
预设
(教师利用课件配合学生汇报)
生1:把平均分成2份,每份是2个小格,占这张纸的。
生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。
设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。
2.初探算法。
师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?
预设
生:分母不变,被除数的分子除以整数得到的商作商的分子。
提出质疑,验证猜想,理解新知。
(1)尝试验证,发现问题。
师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?
(学生汇报验证的结果)
师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)
分数除法教案 篇44
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的.计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
教学后记
分数除法教案 篇45
教学目的:
使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。
教学过程
一、复习
1.口算下列各题。
2.把下列假分数改写成带分数。
3.把下列带分数改写成假分数。
让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。
二、新课
1.教学例5。
教师出示例5:
教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)
教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)
教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。
2.做教科书第39页中间做一做的题目。
让学生独立完成。做完后集体订正。
3.教学例6。
(1)准备题。
①的3倍是多少?②的是多少?③的是多少?
教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)
教师让学生计算后集体订正。
(2)教学6。
教师出示例6:
教师指名说题目的条件和问题。
教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)
教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)
教师:应该设什么数为未知数x?(设这个数为未知数x。)
让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。
4.做教科书39页下面做一做题目。
让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。
三、巩固练习
1.做练习十第1题第1行的小题。
让学生装独立完成。做完后集体订正。
2.做练习十第2题的前2个小题。
让学生装独立完成,做完后集体订正。
3.做练习十第3题的第(1)~(3)题。
第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。
第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)
4.做练习十的第5题。
教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。
四、作业
练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。
分数除法教案 篇46
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的',全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.课件演示:
2.列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
分数除法教案 篇47
教学目标
1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。
2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。
教学重点和难点
确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。
教学过程
(一)复习准备
1.找出单位1。
2.出示第88页的复习题。
(1)画图分析并列式解答。
(2)说说你是怎样思考和解答的?
(3)学生分析教师板演线段图。
3.导入:
今天我们继续学习分数应用题。
(二)学习新课
现在老师把这道题改动一下。
1.出示例6。
千克?
2.分析解答。
(1)读题,找出已知条件和问题。
(2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的
不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)
(3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位
(4)谁来分析这个条件?
成8份,吃了的'占其中的5份。)
学生分析的同时教师板演线段图:
(5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?
生在黑板上画出:
(6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)
(7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)
(8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它
(9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)
(10)试着在练习本上列方程解答。
(11)谁能说说你是怎样解答的?
生口述:
解 设买来大米x千克。
答:买来大米40千克。
题中的等量关系式是什么?
(买来的重量还剩几分之几=还剩的重量。)
3.小结。
通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)
解答方法相同吗?为什么?
(解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)
4.出示例7。
烧煤多少吨?
(1)读题,找出已知条件和所求问题。
(3)画图分析解答。
①从这个条件可以看出题中是几个数量相比?(两个数量相比。)
追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)
我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)
②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)
下一步画什么?(实际烧煤吨数。)
指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的
这两条线段谁为已知?谁为未知?
在提问回答的过程中教师板演线段图:
③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?
(计划烧煤吨数-节约吨数=实际烧煤吨数。)
计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)
④试做在练习本上。
⑤反馈:说说你的解答方法及依据。
解 设四月份原计划烧煤x吨。
答:四月份原计划烧煤135吨。
(1)学生独立画图分析并列式解答。
(2)反馈提问:
②你用什么方法解答的?依据的等量关系式是什么?
(三)课堂总结
今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?
(数量间的等量关系相同,解答方法不同。)
(四)巩固反馈
(1)课本第91页的第2题。
(2)根据列式补充条件:
(五)布置作业
课本第91页第1,3题。
课堂教学设计说明
本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。
由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。
在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
分数除法教案 篇48
教学目标:
1、使学生理解分数除法的意义与整数除法的意义相同。
2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。
3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。
教学重点:
理解分数除法的意义和分数除以整数的计算方法。
教学难点:
正确地归纳出分数除以整数的计算方法,并能准确地计算。
教具准备:
课件、练习纸多张。
教学过程:
一、复习铺垫。
1、根据4×5=20,写出两个除法算式。
(1)让学生说算式,再说说是怎样想的。
(2)让学生回忆整数除法的意义是什么?
二、知识迁移,理解分数除法的意义。
1、课件出示例子,每盒水果糖重100克,3盒有多重?
指名列式计算:100×3=300(克)
2、让学生将上题改编成用除法计算的问题并列式计算。
学生汇报师板书:3盒水果糖重300克,每盒有多重?300÷3=100(克)
300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
先思考,再试着写一写。(学生独立完成列式)
3、出示10厘米=米、100克=千克。(要求学生完成)
4、汇报:
(1)每盒水果糖重110千克,3盒有多重?110 ×3= 310(千克)
(2)3盒水果糖重310千克,每盒有多重?310÷3=110(千克)
(3)310千克水果糖,每盒重110千克,可以装几盒?310÷ 110=3(盒)
5、引导学生观察这三个算式,比较和整数数除法的不同和相同之处,在小组内交流。
6、引导学生理解分数除法的意义和整数除法的.意义相同,并试着用自己的话小结分数除法的`意义。(板书部分课题:分数除法的意义)
7、练习。
(1)完成28页“做一做”。
(2)练习八第1题,让学生独立填写到书上32页。
三、自主探究,掌握分数除以整数的计算方法
(一)教学例2
1、谈话:刚才我们根据分数乘法的算式很顺利地写出了除法算式的商,但是如果没有分数乘法的算式,我们又该怎样计算出分数除法的商呢?下面我们就来研究分数除以整数的计算方法。(板书课题:分数除以整数)
2、课件出示例2,指一名同学读题。
3、让学生自己先试着折一折,涂一涂,算一算,再同桌交流折纸方法、计算过程及算理。
4、小组汇报:
A、把45平均分成2份,就是把4个15平均分成2份,每份就是2个15,就是。因此可以列出算式:45÷2=25
B、把45平均分成2份,每份就是45的12也就是45×12。因此可以列式计算如下:
45÷2=45×12=25
(二)教学45÷3
1、初步比较:你觉得哪种方法好?
首先请学生对两种方法进行初步比较:你认为哪种方法好?这时并不急于统一思想,转而请学生计算÷3。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。
2、课件出示问题,学生独立完成例2第二个小问题,同时允许学生折纸。
3、汇报结果。45÷3=45 ×13=415
4、比较两种方法。
提问:为什么这道题没有用两种方法列式?
通过同学们的计算,你认为哪种方法更简便,更常用?
5、观察这两个计算过程,发现什么变了?什么没变吗?
6、分组讨论分数除以整数的计算方法。
通过刚才的计算和观察,大家能发现分数除以整数在计算中有什么规律吗?先独立思考,再在小组内说一说。引导得出:分数除以整数(0除外),等于分数乘这个整数的倒数。(板书)
7、练习
四、练习巩固,拓展应用
课本练习八第1、2、3。
五、全课总结。
1、通过这节课的学习,你有什么收获?
2、通过今天的学习,大家不仅知道了分数除法的意义和整数除法的意义相同,还学会了把分数除以整数转化为分数乘法进行计算。本来无关联的乘除运算在这里居然可以转化统一,这就是转化带给我们的美妙与奇特。学好数学吧,你会感受到数学的无限魅力。
分数除法教案 篇49
教学目标
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1.投影,看乘法算式写出两道除法算式。
67=42
( )( )=( )
( )( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的'计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。
分数除法教案 篇50
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的`2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
课后感受
本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。
分数除法教案模板锦集十篇
作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?以下是小编整理的分数除法教案10篇,欢迎阅读,希望大家能够喜欢。
分数除法教案 篇51
教学内容:
教科书第62页例5及“试一试”“练一练”,练习十二第1~3题。
教学目标:
1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。
2、使学生在探索解决问题方法的过程中,进一步培养学生独立思考等能力。
重难点:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。
教学过程:
一、导入
出示例题5的图,小瓶标注600ml,大瓶标注?ml
启发:这两瓶果汁,从图中你知道了什么?
学生口答后,追问:根据图中的已知条件,你能求出一大瓶果汁有多少毫升吗?为什么?
提出要求:如果让你补充一个条件表示这两瓶果汁数量关系,你打算怎么样补充条件?
学生可能补充:大瓶的果汁比小瓶多300毫升,大瓶是小瓶的3/2等等,教师参与学生的交流并出示:小瓶里果汁是大瓶的2/3
引导:根据老师补充的这个条件,你能求“一大瓶果汁有多少ml吗?
二、探究
1、教学例题5
提问:小瓶里的果汁是大瓶的2/3,这个条件中的2/3是哪两个数量比较的结果?
提问:把哪个数量看做单位1,单位1的2/3是哪个数量?
提出要求:你能根据上面的讨论,找出题目中的数量之间的相等的关系吗?
先请学生互相说,再请全班说。
板书:大瓶果汁量×2/3=小瓶果汁的量
启发:现在你准备如何来进行解决?
在学生回答:可以列方程后,追问:可以怎么样列方程?
根据学生的回答,板书:
解:设:一大瓶果汁有x毫升。
x×2/3=600
学生完成课本上的解方程,并指名板演
启发:x=900是不是正确的解呢?你会进行检验吗?
让学生进行检验,并交流检验的方法
2、教学试一试
学生读题后,提问:你能根据题目意思说出两个分数之间的含意吗?在讨论中明确:1/2表示已经喝的是一盒的1/2;而2/5l表示已喝的牛奶升数。
启发:根据对题意的理解,你能先把数量关系补充完整吗,再解答吗?
学生解答以后,再让学生说说怎么想的?
三、练习
1、做练一练
要求学生独立的做,提问:你是怎么样想的?
2、作练习十二的第1题
先让学生把数量关系补充完成,再解答。学生完成以后,指名说说思考的过程。
3、做练习十二的2、3题
先让学生独立的解答,再根据完成情况进行点评。
四、小结
今天这节课,你学到了什么内容?
课前思考:
例题5是已知一个量的几分之几是多少,求这个量。这类实际问题的顺向思维是根据关键句写出数量关系式,再列方程解决。但由于用方程解答需要写出“解设------为x”,解方程的过程也比较麻烦,所以如果让学生自由选择的话,估计很多学生会选择用算术方法解答。如何让学生从一开始就体会到用算术解的优越性?我想对本课的教学做如下调整:
一、找找“1”的量是什么?再将数量关系式补充完整。
1、男生的人数是女生的4/5
( )的人数×4/5=( )的人数
2、一条路,已经修好了1/5。
( )的长度×1/5=( )的长度
3、9月份实际用电量比8月份少1/4
( )用电量×1/4=( )用电量
4、小瓶里的果汁是大瓶的2/3
( )的果汁量×2/3=( )的果汁量
二、新授
1、接着复习题,如果小瓶里的果汁有600毫升,那么大瓶里的果汁有多少毫升?你准备怎样解答?你是怎样想的?引导学生发现此时根据数量关系的分析,应该采用方程解很好理解。
2、让学生独立解答,指名板演。
3、评价板演题,分析情况。
4、再出示:如果知道大瓶里的果汁是900毫升,怎样求小瓶里有多少毫升?你是怎样想的?为什么现在直接用算术方法解答。
5、总结解决分数实际问题的思考过程:
(1)找关键句,分析单位“1”的量,找到数量关系式。
(2)根据数量关系分析,确定解答方法。(方程解还是算术方法解)
(3)列式解答。
(4)检验。
三、巩固练习
(同潘老师设计)
课前思考:
找数量关系式——列方程解题的关键
本课时教学的这道例题的教学重点是为什么用方程解答,以及怎样列出方程。分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。学生读题后要思考 “大瓶和小瓶的果汁量有什么关系”,要仔细领会“小瓶的果汁量是大瓶的'2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”这一数量关系式中,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。但实际教学中如果有学生想到用除法计算也要加以肯定。因为相对于学习困难生来讲,用列方程的方法便于思考和理解。所以不能把这类题规定学生一定要用方程解,这违背了编者的意图。
“试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,有些学生如果感悟到求单位“1”的量应用除法计算也未尝不可。
课后反思
这节课学习的分数除法应用题是在学生掌握了分数乘法应用题以及分数除法的意义和计算法则之后进行教学的,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系(这是本节课的重点也是难点),根据数量关系列出方程。
在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,增加了对同一个问题根据算式补充条件的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。
课后反思:
例题5是典型的分数除法应用题,但现在的新教材屏弃了原老教材对单位“1”已知还是未知的判断,从而确定解答方法是乘法还是除法的思考方法。引导学生对关键句分析,找“单位1”的量,分析数量关系,这样将分数乘除法应用题统一为一种思考方法,学生的思维难度降低了。
从今天课堂表现看,思考解答方法学生能掌握了,但从对关键句的分析中,发现部分学生根据关键句找数量关系有一些困难,直接导致解答方法不正确。
课后反思:
因为昨天的数学课上,我安排了分析数量关系式的练习,为学习今天的内容做了一些准备,所以今天的数学课上,一开始,我就将例题5改编为“大瓶里有果汁900毫升,小瓶里的果汁是大瓶的2/3,小瓶里有果汁多少毫升?”,然后让学生写出数量关系式并列式解答。接着,我再将这一题改为例题5,并组织学生再次分析数量关系式,学生们发现和刚才一题的数量关系式相同,但是这一题中已知小瓶果汁量,要求大瓶果汁量,我问学生“你会解决这个问题吗?”学生独立尝试解答这一题,在交流时大部分学生根据刚才分析的数量关系式列出了方程。在随后的练习中,我再次要求学生先根据题中的关键句分析数量关系式再解答,巡视学生练习情况时也特别关注学生分析数量关系式的正确率。
课堂作业中,学生们完成得不错,都能先写出数量关系式再列方程解答。看来,明天的课上可以让他们学习用除法直接解决这类数学问题。
分数除法教案 篇52
教学目标
(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。
教学重点、难点
重点、难点:理解分数与除法的关系。
教具、学具准备
教 学过程
备 注
一、复习铺垫
1、口述下列分数的意义:
1/44/57/9
2、口答列式计算。
(1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?
120÷12=10(人)
(2)把12米长的钢管平均截成6段,每段长多少米?
12÷6=2(米)
归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。
如果把(2)题的12米改成1米,如何列式?
1÷6
它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。
出示课题“分数与除法的关系”。
二、教学新知
1、教学例2。
把1米长的钢管,平均截成6段,每段长多少米?
(1)边作图边讲解。
“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的.钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以
1÷6=1/6(米)
(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)
2、教学例3。
把3只月饼平均分成4份,每份是多少?
教学过程
备 注
(1)读题后指名学生列式:
3÷4
(2)边讲解边出示图式
(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。
第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。
得出3÷4=3/4(只)
:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。
3、归纳分数与除法的关系。
(1)观察例2、例3的算式。
1÷6=1/6(米)
3÷4=3/4(只)
(2)思考分数与除法有什么关系?
(3)结论:
被除数÷除数=被除数/除数
(4)练一练:
课本P75第1题。
把分数改写成除法算式。
4/7=()÷()21/25=()÷()
14/27=()÷()7÷()=7/()
讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?
结论:在除法中,除数不能为零。
在分数中,分母不能为零。
三、练习反馈
1、7分米是几分之几米?
23分钟是几分之几小时?
学生独立练习后集中反馈,说一说思考过程。
:“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。
把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。
2、练一练:
课本P76第5题填在书上。
四、课堂练习
课本P76第2、3、4题。
五、课后作业《作业本》
学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。
分数除法教案 篇53
一 教学内容
分数与除法
教材第66页的例3及做一做。
二 教学目标
1 .使学生掌握分数与除法的关系。
2 ,培养学生的应用意识。
三 重点难点
1 .理解、归纳分数与除法的关系。
2 .用除法的意义理解分数的意义。
四 教具准备
圆片。
五 教学过程
(一)引入。
老师:5 除以9 ,商是多少?(板书:5 ÷ 9 = )如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的`关系
(二)教学实施
1 .学习例3 。
( 1 )板书例题。
小新家养鹅7 只,养鸭10 只。养鹅的只数是鸭的几分之几?
( 2 )指名读题,理解题意并列出算式。板书:7÷10
( 3 )利用除法和分数的关系得出结果。
7 ÷ 10 =
所以养鹅的只数是鸭的 。
三)思维训练
1 .把8 米长的绳子平均分成13 段,每段长多少米?
2 .把一个5 平方米的圆形花坛分成大小相同的6 块,每一块是多少平方米?(用分数表示)
四)课堂小结
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
后记:
分数除法教案 篇54
教学内容:
分数乘法、除法计算练习
教学目标:
1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。
2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。
3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。
教学重、难点:
掌握运用分数乘法解决简单实际问题的基本思路与方法。
教学对策:
设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。
教学准备:
自制投影片或小黑板
教学过程:
一、揭示课题
谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)
二、基本练习
1、计算练习。
5/129/10 3410/51 22/3926/11
10/2112/257/8 3/20145/7
8/15 6 11/622 2515/16 812/13
11/1222/9 15/165/12 5/1410/21
学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。
组织学生小结分数乘法和分数除法的计算方法。
2、解方程。
12x=9/11 3/8x=9/10 6/5x=15
学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。
3、在○里填上、或=。
5/711/13○5/7 7/916○7/91/16
5/71○5/7 5/77/5○5/7
6/73/5○6/7 3/84/ 3○3/8
110/9○1 8/111○8/1
学生不计算,通过已学知识进行判断,然后交流判断理由。
教师及时组织学生小结:
一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。
一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。
4、根据已知条件找准单位1的量并说说数量关系式。
(1)白兔只数的5/12是黑兔的只数。
(2)已经修了公路全长的3/4。
(3)今年棉花产量比去年增加1/8。
(4)第三季度冰箱价格比第二季度便宜1/10。
(5)二班植树棵数相当于一班的9/8。
(6)还剩这堆煤的3/8。
学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。
5、解决实际问题。
(1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?
(2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的'柴油有多少升?
(3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?
(4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?
(5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?
(6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?
(7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?
学生独立完成后进行交流,主要交流思考过程。
三、全课总结
评价一下自己的练习情况,分析一下还存在什么问题。
课后反思:
按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。
但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。
分数除法教案 篇55
教学目标:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。
教学重点:
掌握分数除法的计算法则。
教学过程:
一、复习
说出下列分数的倒数。
二、新课
1、教学例3
提问:按照题意应该怎样列式?(生说师板书)
想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3
教师:分数除以分数的计算方法跟整数除以分数有什么联系?
让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。
学生看书P29读法则。
教学分数除法的统一法则。
做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)
教师提问:整数能否看成分数?(可以看成分母是1的分数)
教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)
学生看书P30并读统一的法则。
三、巩固练习
1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。
2、做练习八第5题第1行的小题。第6题的前两栏的题目。
3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)
4、做练习八的第8题。
学生做后教师让学生说一说想法。
5、做练习八第9题。
做题前提问:1米等于多少厘米?1千米等于多少米?1吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。
四、小结
教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。
五、作业
练习八第5题第2行的小题,第6题的第3、4栏小题。
分数除法教案 篇56
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位1的量,会分析题中的数量关系。
教学难点:
分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的',要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
+=25
(1+)=25
=25
=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案 篇57
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χ×2/9=6
χ×2/9÷2/9=6÷2/9
χ×=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?
(3)操场上踢足球的'有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χ×1/5=30 χ×2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
