知远网整理的比的意义教学设计(精选32篇),希望能帮助到大家,请阅读参考。
比的意义教学设计 篇1
学习目标
引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
学习重点
负数的意义。
学习难点
负数的意义。
教学过程
一、创设情境
二、探究新知
(1)活动一
(2)教学例1
出示温度计,请同学们在温度计上分别找到零上16℃和零下16℃。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(3)活动二
(4)教学例2
说一说存折上的.数各表示什么?
活动一:用不同的数分别表示零上温度和零下温度。
1.观察数学书P1的例1图:
思考:
(1)室内和室外的气温分别是多少摄氏度?
(2)你能用数学的方法区分和表示这两个不同的温度吗?我想这样表示:
2.组内交流各自的想法,有不懂的问题在小组内讨论。
3.阅读并弄懂下面两行话
零上4摄氏度记作+4℃,零下4摄氏度记作-4℃,+4读作“正四”,-4读作“负四”,+4可写作4。
活动二:理解正数与负数表示的具体意义。
看例2的存折明细示意图,从图中你能知道什么?
比的意义教学设计 篇2
教学内容:
苏教版三年级下册P
教学目标:
1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。
2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。
3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。
教具准备:
多媒体课件
教学过程:
一、情境导入:
小明搬新家了,家里需要一张新书桌,妈妈让小明自己到商店挑选,但是要记录下所选书桌的长和宽各是多少米。接到任务后,小明邀请好朋友晓红一起来到商店。我们看一看他们所选的书桌是什么样的?(课件演示)
(评析:开课创设与学生生活和学习内容相适应的情境,促使学生在生动、具体的情境中主动学习数学,让学生感受到生活中处处有数学。)
二、新知探索:
1、认识整数部分是0的小数。
①从长5分米,宽4分米这两个信息中你们了解到什么?
②xx的要求是用米作单位,5分米、4分米究竟是多少米呢?运用前面所学到的知识想一想。
③5分米是几分之几米?4分米是几分之几米?
随着学生的回答,师指出:5分米是把1米平均分成10份,5分米是其中的5份,可以用分数5/10米表示。
(评析:运用学生已有的知识作为新知识的切入点,符合学生的认知规律。同时教师引导学生通过阅读信息,学习分析信息获取知识,又巧妙实现了由生活问题到数学问题的转移。)
随着学生的回答,师指出:5分米的长度,是把1米平均分成10份,5分米是其中的5份,可以用5/10米表示。
除了用5/10米表示以外,还可以用米来表示。
请学生仔细看,米是怎样写的?读作:零点五
④4分米是几分之几米?用小数怎样表示呢?(课件演示同上)
⑤7分米呢?学生回答后完成想想做做第一题,填完后小组内交流:为什么要这样填?
⑥学生汇报:
课件演示
1分米 3分米 7分米 9分米
1/10米 3/10米 7/10米 9/10米
米 米 米 米
仔细观察:
你发现分数十分之几可以写成小数什么?零点几就表示什么?
⑦动手操作:
用一张长方形的纸折出2/10,再用小数表示出来。
再用一张长方形的纸折出。
小结:
十分之几可以写成小数零点几,零点几就表示十分之际。
板书课题:小数的意义和读写
小结:
小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。我国古代数学家刘徽在一千七百多年前就开始应用十进分数。(课件介绍古代数学家刘徽)
(评析:教师适时的在数学教学中进行德育渗透,激发学生的民族自豪感,增强学生的爱国情感。)
说一说你还在哪些地方见过小数。
2、认识整数部分不是0的小数。
小明和晓红选完书桌后又在商店里转了转,看到圆珠笔1元2角,笔记本3元5角,你们能用小数表示出圆珠笔和笔记本各是多少元吗?
①学生自主探究,再在小组中合作交流。
②学生汇报,并将板书补充完整。
1元2角还可以写成 元 读作: 一点二
3元5角还可以写成 元 读作: 三点五
小结:
几元几角分成两部分,几元和几角,先把几角表示成零点几元,再和几元合起来是几点几元。
③观察小数:这些小数有什么特点?
小数中间的点叫做小数点,小数点把小数分成了两部分,小数点的左边是整数部分,右边是小数部分。
我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,它们都是整数。今天学的、、和都是小数。
④任意写出几个小数,在小组中读一读。
全班交流时指名说一说整数部分是几?分数部分是几?
(评析:如何在课堂上开展探索性学习是当前数学教师所探索的问题。本段教学在这方面做了较好的展示,学生充分运用自主探究动手实践合作交流的学习方式,开展多角度、多层次的探究活动。学生的交流与教师的适时引导交相辉映,将探究活动不断推向深入。)
三、应用反思:
1、小明和晓红在商店里还看到很多食品。(课件演示想想做做第二题。)
你能用元作单位表示出这些食品的价格吗?
2、他们还看到有的商品是这样表示价格的。(课件演示想想做做第四题。)
先读出这些商品的价钱,再说一说是几元几角。
3、小明和晓红在商店里不仅选到了自己喜欢的书桌,而且还学会了一个数学知识,你们学会了吗?
完成想想做做第五题。
(评析:练习的设计始终使学生处在生活的情境中解决问题,不但提高了学生继续学习的兴趣,而且使学生切实体会到数学与生活的密切联系。)
四、课后延伸:
小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。
[总评:本节课从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯穿于整个教学的始终。注意将数学与学生生活紧密相连,遵循了数学源于生活,实现了数学的`应用价值。具体地说有以下几个特点:
1、创设生活情境,使数学问题生活化。
本节课教师从课一开始就创设小明、晓红逛商店这一生活情境,而且这一情境始终贯穿整个教学过程中。使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,感到生活中处处有数学,数学就在身边,他们被浓厚的生活气息所带动,兴致勃勃投入新课的学习中。
2、自主探究、合作交流,让学生经历知识形成的过程。
数学知识、思想、方法必须由学生在实践活动中理解、感悟、发展,而不是单纯依xx教师的讲解去获得。根据这一理念,教师在教学中从学生的认知规律和知识结构的实际出发,让他们通过有目的的观察、操作、交流、讨论,从直观到抽象,主动构建自己的认知结构。
3、有机渗透思想品德教育,培养学生的爱国情感。
培养学生的情感态度和价值观是每一位教师教学的重要目标之一,本节课在充分发掘教学内容,发展学生能力的基础上,介绍了我国古代数学家刘徽,使学生了解我国悠久灿烂的文化,增强学生的爱国情感,树立建设祖国的信念。
总之,本课教学注重体现以学生发展为本的理念,重视学生的自主探究、创新精神和实践能力的培养。通过创设情境,把数学知识与生活实际结合起来,让学生在操作、交流、探究中去思考、体验和感悟,在实践中学习数学,在学习中体会到学习数学的乐趣,让学生在获取知识形成技能的同时,情感、态度、价值观都得到发展。
比的意义教学设计 篇3
教学目标
1.使学生理解并掌握比例的意义和基本性质。
2.认识比例的各部分的名称。
教学重点
比例的意义和基本性质。
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程
一、复习准备。
(一)教师提问复习。
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值。
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接。
教师板书:4.5∶2.7=10∶6
二、新授教学。
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
class=Normal vAlign=top width=166>
时间(时)
class=Normal vAlign=top width=166>
2
class=Normal vAlign=top width=166>
5
class=Normal vAlign=top width=166>
路程(千米)
class=Normal vAlign=top width=166>
80
class=Normal vAlign=top width=166>
200
>
1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例。
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例。
(2)一个比例,等号左边的比和等号右边的比一定是( )的。
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的'内项。(板书)
2.练习:指出下面比例的外项和内项。
4.5∶2.7=10∶66∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明。
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积。
5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整。
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
比的意义教学设计 篇4
一、教学目标
(一)知识目标
1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵、2.通过函数图象直观了解导数的几何意义、
(二)能力目标
掌握用定义法求函数的导数的一般步骤,并能利用函数的导数知识解决一些应用性问题、
(三)情感目标
通过“极限法”的学习,提高学生的数学素质,加强学生分析问题和解决问题的能力,认识事物之间的相互联系,会用联系的观点看问题、
二、教学重点
导数的定义与求导的方法、
三、教学难点
对导数概念的理解、
四、教学过程:
(一)复习引入
师:前面我们研究了两类问题,一类来自物理学,涉及平均速度和瞬时速度;另一类问题来自几何学,涉及割线斜率和切线斜率、你们能否将这两类问题所涉及的共性表述出来?
生:这两类问题都涉及到以下几件事:(1)一个函数f(x);(2)f(x+d)-f(x);
f(xd)f(x)(3);
df(xd)f(x)趋于一个确定的常数、
d师:很好,我们发现上述两类问题虽然来自的学科领域,但有着相同的数学模型,今天我们就一起来研究这个数学模型——导数的概念和几何意义、
(二)探求新知
1、增量、变化率的概念(4)当d趋于0时,对于函数yf(x),P0(x0,y0)是函数图象上的一点,Q(x1,y1)是另一点,自变量从x0变化为x1时,相应的函数值有y0变为y1,其中x1-x2叫做自变量x的增量,记为△x,y1-y0叫做函数的增量(也叫函数的差分),记为△y,则yf(x1)f(x0)、y叫做函数的
x变化率(或函数f(x)在步长为△x的差商)、★光滑曲线上某点切线的斜率的本质——函数平均变化率的极限、★物体运动的瞬时速度的本质——位移平均变化率的极限、2.导数定义
f(x0d)f(x0)设函数f(x)在包含x0的某个区间上有定义,如果比值在d趋于0时,
d(d≠0)趋于确定的极限值,则称此极限值为函数f(x)在x=x0处的导数或微商,记做f'(x)、上述定义的符号表示为:f(x0d)f(x0)f'(x0)(d0)、
d这个表达式读作“d趋于0时,f(x0d)f(x0)趋于f'(x0)、
d简单地说:函数的瞬时变化率,在数学上叫做函数的导数或微商、★f'(x)也是关于x的函数,叫做函数f(x)的导函数、3.求导数的步骤
(1)求函数的增量yf(x0x)f(x0)、;(2)求平均变化率
yf(x0x)f(x0)=;xx(3)令△x→0,差商→f'(x0)、4.导数的几何意义
函数yf(x)在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0,f(x0))处的切线的`斜率f'(x0)、5.导数的物理意义
函数ss(t)在点t0处的导数s'(t0)的物理意义是运动物体在时刻t0处的瞬时速度、
(三)讲解例题
例1国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连续检测结果如图所示(图中W1(t),W2(t)分别表示甲、乙企业在时刻t的排污量)、试问哪个企业的治污效果较好?
分析:本题主要体现差商(即差分和对应步长的比)定义在现实生活中的运用,要想知道哪个企业的治污效果好,关键看平均治污率,平均治污率越大,治污效果越好、解:在时刻t1处,虽然W1(t)=W2(t),排即排污量相同,但是考虑到一开始
污量有W1(t0)>W2(t0),所以有W1(t)W1(t1)W1(t0)W2(t1)W2(t0)
t1t0t1t0W2(t)标准t1t2说明在单位时间里企业甲比企业乙的平均治污率大、即企业甲的治污效果要好一些、例2投石入水,水面产生圆形波纹区、
圆的面积随着波纹的传播半径r的增大而增大(如图),
Ar=ar=a+h计算:
(1)半径r从a增加到a+h时,圆面积相对于r的平均变化率;
(2)半径r=a时,圆面积相对于r的瞬时变化率、分析:本例中的题(1)是求变化中的几何图形(圆)面积的平均变化率。它同例1及我们前面讨论过的运动物
体的平均速度,以及函数曲线的割线斜率一样,从数学的角度看,都是函数值的改变量与对应的自变量的改变量的比,即差商。而题(2)则是求圆面积的瞬时变化率,实际实际上就是求函数Sa的瞬时变化率、而它与我们已经较为熟悉的瞬时速度,切线的斜率等都是相应函数的瞬时变化率。利用本例,课本给出了函数导数的概念,而学生则又一次体验寻求瞬时变化率(即平均变化率在某点处的极限)的过程、有利于学生更深刻理解导数的概念、解:(1)半径r从a增加到a+h时,圆面积从a增加到(ah)2,其改变量为
22[(ah)2a2],而半径r的改变量为h,两者的比就是所求的圆面积相对于半径r的平均变化率:[(ah)2a2]h(2ahh2)h(2ah)
(2)在上面得到的平均变化率表达式中,让r的改变量h趋于0,得到半径r=a时,圆面积相对于r的瞬时变化率为2a、
at
2例3在初速度为零的匀加速运动中,路程s和时间t的关系为ss(t)、
2(1)求s关于t的变化率,并说明其物理意义;
(2)求运动物体的瞬时速度关于t的变化率,说明其物理意义、
分析:本题是导数概念在物理学中的运用,题(1)直接利用导数的定义运算得出位移函数s关于时间t的导数(即运动物体的瞬时速度),而题(2)则是求瞬时速度关于时间t的瞬时变化率(运动物体的加速度)、通过本例,一方面加深学生对导数定义的理解,另一方面则从数学的角度对加速度作了较为严格的定义、
at2解:(1)s关于t的变化率就是函数ss(t)的导数s'(t)、按定义计算有
2a(td)2at2d2a(td)s(td)s(t)ad222,当d趋于0时,此式趋于at,atddd2即s'(t)at、从物理上看,s关于t的变化率at就是运动物体的瞬时速度、(2)运动物体的瞬时速度关于t的变化率,就是s'(t)at的导数s"(t)、按定义运算有
s'(td)s'(t)a(td)atada,当d趋于0时,a还是a,所以s"(t)=a,它ddd是运动物体的加速度、
(四)应用新知
课本P95——练习1,2解:1.函数y=x2-3x在区间[-1,1]上的平均变化率为-3、
3(2d)22(2d)13222212.[2,2+d]上的平均速度143d,当d=
1d时,平均速度为17,当d=0、1时,平均速度为14、3,当d=0、01时,平均速度为14、03,令d趋向于0,得到在t=2时的瞬时速度为14、
(五)课堂小结
1.导数的定义是什么?
2.用定义求解函数的导数的步骤有几步?
五、布置作业
课本P95—习题3
比的意义教学设计 篇5
教学目标
1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。
2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。
教学重点
理解比的意义,比和分数、除法之间的联系。
教学过程
一、 创设问题情境,引入比
电脑出示三幅长方形的画(标出每一幅的长和宽)。
谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)
提问:还可以怎样表示它们的关系?
过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。
二、 自主活动,认识比
1. 用比表示两个同类量的相除关系。
(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?
学生分别用比表示另外两幅画的长和宽的关系。
(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。
谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。
指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)
再问:那么水和洗洁液的比是几比几?表示什么意思?
师生共同讨论1 ∶ 8和1 ∶ 1的含义。
2. 用比表示两个不同类量的相除关系。
谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。
提问:根据图中的信息,你知道梨的单价是多少元吗?
根据学生回答,板书:单价=总价÷数量。
讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。
提问:你能用比来表示苹果的总价和数量之间的关系吗?
这里的6 ∶ 3表示什么意思?(表示总价除以数量)
3. 理解比的意义。
谈话:根据上面的例子,你能说一说什么叫两个数的比吗?
小结:两个数相除又叫做两个数的比。
4. 自学课本。
提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?
反馈:通过自学,你又了解了哪些知识?
师生共同讨论下面的问题:
(1)比由哪几部分组成,分别叫什么?比的.后项能为0吗?为什么?
(2)什么叫比值?怎样求比的比值?
(3)比和除法、分数有什么联系?
(4)比还可以写成怎样的形式?
小结:(略)
三、 巩固练习,深化理解
1. 完成“练一练”第1、2题。
学生完成填空后,让学生说一说每个比所表示的意思。
2. 完成“练一练”第3题。
学生改写后,再读一读,并分别指出每一个比的前项和后项。
3. 小强和爸爸身高的比。
出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。
学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。
4. 糖水的甜度。
出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。
提问:你知道哪杯水甜吗?为什么?
出示:第三杯中糖4克,水100克。
谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。
提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?
四、 课堂总结
提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?
五、 课外延伸
出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?
课件播放短片,介绍黄金比。
谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。
比的意义教学设计 篇6
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的'辨证唯物主义观点。
教学重难点:
理解比的基本性质,推导化简比的方法正确化简比。
教法:
引导探究
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
板书课题:比的意义
3比2 3:2
2比3 2:3
100比2 100:2
两个数相除又叫两个数的比。
比的各部分名称
15:10=15÷10=3/2
前项比号后项比值
教师重点指导:
(1)关于“比值通常用分数表示,也可以用小数表示,有时也可能是整数”,你怎样理解?
(2)比的后项为什么不能为0?
比分数除法的联系与区别
三.课堂检测:
1、完成教材第44页“做一做”的第1、2题。
2、完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
比的意义教学设计 篇7
教学目标:
1、经历从生活情境到方程模型的建构过程。
2、理解方程概念,感受方程思想。
3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。
教学过程:
一、情境创设,初建相等关系模型。
1、师出示天平图,
认识吗?
师:天平可以称出物体的质量是多少。
2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?
(左右倾斜各一幅,平衡的一幅。图略)
学生会选择图3,老师顺着学生的思路出示图3天平平衡图
图3为什么能称出两只苹果的质量?
你能用一个式子表示出天平两边物体的质量关系么?
100+100=200
图1和图2为什么不能称出两只苹果的质量呢?
你也能用一个式子表示出天平两边物体的质量关系吗?
100+100>100、100+100<500
3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。
你的小脑袋里有等式吗?说一个试试。
除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)
师:没想到,同学们对等式是这么的熟悉。
二、借助基础,拓展等式外延。
1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?
(书上四幅图略)
选一个等式说一说它表示什么意思?
天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)
2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。
3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?
突出含有未知数的等式
这些含有未知数的等式你见过吗?
生:没见过;也可能见过,如:用字母表示数中、求未知数x等。
三、进一步拓宽对等式的理解。
1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的'等式来表示呢?
(师出示四幅生活情境图)
(1)铅笔盒与笔记本共20元。
(2)借出的书与剩下的书共150本。
(3)3瓶相同的色拉油,每瓶x元,共8元。
三、明确特征,归纳概念。
其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)
揭示数学上我们把含有未知数的等式叫做方程。
四、深刻领悟,挖掘内涵。
1、黑板上的其它式子为什么不是方程?
2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)
36-7=29、60+x>70、8+x
6+x=14、7+15=22、5y=40
活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?
(在活动中理解等式与方程的关系)
五、实践应用,拓展外延。
1、你能看图列出方程吗?
图1:天平(2x=500)
图2:四个物体16.8元
图3: 两杯水共有450毫升
2、从文字表述中找出方程
(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。
(2)张师傅每天做x个零件,用了6天做了780个零件。
(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。
3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?
出示:5x=200(可提示:如天平图等)
个别交流的基础上同桌互说。
六、全课总结:学习到现在你有哪些收获?
从不能用方程表示到能用方程表示图中的数量关系的一种演变。
图1:买4个小熊猫玩具,每个x元,120元不够
图2:买3个,每个x元,120元还不够
图3:买2个,每个x元,120元正好
延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?
(优秀)比的意义教学设计
在教学工作者实际的教学活动中,就不得不需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。写教学设计需要注意哪些格式呢?以下是小编精心整理的比的意义教学设计,希望能够帮助到大家。
比的意义教学设计 篇8
教学目标:
1、使学生经历比的。概念的抽象过程,理解比的意义,感悟数学知识之间的内在联系,培养观察、比较、抽象、概括以及合情推理的能力。
2、使学生掌握比的读法、写法,知道比的各部分名称,理解并掌握比与除法、分数的关系,掌握求比值的方法,会正确求比值。
教学重点、难点:建构比的意义。
教学课件:多媒体课件。
教学过程:
一、激情导课
1、根据情境写除法算式。
师:同学们,你们好!谁愿意告诉老师你们今年多大了?
师:大多数同学都是12岁,如果李老师今年24岁。(板书:生12师24)
师:你能根据老师年龄和同学年龄这两个信息,提一个用除法来解决的数学问题吗?
生:老师的年龄是同学年龄的几倍?怎样列式?
生:24÷12(板书)
生:同学的年龄是老师年龄的几分之几?又该怎样列式?
生:12÷24(板书)
2、揭示课题,引出比。
师:上面的两个问题都是用除法算式来表示两种数量的关系的。其实这种两数相除的关系我们数学上还有一种新的表示形式,这就是我们今天所要研究的新内容比。(板书:比)
二、民主导学
任务(一)根据概念理解比。
1、任务呈现:师:那么什么叫做比呢?请大家打开数学书第68页,书上已经有了说明,找一找,齐读这句话。
师:你是怎样理解这句话的?
2、自主学习
独立思考后小组合作
3、展示交流:
生:两个数相除又可以写成这两个数的比。
师:你认为这句话里哪个词是最重要的?
师:正如大家所说,两数相除又叫做这两个数的比。(板书:两数相除又叫做这两个数的比。)这就是比的意义。(板书:的意义)齐读课题。
师:根据比的意义,能不能把刚才的除法算式改写成比呢?24÷12=24:12(板书:24:12),比的写法,在两个数中间点上两个小圆点,就像我们语文上写的冒号一样,在比中,我们把它叫做比号,也可以写成分数形式的比,都读作“24比12”。(板书)把12÷24改写成比的形式12:24(板书:12:24)。
师:我们继续来研究这个比,这里的24表示什么?12又表示什么?
生:这里的24表示老师的年龄是24岁,(板书:老师年龄)12表示同学的年龄是12岁。(板书:同学年龄)
师:24:12表示谁和谁的比?
生:24:12表示老师年龄与同学年龄的比。
师:12:24表示谁和谁的比?
生:同学年龄与老师年龄的比。(板书:同学年龄:老师年龄)
师:24:12与12:24这两个比有什么区别?
生:它们的意义不一样,24:12表示老师年龄与同学年龄的比,12:24是同学年龄与老师年龄的比。
师:用比来表示两个数量关系的时候,我们一定要说清楚是谁和谁的比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。
任务(二)比的分类。
1、任务呈现:
师:看来大家对于比都有了比较深刻的认识,下面请同学们根据例1的表格完成课本68页“试一试”。
2、自主学习:
独立思考后小组交流
3、展示交流
课件出示:李兰和张丽所用时间的比是4:5,张丽所行路程和时间的比是240 :5
师:这里的4表示什么?5又表示什么?
生:4表示李兰所用时间是4分钟,(课件出示:时间)5表示张丽所用时间是5分钟。(课件出示:时间)
师:240 :5这里的.240表示什么?5又表示什么?
生:240表示张丽所行的路程是240米,(课件出示:路程)5表示张丽所用的时间是5分钟。(课件出示:时间)
师:你发现这两道题里面相比的两个量有什么不同吗?
1、同类量比。
前一题相比的两个量都是所用时间,这样的比是同类量的比。比出的结果是一个量是另一个量的几倍或几分之几。
2、不同类量比。
后一题相比的两个量是所行的路程和所用的时间,这样的比是不同类量的比,比出的结果表示速度。因此,不同类量的比要产生一种新的量。
3、练习。
师:下面每组信息中有两个数量,你能用比来表示它们的关系吗?
课件出示:(1)小汽车每小时行60千米,货车每小时行50千米。
师:60表示什么?50表示什么?60:50表示?小汽车的速度:货车的速度=60:50
(2)用12元买了4个杯子。总价:数量=12:4
(3)工人生产24个零件,需要3小时。工作总量:工作时间=24:3
生:12元买了4个杯子,12÷4=3元,也就是总价除以数量等于单价。所以总价和数量的比是12:4.24÷3=8个,8表示的是每小时生产零件的个数,24个零件叫做工作总量,3小时叫做工作时间,工作总量除以工作时间等于工作效率,所以工作总量和工作时间的比是24:3。
师:这3道题里哪些是同类量的比,哪些是不同类量的比?
任务(三)自学认识比各部分名称,求比值。
1、任务呈现:
师:请同学们带着自学提纲中的这些问题自学教材第68页,可以和同桌同学一起议一议。
2、自主学习:
自学提纲:
(1)比由几部分组成?
(2)比的各部分名称是什么?
(3)什么叫比值?比值是怎样求出来的?
3、展示交流:
师:谁愿意向大家汇报第一个问题?
生:比由3部分组成。
师:那比的这3部分名称分别是什么?
以24:12为例来介绍比各部分的名称。
师:前项在什么位置?后项在什么位置?
在比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。在24:12这个比中,24是比的前项,12是比的后项。
师:什么叫比值?比值是怎样求出来的?
生:比的前项除以后项,所得的商叫做这个比的比值。用比的前项除以比的后项。
师:24:12这个比的比值该怎样计算呢?
生:24÷12=2
师:你能用刚才计算比值的方法求出下面每个比的比值吗?
课件出示:求出下面每个比的比值。5:1=()÷()=()2、7:9=()÷()=()4:7=()÷()=()(学生口述答案,教师借助课件反馈)
师:你是怎样理解比值的?比值有几种表示形式?
生:比值是一个数,可以用分数表示,也可以用小数或整数表示。勾出书上的有关句子并齐读。
师:比和比值有什么区别?
生:比值是一个数,比表示两个数之间的一种关系。
任务(四)从分数、除法的角度深化比。
1、任务呈现
看课件:那么,比和除法、分数之间有着怎样的联系和区别呢?
2、小组合作
独立思考后小组交流
3、展示交流
比的前项相当于除法中的(),相当于分数中的(),比号相当于除法中的(),相当于分数中的(),比的后项相当于除法中的(),相当于分数中的(),比值相当于除法中的(),相当于分数中的(),除法、比、分数既有联系又有区别。它们的意义不同。分数是(数)的一种表现形式,除法是一种(运算),比表示两个数之间的相除(关系)。如果用字母a表示比的前项,用字母b表示比的后项,写出比是a:b,除法算式是a÷b,写成分数是,三者之间的内在关系是:a:b=a÷b=这里的b能等于0吗为什么?
生:b相当于除法当中的除数,因为除数不能为0所以(b≠0)。
师:那也就是说比的后项不能为0.20xx年10月16日,在一场国际足球热身赛中,巴西队主场4比0胜日本队,这里比的后项怎么是0了?4表示什么?0表示什么?4:0表示什么呢?
生:巴西队是4分,日本队是0分,看看他们谁赢了。4:0表示的是两队的分数。
师:与今天我们所讲的比的意义一样吗?
生:不一样,各类比赛中的比表示的是两队得分相差多少的关系,我们数学中的比表示两个数相除的关系。
三、检测导结
1、目标检测
写比。甲数是3,乙数是10。
(1)甲数与乙数的比是()。
(2)乙数与甲数的比是()。
(3)甲数与甲乙两数和的比是()。
(4)乙数与甲乙两数和的比是()。
2、求比值。6:36=()2、8:7=()0、4:0、4=()5:2、5=()
3、哪一杯糖水更甜?
4、图形中找比。
师:接下来咱们进行一场小小的比赛,看一看谁在这个图中发现的比最多。
师:刚才他们说的都是两个数的比,有三种颜色,你能不能找出一个与众不同的比呢?能不能说出三个数的比呢?比还能表示三个数的关系,生活中还真有这样的比!搅拌混凝土时,水泥、沙子和石子的比是2:3:5。
2、结果反馈:同桌互判,反馈对错情况。
3、反思总结
这节课你有哪些收获?今天我们大家共同认识了比,其实关于比的知识还有很多,有兴趣的同学课后可以继续研究它。
比的意义教学设计 篇9
【教学内容】
《义教课标实验教科书数学》(人教版)六年级下册第32-33页例1及“做一做”。
【教学目标】
1、明确比例的意义,掌握组成比例的条件,并熟练地判断两个比能否组成比例。能根据不同要求,正确的列出比例式。
2、通过学习培养学生学习数学的兴趣。培养学生的观察能力、判断能力。
【教学重点】
比例的意义。
【教学难点】
求比值判断两个比能否组成比例,并能正确地组成比例。
【教学准备】
多媒体课
【自学内容】
见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例?
表示两个比相等的式子叫做比例。
2、今天是星期天,小瑜和小丽一起到文具店去买东西。
(1)小瑜用12元买了4本数学本,小丽用9元买了3本,谁买的本子便宜些?
(2)反馈:
①谁买的本子便宜些?说说你的理由。
②还有别的方法吗?
③这两个比能组成比例吗?为什么?
二、关键点拨
1、比例的意义。
出示课件:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
根据表中的数量你能写出几个比例?你是怎么想的?他们的比值分别表示什么?
2、小结:判断两个比能否组成比例,最关键是看什么?
3、比和比例有什么区别?
生讨论汇报:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
三、巩固练习
1、下面哪组中的两个比能组成比例?把组成的比例写出来。课本第33页“做一做”第1题。
2、独立完成“做一做”第2题后反馈交流。
3、5:8和1:5这两个比能组成比例吗?为什么?你能想出一个办法给5:8找个朋友组成比例吗?
反馈:
(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
(2)想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
四、分享收获畅谈感想
这节课,你有什么收获?听课随想
反思与体会:
在本节课中,我充分重视了学生原有的认知基础,即在学生理解掌握比的意义和基本性质的基础上进行教学的,找准了新知识的生长点,为学生探究新知搭建了平台。其次,主要采取探究的方式,充分发挥了学生小组合作,组间交流的作用。在比例的意义和基本性质的教学,我都把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,将学习内容的“大板块”交给学生,给学生留有足够的'时间、空间。采取小组合作交流的方式,获取结论,并对结果进行相互评价,从而使他们体会成功,共享合作学习的乐趣。在这个过程中,学生的主观能动性得以发挥,主体地位得到充分体现。最后,针对在以往的教学中发现学生学习完比例后把比例和比混淆的问题,我还特意增加了比和比例从意义、各部分名称、基本性质等方面进行横向对比的教学环节,加深学生对知识的印象。当然,纵观全课,还有很多不足之处,比如:如何在教学过程中让学生探讨的问题更贴近生活?教师要进行怎样的引导还值得我进一步思考。
比的意义教学设计(通用17篇)
作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。教学设计应该怎么写呢?下面是小编帮大家整理的比的好处教学设计,欢迎阅读,希望大家能够喜欢。
比的意义教学设计 篇10
教学目标:
1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。
2、在学习过程中,培养学生的思维能力和应用意识。
3、体会数学与生活的密切联系,进一步增强学好数学的信心。
教学重点:
理解单位“1”和分数的意义。
教学难点:
理解单位“1”和分数的意义。
教学准备:
教具准备:自制教学课件
学具准备:小棒
教学过程:
一、谈话导入
1.读一读下列分数
2、关于分数,你已经知道了什么? 分数是怎么产生的呢??
二、分数的产生
1、板书课题
师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。
师:你知道古人是怎样表示分数的吗?让我们一起来看一看。
三、理解分数的意义
1.理解一个整体
(1)、你能举例生活中的四分之一吗?
师:那就请同学们开动脑筋,好好想想
(2)、汇报交流
教师进行规范:
生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。
生:我是把这个圆平均分成4份,这样的一份就是这条圆的1/4。
突出整体:
师:谁能用分数表示被涂上颜色的'小喵咪?
生:把8个小喵咪看作一个整体,平均分成4份,这样的一份就是这个整体的1/4 。
师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
(3)小结:
把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。
2、理解单位“1”。
(1)深化理解一个整体
学生自主创作:
师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。
交流汇报:
师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)
师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体
学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体
(2)揭示单位“1”。
师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)
(2)、汇报交流
师:谁愿意和大家交流一下你所找到的分数?
生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。
(3)比较:
师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。
4. 揭示分数的意义。
(1)逐步理解分数的意义
师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。
黑板上的三个分数,你能说说它的含义吗?
生:把单位“1”平均分成若干份,这样的的一份或几份的数,就是单位1的几份之几。
师:已经会用单位1来说了,真好。谁也愿意来试一试呢?
小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。
(2)理解分数单位
师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。
生:分数单位就是表示一份的数
师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一
四、练习巩固。
1、说出下列题中的单位‘1’。
2、学生汇报交流
五、布置作业
练习十一的习题
比的意义教学设计 篇11
一,教学内容
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
二,教材分析
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃。方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石。
三,教学目标
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的.等量关系。
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感。
3,让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系。
四,教学重点,难点
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型。
教学难点:正确寻找等量关系列方程。
五,教学设想
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程。经历从具体-----抽象------应用的认知过程。
六,教学准备:课件,天平,实物若干等
七,教学过程:
课前准备:利用学具(简易天平)感受天平平衡的原理。
教学过程
学生活动
设计意图
一,创设情景,建立表象
1.认识天平。
2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么
(天平两边所放物体质量相等)
3.用式子表示所观察到的情景:
情景一:导入等式
(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝
300+150=450
(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:从不平衡到平衡引出不等式与含有未知数的等式
比的意义教学设计 篇12
教学目标:
1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。
2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
3、培养学生分析、解决问题的能力,养成良好的学习习惯。
教学重难点:
体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。
教学手段:
多媒体课件。
教学过程:
一、复习准备,为新课铺垫。
1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?
2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?
3、多媒体出示即时练习,指名回答,并说明理由。
二、创设情境,激趣导入。
1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?
2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?
3、出示课题:文具店。
二、自主探索,研究新知。
1、出示教学目标,了解今天的学习任务。
2、了解图意,获取信息。
(1)我们一起看看小动物们都买了什么文具呢?
小兔买了一支笔,花了2元钱。
大灰狼买了一个文具盒。
小牛买了3支铅笔。
(2)们说得真不错,除了这些以外,你还知道什么?
大灰狼花的'钱是小兔的4倍。
3、小组交流,解决问题。
(1)你真是一个认真观察的好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。
(2)学生分组交流,解决问题。
(3)师生共同探讨:你是怎么想的,说说你的理由。
(4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。
(5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?
(6)小结:求一个数的几倍是多少用乘法计算。
4、画一画。
同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?
请小朋友完成课本48页“画一画”。
(1)学生独立思考。
(2)让学生用学画一画。
(3)指名回答。
(4)你会用什么是什么的几倍说一句话吗?
5、经过刚才的学习,你能解决下面的问题吗?
(1)5的2倍是多少?
(2)3的9倍是多少?
(3)6的5倍是多少?
(4)4的8倍是多少?
三、巩固应用,拓展创新。
1、练一练1、2。
(1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?
(2)学生独立完成,师生交流。
2、练一练3。
(1)小朋友们,喜欢去旅游吗?
(2)你们去旅游都离不开什么交通工具?
(3)今天老师给同学们带来了3辆车,你能说出是什么车吗?
(4)从图中你得到了哪些数学信息?
(5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。
四、评价体验。
今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?
五、板书设计:
文具店
老黄牛花的6元钱 2×3=6(元)
大灰狼花的8元钱 2×4=8(元)
比的意义教学设计 篇13
学习目标
1.认识扰、诊等5个生字,会写扰、欲等8个生字。正确读写鼓动、跃动、欲望、冲破、坚硬、不屈、茁壮、沉稳、震撼、糟蹋、短暂、有限、珍惜、听诊器等词语。
2.正确、流利、有感情地朗读课文,背诵课文,积累好词佳句。
3.理解含义深刻的句子,揣摩其中蕴含的深意。
4.感悟作者对生命的思考,懂得珍爱生命,尊重生命,善待生命,让有限的生命体现出无限的价值。
课前准备
1.搜集自己喜欢的人生格言。
2.预习课文,并以小组为单位,制作生字生词卡片。
A案
第一课时
畅谈生命,激发情感
1.谈话导入:小时候,在小院的墙角丢下几颗葵花子,不料过了一些日子,竟然长出了两棵葵花秧苗。我不禁惊叹起向日葵那顽强的生命力。相信同学们的身边也有许多这样的例子,能列举一些吗?
学生自由交流,教师引导学生说一说从这些生命现象中感悟到了什么?
2.简介作者:台湾著名女作家杏林子在12岁时,因患类风湿性关节炎,全身关节大部分遭到损坏,致使她腿不能行,肩不能举,手不能抬,头不能转。但是残而不废的她,凭着顽强的毅力坚持自学,成为了一名非常出色的作家。我们今天要学习的这篇课文就是杏林子对于生命的感悟。
初读课文,读通读准
1.自主学习:轻声读文,注意把生字读准确,句子读通顺。想读几遍就读几遍,达到目标为止。
2.小组合作学习:抢读生字生词卡片,比一比谁认的生字又快又多,请优胜者介绍自己识记生字的方法。轮读课文,比一比谁读得正确流利。
3.全班交流:请一个小组向全班同学介绍识字成果,再请一个小组朗读课文,其他小组进行评议。
细读课文,整体感知
1.自主学习:采用自己喜欢的方式读课文,想一想课文主要写了什么内容,共写了几个事例,
试用简洁的语言加以概括。
2.合作交流:指导学生用比较简洁的语言概括课文的主要内容,并请学生将三个事例以小标题的形式写在黑板上。
精读课文,突出重点
1.自读自悟:选择自己感触最深的事例,反复品读,把自己的'感悟写在旁边。
2.小组交流:在小组长的组织下每位同学畅谈自己的体会,可以互相交流、质疑、辩论、研讨,教师参与部分小组的学习,掌握情况,并予以个别指导。
3.全班交流:请学生先读一读自己选择的段落,然后联系生活实际谈一谈自己的感悟。教师抓住每一部分中含义较深的语句提问,引导学生正确理解这些语句的含义。之后,指导学生有感情地朗读,读出飞蛾强烈的求生欲,读出瓜苗顽强的生命力,读出作者积极的人生观。
第二课时
品读课文,感悟语言
1.自主品读:轻声吟读课文,画出自己认为写得精彩的语句或语段,反复诵读。
2.小组交流:小组同学每人读一个自己最喜欢的语句或语段,说说自己喜欢的原因。
3.集体赏评:学生自由交流汇报,教师指导学生把自己的感悟通过朗读表达出来。
通读课文,畅谈收获
1.回读全文,自我总结学习收获。
2.全班交流,教师引导学生畅谈自己学习课文的感受以及对生命的感悟,还要引导学生从领悟作者的表达方法和语言等方面谈自己的学习收获。
读背说写,积累运用
1.举行朗读比赛:选读自己喜欢的段落,比一比谁读得好。教师引导学生对朗读的同学进行评议,并请读得好的同学介绍自己的成功秘诀。
2.练习背诵:这篇课文短小精悍、意蕴深厚,称得上是一篇抒写人生感悟的精彩篇章。想不想永远把它装在记忆的宝库中?下面请同学们练习背诵课文。
3.积累名言:
a.投影出示:不是每一道江流都能流入大海,不是每一粒种子都能成熟发芽,生命中不是永远快乐,也不是永远痛苦,快乐与痛苦是相辅相成的。在快乐中,我们要感谢生命,在痛苦中,我们也要感谢生命,因为快乐、兴奋、痛苦又何尝不是美丽呢?
这段话是著名作家冰心对生命的感悟。同学们,能不能把你喜欢的关于人生的格言、名言告诉给大家?
b.在实物投影仪上展示学生摘录的名言,引导学生进行赏评。
4.布置作业:把学习这篇课文的感受写下来,也可以仿照课文写一写自己对于生命的感悟。
比的意义教学设计 篇14
教学目标:
知识与能力目标:
1、通过观察,明确单位“1”的概念。
2、通过归纳,理解并掌握分数的意义,知道分数单位的含义。
过程与方法目标:
1、通过分一分,涂一涂等活动,明确平均分的概念,理解单位“1”的含义。
2、通过不同的独立操作活动和小组内的交流,理解分数的意义。
情感、态度、价值观目标:
1、在探究分数的意义过程中,培养学生分析、综合与抽象、概括的能力。
2、感受分数与生活的密切练习,理解生活中的分数表示的含义。
教学重点与难点:
1、单位“1”概念的建立。
2、根据平均分的含义,理解分数的意义。
教学准备:实物投影,课件,作业纸。
教学过程:
一、谈话导入
同学们,三年级时我们认识过分数,今天我们进一步研究分数。(板书:分数的意义)
二、自主概括,理解意义
下面我们一起来看几幅图,请大家用分数表示下面各图中的涂色部分,并说出每个分数各表示什么,先写出来,再同桌交流一下。
1、我们来汇报一下所填写的分数。
2、说说这些分数各表示什么?
(学生说)
板书:把一个月饼平均分成4份,涂色部分表示这样的3份,就是3/4。
把一个正方形平均分成8份,涂色部分表示这样的5份,就是5/8。
把1米平均分成5份,涂色部分表示这样的3份,就是3/5。
把6个圆平均分成3份,涂色部分表示这样的`1份,就是1/3。
3、图上这四个分数分别是把什么平均分得到的?(一个饼、一个长方形、1米、6个圆平均分得到的。)
说明:一个饼可以称为一个物体,一个长方形是一个图形,1米是一个计量单位,6个圆就是一个整体。
一个物体,一个图形,一个计量单位,许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”,看屏幕,自己读一读。
问:单位“1”可以是什么?
4、那么,刚才这几幅图中我们分别是把什么看作单位“1”?
把单位“1”平均分成了几份?表示这样的几份?
5、揭示概念。
从这些例子中看,怎样的数叫做分数?你能用一句话概括吗?
把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。
自己写一个分数,说说表示的意义。
表示其中一份的数,叫做分数单位。
6、试一试:
说出每个分数的分数单位,这个分数里有几个这样的分数单位。
三、闯关练习,深化认识
1、练一练:
出示:练一练,用分数表示涂色部分,并说说每个分数表示的意义。
说出每个分数的分数单位,这个分数里有几个这样的分数单位。
怎样用分数表示图中的未涂色部分?
2、涂一涂:
练习六第2题。
在图中涂色表示2/3。
3、说一说:
练习六的第3题。
说出每个分数表示的意义。
4、找一找:
练习六第4题。
在直线上画出表示下面各分数的点。
5、议一议:
练习六第5题。
有12枝铅笔,平均分给2个同学。
每支铅笔是铅笔总数的几分之几?
每人分得的铅笔数是总数的几分之几?
四、课堂总结
今天我们学习了什么内容,你有什么收获?
刚才我们一起又一次认识了分数,其实在我们的生活中,分数无处不在。
比如说,我们班级有多少名同学?男同学,女同学,第一组,第二组各有多少人?根据这些信息你能想到哪些分数?同学们课后去说一说吧!
教学反思:
在本节课中不仅重视让学生掌握知识,并能十分重视学生对学习过程的体验和学习方法的渗透,重视学生的个性化思维的展示,让学生通过回忆想象、学习交流、动手实践等数学学习活动来发现知识,感受数学问题的探索性,促进学生学会学习。在教学过程中,始终把学生放在学习的主体地位,努力提高学生的自学能力和学习兴趣。教师充分利用学生已有的知识经验,提出了自主探索学习的步骤,学生通过自主选择研究内容、独立思考、小组讨论和相互质疑等学习活动,获得了快乐数学知识,学生的能动性和潜在能力得到了激发。体现在两大特点;一是大胆放手,给学生提供自主学习和合作交流两种学习方式,重视直观教学,通过观察、判断、交流、动手操作抽象出分数的意义。二是做到了学生能自主探索的知识,教师决不替代。
比的意义教学设计 篇15
一、教学内容:人教版教材五年级下册第45、46页(新授课)
二、教材分析:
三、学情分析:
四、教学目标
1、了解分数的产生,理解分数的意义。
2、理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。3、在理解分数含义的过程中,渗透比较、数形结合等数学思想方法,培养学生的抽象概括能力。
五、教学重难点
教学重点:理解分数的意义。
教学难点:理解单位“1”,认识分数单位。
六、教学准备
教具:课件、彩色磁扣。
学具:圆片、正方形和长方形纸片,一板面包图片(分格的),4根香蕉图片,一段绳子
七、教法学法
教法:创设情境法、操作发现法
学法:合作交流法、自主探究法
八、教学过程
(一)情境引入(2分钟)
(二)探究新知(14分钟)
(三)探究求周长的策略(15分钟)
(5)量一量、算一算
A三角形、长方形等直边的测量方法。(3分钟)
师:那么要想知道封闭图形一周的长度是多少,该怎么办?
师:课前老师给每个小组准备一个学具袋,里面有一个封闭图形,下面四人小组想办法测量出它的周长,活动前请先阅读活动要求。
小组合作:
①小组内快速交流用什么方法测量。
②选择需要的工具进行测量。
③组内分工合作。(测量时取整厘米数)
反馈交流测量方法。
①三角形
6+8+10=24cm
师:那个小组愿意汇报?
预设:我们测量的是三角形,测量工具是直尺,测量的方法是量,测量的结果约为24厘米。
师:你们用直尺量出三角形三条边的长度,然后呢?(把三条边的长度加起来)那测量结果24厘米表示什么?
预设:三角形三条边的长度总和。
预设:三角形一周的长度。
师:三角形一周的长度就是它的周长,三角形的周长是它三条边的长度和。(课件出示)
②长方形
5+5+3+3=16cm
师:昨天咱们刚刚学习过四边形,哪组来汇报一下四边形?
预设:我们选择的图形是长方形,测量工具是直尺,测量的方法是量,测量的结果约为16厘米。
师:16厘米这个长度表示什么呢?
预设:表示长方形一周的长度,也就是长方形的周长。
师:他们也选用了用直尺测量,量了几条边(四条边),然后再把它们加起来。
师:有不同的意见吗?(长方形对边相等只需量两条边,一条长、一条宽)
师:真棒!你们能根据长方形的特征简化测量过程。
师:那如果想知道正方形的周长怎么做呢?
预设:量一条边,就知道四条边的长度了。
师:当然,不论量几条边,计算四边形的周长都是要把四条边的长度加起来?我们发现四边形的周长是它四条边的长度总和。
思考:如果是五边形,它的周长是几条边的长度总和?六边形呢?八边形呢?
交流后小结:看来多边形的周长就是它所有边的长度总和。
B爱心、树叶等不规则图形的测量方法。(8分钟)
③树叶
师:老师给有些小组准备了一片树叶。那个小组选择测量的是树叶的周长?1厘米大约是这么长,请同学们估估看这片树叶的周长大约是多少厘米?它的周长到底是多少呢?我们来听一听这个小组的汇报?
预设:先用绳子沿着边线围一圈,在绳上做一个标记,然后把绳子拉直再用直尺测量,测量的结果约是9厘米8毫米。
师:有不同的方法吗?
预设:直接用软尺绕一圈可以直接测量出树叶一周的长度。
师:太智慧了!为什么不用尺子直接量呢?
预设:因为边是弯弯曲曲的。
介绍滚动法:首先在树叶上作一个记号,然后在尺子上滚一圈,看滚到哪里,读出刻度也可以知道树叶的周长。滚动法也是把弯曲的边转化成直直的线段进行测量,也利用了化曲为直的方法。
④爱心
学生汇报:测量工具是绳子,测量的方法是围、量,测量过的结果约是12厘米
师:你们小组测量的是爱心。爱心的边也是弯曲的,说说你们用的什么方法测量的,为什么不用滚的方法?滚动法不能测量到凹陷的部分。
师:同学们,经过探究合作和展示,要想得出封闭图形的周长有哪些方法?
预设:直边的图形用尺子测量,曲边的图形用绳测法或者滚动法,化曲为直的方法
师小结:没错,直边先量边长后计算,曲边化曲为直
(6)揭示周长概念的本质
师:回顾之前的学习,经过了这么多学习的感受,现在你认为什么是周长?
预设:封闭图形一周的长度就是这个封闭图形的周长(完善板书)
师小结:看来同学们对于周长已经理解了。周长,周长,周指一周,即封闭图形的一周,长就是长度,封闭图形一周的长度就是它的周长。
【设计意图】操作是智力的源泉,思维的起点,在经历摸一摸、量一量、比划、估一估的过程中,让孩子充分的操作,积累丰富的体验感受,不但可以使他们在操作过程中提高动手能力,而且容易把感性认识提高到理性认识,把通过实际操作得出的结论延伸、并进行合理的想象,这在培养学生对长度的感觉和估的能力的同时,进一步感受“周长”和长度的关联,能够将面和线区分清楚,体会周长概念的本质。
(四)实践应用,拓展延伸(8分钟)
1、增加干扰,强化周长
(1)教材书84页的第3题
下面每组图形的周长一样吗?你是怎么想的?
师:请同学们仔细观察,下面两个图形的周长一样长吗?
师:谁来说一说你是怎么比较的?
师:通过移一移,我们把这个不规则的图形转化成规则的图形。然后比较发现他们的周长是(相等的)
师:再来比较一下这两个图形的周长一样长吗?
(2)教科书88页第8题
师:(课件出示长方形)这是什么图形?老师把它分成甲乙两部分,观察比较一下,哪个图形的周长长?你是怎么想?
预设:一样长,两个图形的周长都是一条长加一条宽,再加一条斜线。
师:老师把这条边变弯曲,现在两个图形谁的'周长长?
预设1:甲的周长更长
预设2:一样长
师:你是怎么想的?
预设:两个图形的周长都是一条长加一条宽,再加上公共的那条弯弯曲曲的边,所以这两部分的周长一样长。
师:为什么一开始认为甲的周长长?
师:哦!原来如此。周长是图形一周的长度,并非指图形的内部。
小结:比较两个图形周长的时候,图形每条边的长度一样,它的周长就是一样的。
(3)生活中的周长(机动内容)
【设计意图】通过练习设计进一步内化周长概念,学生在观察、交流的过程中进一步理解周长的本质。通过对比、辨析排除内部线段和面积的干扰。同时体会图形转化的方法。
(五)归纳总结,内化新知(1分钟)
师:通过这节课的学习,你有什么收获?
同学们,今天我们初步认识了周长,知道了周长的概念,并且能够通过测量和计算得到图形的周长。希望课后同学们继续深入的研究周长。
【设计意图】让学生谈一谈自己的收获,是对本课知识的梳理和加深,从而让学生体验成功的快乐。
九、板书设计
认识周长
封闭图形一周的长度是它的周长
直边:量、算
曲边:围、滚 (化曲为直)
十、设计理念
在教学中,我们发现学生总是认为一周就是周长,故此我先让学生充分理解什么是“一周”,在此基础上,沟通一周和封闭图形之间的联系,然后通过学生的探究活动测量封闭图形一周的长度,并没有急于揭示周长的概念,而是让学生先在大量的活动体验中感知周长是可测量的一维图形,又在估的过程中进一步感知周长是图形边线的长度,只是存在于二维图形的面上,与面的大小无关,最后再由学生自己揭示周长概念。同时在这一系列的活动过程中培养学生的空间观念。
1、创设生活情境引入,学生通过观察对比三种不同的路线,突出“沿着边线,绕回起点”两个重要特征,然后再指一指、说一说生活中物体表面的一周,建立学生对“一周”的表象认识,为后面理解周长概念的本质做铺垫。
2、在小组合作的过程中,让孩子在探究测量周长方法的过程中,或测量或计算,充分体验、感受周长的本质就是长度,是可测量的一维图形。通过学生用线围曲边的一周,把边线取下来拉直、测量,帮助学生沟通一维图形和二维图形的联系,即周长是从面里脱离出来的线段,深刻体会周长概念的本质,学生的空间观念也在这个过程中不断地得到发展。
3、当学生利用充分的时间和空间完成了量一量的活动之后,再让他们观察三个图形的大小以及周长,去摸一摸,经过想象、比划以及之前的经验有条理的思考和推理、比较出三个图形的周长与什么有关,再次经历从二维图形中抽象出一维图形“线段”这个过程,最后通过教师化曲为直的验证,从而探索周长的性质,理解周长的本质就是线段的长度,积累了这样的实践经验和思维经验,获得贤明、生动形象的认识,进而形成表象,发展空间观念,为今后学习中区分清楚二维图形的“面积”和一维图形的“长度”打下坚实的基础。
4、在整节课每一次活动体验后,我都让学生描述、概括自己体验的感受和想法,通篇培养学生空间描述的能力。
十一、教后反思
1、以活动为基础来理解周长的含义
新课开始,让学生观察动画,初步感知边线,使学生体会图形一周的长度必须从起点开始绕边线一圈再回到起点,这样就把握住了周长概念的基本点。再通过学生动手描一描平面图形的一周,指一指具体物体某一个面一周的长度从而对周长的概念有了准确的理解,进而让学生讨论是不是所有的平面图形都有周长使学生体会到平面图形的周长的“封闭”观念,学生通过动手做悉心理解,加强感受,把生活中对边线的零星感受进行再现和体验。事实也证明学生通过这一过程,很多学生能充分理解周长所蕴含的真实意义。
2、以周长测量策略探究来内化周长的意义.
学生通过小组合作的形式运用准备的学具——尺子、线想办法量算出封闭图形和树叶的周长,然后汇报演示。出现两种情况一是图形的边是直线时可以用量、算的方法求出它的周长。而是图形的边是曲线时可以用绕,量的方法求出它的周长。深刻体会到解决问题策略的多样化,特殊问题有特殊的解决办法,让他们充分体验自主解决问题的快乐,享受成功的喜悦,有利于他们形成良好的数学认知结构。另外,汇报演示时的师生交流,生生互动虽然还没有做到很好,但还算达到了预期效果,让学生的知识和能力得到了同步发展,有利于全面提高学生的整体素质。
3、辨析中深化
周长只能用于二维图形上,它和面积总是同时出现在一个物体上的,所以它们是两个易混淆的概念。认识周长不能只孤立地认识周长,应该将其与面积进行区别。课尾设计的两道练习都是帮助学生深化理解周长的概念。在对比中发现不同,明析周长概念的内涵。
总之,概念课让学生真实地经历概念发生、发展的过程,才能让学生学得明白。我们将学生的经验水平改造为老师的学科水平。只有老师想的明白,学生才会学得明白。
比的意义教学设计 篇16
教材分析
教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从富有教育意义的神五飞天的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。
学情分析
学生在已学过和掌握分数、除法的意义,及分数与除法的关系的`基础上,进一步学习“比的意义”。虽然学生在生活中也接触到了一些“比”,但并不了解数学的比和生活中的“比”的内在联系和区别。
教学目标
一、知识与技能:
1、理解比的意义,掌握比的读写法,认识比的各部分名称。
2、理解比值的含义,知道求比值的方法,并能正确地求比值。
3、理解并掌握比与分数、除法的关系。
4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。
二、过程与方法:
1、通过自主学习,合作交流,使学生掌握一定的学习方法。
2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。
3、引导学生加强知识间的联系,提高学生分析解决问题的能力。
三、情感态度价值观:
1、有机渗透爱国主义教育。
2、引导学生探索知识间的内在联系,激发学生学习兴趣。
3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点和难点
1、教学重点:比与除法、分数的关系
2、教学难点:理解比的意义
比的意义教学设计 篇17
教学目标:
1.让学生将一张正纸方形平均分成十份、一百份…的基础上,通过涂一涂、想一想、说一说的过程中理解小数的意义。
2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
3.培养学生操作、观察、分析、推理的能力。
教学重点和难点:
小数意义的理解。
教学准备:
每个学生空白正方形纸一张、信封(内放平均分成了十份和平均分成了一百份的正方形纸各一张),课件。
教学过程:
一、 导入课题
师:同学们,你们熟悉《三字经》吗?我们来一起背几句好吗?(生背)
师:《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?
生1:这句话的意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。
(师从右往左板书:10000 1000 100 10 1)
师:看来,《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从右往左看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?
生1:接下去是100000、1000000…。
师:无穷无尽。(板书:100000…)
师:从左往右看,10000、1000、100、10、1,接下去又是哪些数呢?
生2:0.1、0.01、0.001…
师:也是(无穷无尽)。(板书:0.1,0.01,0.001…)
师:这里的0.1、0.01、0.001…表示什么意思,它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。
[评析:《三字经》是我国不可多得的儿童启蒙读物,可谓家喻户晓,脍炙人口,深受儿童所喜爱,从《三字经》中的数学问题入手,很吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数学”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义打下伏笔。]
二、 小数意义的探究
1.探究一位小数的意义。
师(出示正方形纸):如果我们用一张正方形纸表示“1”话,请你估计一下,0.1该有多大?
师:请将你心目中的0.1用彩色笔在这张纸上涂出来。
(展示:师根据学生所涂,取三份有代表性的作品进行投影展示)
师:对于这三个同学心目中0.1的大小,你有什么想说的?
生1:第一张涂得太多了,我觉得有0.5啦,第三张涂得又太少,没有0.1,第二张和0.1差不多。
师:你们觉得怎样能准确地在这张纸中表示出0.1呢?
生2:把这张正方形纸看作“1,平均分成十份,涂出其中的一份,就是0.1。
师:这里的一份还可以用什么数来表示?
生3:十分之一。
师:老师给每位同学们都准备了一张平均分成十分的正方形纸,请你从信封里拿出来,并在这张纸上涂出其中的3份,想一想,涂色部分可以用一个怎样的小数来表示?它里面有多少个0.1?
师(展示):0.3表示什么意思呢?
生4:0.3就是表示把一张纸看作“1”,平均分成十份,取其中的三份,用小数表示就是0.3,还可以用分数十分之三来表示,0.3里面有3个0.1。
师:涂色的部份用0.3表示,哪么空白部份呢?
生5:空白部份用0.7表示。
师:0.7表示什么意思?还可以用什么数来表示?它里面有多少个0.1?
师(投影):阴影部份用小数怎样表示?
生7:阴影部份可以用小数0.8表示。
师:0.8里面有多少个0.1呢?
生7:0.8里面有8个0.1。
师:看到这个图,你还能想到哪个数?
生8:十分之八。
生9:0.2,十分之二。
师:想一想,1里面有多少个0.1呢?
生10:1里面有10个0.1。
师:思考一下,刚才这些小数我们都是怎么得到的?
生11:刚才我们都是把一张正方形纸看作“1”。平均分成十份,取其中的几份就是零点几。
师:如果用分数表示,也就是(十分之几)。
师:看来,这些小数,都是用来表示(十分之几)的。(板书:十分之几)
[评析:以往的教学,教师习惯通过将米尺平均分成十份,每份是1分米,也就是十分之一米,用小数表示就是0.1米,学生在接受这一知识上,没有任何理由,就是一种规定。本课从学生的生活经验出发,将 1平均分成十份,每份就是0.1,来,再结合分数的意义,0.1也等于十分之一,通过意义上的联系,借助十进分数来进一步帮助学生理解小数,这一招可谓精妙至极。让学生在一张正方形纸上表示出0.1的大小,这一设计很有新意,在让学生动手操作的过程中,感悟一位小数和分母是十的分数之间的关系。通过用小数表示涂色部分和空白部分,让学生说说它们里面各有多少个0.1,深刻体会1里面有10个0.1。]
2.探究二位小数的意义
师: 0.01你觉得有多大呢?请同学们在头脑里想像一下,很快地涂在刚才这张纸的反面。
师(作品展示):你是怎么思考的?
生1:我是将0.1再平均分成十份,每份就是0.01。
生2:我是将一张正方形纸平均分成一百份,每份就是0.01。
师:从这里我们可以看出,1里面有(100)个0.01。
师:看到0.01,你还会想到了哪些数?
生:
生:
师:请同学们在信封里取出平均分成了一百份的正方形纸,现在请你在这张方格纸上创造一个小数,先在方格纸上任意涂上一些格字,再想一想,你涂色的部分可以用一个怎样的小数来表示?再同桌间说一说这个小数表示什么意思?看到这个小数,你还会想到哪些数呢?
生5:…
生6:我涂了20个格字,用小数表示是0.20。
师:你们知道这里的涂色部分除了可以用0.20表示外,还可以用哪个小数来表示吗?你是怎么想的?
生7:也可以用0.2来表示。…
师:刚才的这些小数我们又是怎么得到的呢?
生8:把一张正方形纸看作“1”。平均分成一百份,取其中的几份就是零点零几或零点几几。
师:这些小数,又都是用来表示什么的呢?
生9:这些小数都是用来表示百分之几的数。(板书:百分之几)
[评析:在学生学习了一位小数意义的知识基础上,进一步探究两位小数的意义,就变得水到渠成。学生在将0.1平均分成十份和将1平均分成一百份来表示0.01的过程中,创新思维得到了充分发展。在创造小数的过程中,学生的个性得到了充分的张扬,当学生涂出20份来0.20 来表示的'时候,教师不失时机地引导学生,这个涂色部份可以用哪个小数来表示,巧妙地渗透小数性质这一知识点。]
3.探究三位小数的意义
师:对于0.001,你有什么想说的?
生1:把一张纸平均分成1000份,每份就是0.001。
生2:也可以把0.01平均分成十份,每份也是0.001。
生3:还可以把0.1平均分成一百份,每份也是0.001。
生4:0.001很小很小。
师:看到0.001,你会想到哪些小数?
生5:我想到了0.365,就是涂365个0.001。
…
师:这些小数又是用来表示什么呢?(板书:千分之几)
师:除了有表示千分之几的小数外,还会有表示(万分之几、十万分之几…
的小数,无穷无尽。
[评析:在学习三位小数所表示的意义上,教师完全放手,让学生通过已有的知识展开推理,自己去体验、感悟,学生获得的不仅是“鱼”,更是“渔”。]
三、 小数意义的提炼
师:刚才我们认识了这么多的小数,想一想,什么是小数?
生1:这些小数都是用来表示十分之几、百分之几、千分之…的。
师:用来表示十分之几、百分之几、千分之几……的数,叫做小数。(板书)观察这些十分之几的小数、百分之几的小数、千分之几的小数,他们又有什么不同呢
生2:表示十分之几的小数的小数点后面有一个数字。
师:像这样小数点后面只有一个数字的小数我们叫它为一位小数。
生2:表示百分之几的小数,它的小数点后面有二个数字…
…
师:你知道一位小数的计数单位是多少吗?
生:一位小数的计数单位是0.1。
师:0.3里有几个0.1?两位小数的计数单位呢?三位小数呢?
…
师:你能用一句话来概括这些计数单位之间的进率关系吗?
生:每相邻两个计数单位间的进率是10。
师:如果不相邻,它们的进率又是怎样的呢?
[评析:学生在课堂中,通过多次折一折、涂一涂、想一想、说一说的实践,为学生小数意义的理解和归纳扫平了障碍。在计数单位之间进率的掌握上,由于有前期通过多种方法得到0.01和0.001的基础,为每相邻两个计数单位间的进率和不相邻两个计数单位间进率的掌握变的轻而易举。]
四、 解决问题
你能用一个数来表示下图阴影部分的面积吗?
分数:
小数: 小数: 小数:
[评析:作业的设计独具匠心,第一题通过用一个带小数来表示阴影部分,消除学生错误地将小数理解成就是小于1的数。第二题通过用0.50元、0.5元来表示5角人民币和用0.200千克、0.20千克和0.2千克来表示200克鸡精,既和前面的教学产生呼应,又为下一节小数性质的学习埋下伏笔。]
五、 总结。
比的意义教学设计 篇18
教学目标
1、感悟任意两个整数之间有无限多的小数存在:一位小数、两位小数、三位小数……
2、经历操作活动,初步理解小数的意义,沟通小数与分数的内在联系,知道一位小数与十分之几、两位小数与百分之几、三位小数与千分之几之间的关系。
3、基于现实原型,理解和掌握小数的计数单位分别是十分之一、百分之一、千分之一等及它们相邻单位之间的进率也是10,还渗透学习方法的指导。
4、通过富有现实性的情境和直观的图示,激发学生学习的兴趣,同时渗透数域拓展、归纳思想以及数学精确性的感悟。
教学重点是理解小数的意义,掌握小数的计数单位。
教学难点是理解小数的意义,掌握小数的计数单位。
教学过程
一、互动交流,引入小数信息
师:以前,我们学过很多数,是吧?(点击课件)数线上标出的这些数,都是什么数?
(学生可能回答——整数。
师继续准问:在任意两个整数之间你能找到什么数?
学生可能交流不同的小学:0.1、0.09、1.3、0.55……
教师一一在黑板旁边的小卡片上记录。
大家说了这么多,老师也想说几个,可以吧?这个读作——0.3,0.06,0.365。
(指板书)这些都是——小数。以前,我们已经初步认识了小数。今天,我们再来深入研究小数,愿意吗?
设计意图:利用学生对整数的学习掌握为起点,引导他们说一说在数线上相邻两个整数间能找到哪些小数,巧妙地导入新知的学习。
二、数形结合,理解小数意义
(一)分类
师:看,这么多的小数。为了便于研究,需要将它们分——分——类。开动脑筋想一想,可以怎样分呢?
生可能交流:按照小数位数的多少来分,0.3等是一位小数!0.06等,是两位小数!0.365等,是三位小数!
教师适时板书:0.3、0.06、0.365。
评析:给小数的分类活动为后面探索、归纳小数的意义打下基础。
(二)师生共同理解一位小数的意义
1、师:要想弄清0.3表示什么,先要知道0.1表示什么(红笔板书:0.1)
(点击课件)看,这里有几种图形?——每一个图形都可以看作“1”,怎样表示0.1呢?
学生可能交流:把一个图形平均分成10份,涂1份就可以表示0.1。
教师要关注学生说没说平均,进一步强化必须把图形平均分。
点击课件:这两个图形都平均分成了——10份,其中的一份用分数表示——十分之一(),写成小数就是——
教师在学生交流中适时板书:
教师继续追问:0.3该怎样表示?(点课件)
学生交流。教师适时板书:
板贴:0.3表示(),它里面有()个0.1。
教师继续追问:你还想表示哪个一位小数?
学生交流,教师指导学生说出:表示(),它里面有()个0.1。
小结:通过以上的研究,你有什么发现?(联系板书)
引导学生交流:一位小数可以表示——十分之几,教师板书——十分之几。
评析:教师的问题启动,隐含着对一位小数计数单位的认识,目的在通过直观,为进一步的抽象提供帮助。教学小数的意义,需要化抽象为具体,数形结合是一种行之有效的方法。因为学生在三年级已经初步认识了小数,为此,这里采用了引导学生画一位小数的方法,以有效地利用经验,启迪学生进行探索和发现。
(三)同桌合作探究两位小数的意义,推想两位小数表示什么
按照这个研究思路,(指板书0.1),(点击课件)同桌两个能不能合作探究出两位小数表示什么,推想三位小数表示什么?
注意:(课件)利用合作学习单——涂一涂,填一填,说一说。
学生利用导学提纲自主探究。
师:老师发现咱班同学特别会合作,很快完成了学习任务。哪对同桌想和大家分享你们的研究成果——(切换投影)他们交流的时候,大家要注意——,对,认真倾听是一种好的学习习惯。
生可能交流:第1题——我们的研究是先从0.01开始——只取一份就可以了,它表示——
0.01就是把——一个图形平均分成——100份,取其中的——
同意吗?我们记下来:研究两位小数先从——0.01开始,表示
0.06应该取其中的6份,表示,0.06里有()个0.01。
(板书)0.06表示,有()0.01
我们还想表示——()个0.01。(板书——)
他们的研究与汇报,谁想评价一下?
1生评价。(声音响亮,思路清晰——大家都在表扬你们呢,高兴吗?)好!好在哪里?
通过以上研究,我们又可以得出什么结论?两位小数表示——百分之几。(贴板书)
设计意图:合作探究“画”两位小数的活动中,教师关注三项要素:一是通过操作、观察和思维的.表达,引导学生对两位小数意义的认识具体明朗。二是通过画法的比较,引导学生体会到随着数的扩展,所选用的方法也需要发展,进而才能适合表达与刻画的需要。三是通过比较和归纳,使学生适时发现两位小数,都表示百分之几。
(四)类比迁移理解三位小数的意义
1、师:按照这样的思路(指板书0.1,0.01),你们推想研究三位小数先要从哪入手?——0.001,(板书)0.001怎样表示呢?
生交流。
2、师:想法很对,但操作起来怎么样?麻烦,我们请电脑来帮帮忙。
课件演示:把一个正方体看作——“1”,平均分成了10份——再怎么分?这样,就平均分成——100份,还能继续分吗?把正方体平均分成了——1000份。
师:其中的一份表示——千分之一(板书:)它俩相等=
(点课件)这个图形中,红色部分表示的是1000份中的多少份呢?我们一起来数一数。这是——(这是10乘10,就是——100)
板书——,它里面有()个0.001。
那么,剩下的蓝色部分有多少份?表示千分之——?小数是——?
三位小数就表示——千分之几,四位小数呢?应该表示——,(万分之几)五位小数呢?(十万分之几)(可以用什么符号代替?——点上省略号)
设计意图:引导学生根据一位、两位小数的意义,运用类比迁移的方法推想三位小数表示的方法,这样小数的意义也呼之欲出了。多媒体课件的合理运用,为学生的学习提供了有力的物质支持,帮助学生逐步抽象出数学模型,建立起小数的概念。
(五)抽象处小数的意义,了解计数单位之间的关系
1、师:研究到这,同桌之间互相说说什么是小数?(放手给学生)
表示——十分之几,百分之几,千分之几……这样的数就是——小数。
教师适时引出课题——小数的意义。
设计意图:充分结合板书,启发学生用自己的语言描述对小数的理解,初步抽象出小数的意义,引导学生主动建构知识,培养学生的分析、概括能力。
2、关于小数的意义——书上是怎样说的,请大家打开课本34页,看一看。读完了吗?
设计意图:及时引导学生阅读课本,梳理小数的意义。
3、最后一句话,我们再一起读一读:小数的计数单位是十分之一、百分之一、千分之一……,记作——0.1、0.01、0.001……
请看,大屏幕——
第一个图形,我们看做1。
0.1——(接着读——),这些都是计数单位,都表示其中的——1份,它们之间有没有什么关系呢?
组织学生交流:共同得出它们之间的关系,每相邻两个单位之间的进率都是10。
设计意图:“计数单位”学生很难认识,需要在小数的意义认识过程中随机渗透,需要整数计数单位经验的支持,需要教师的专项引领。三项活动到位了,学生的认识才可以到位。这一环节充分利用多媒体课件,动态展示出1里面有10个0.1,0.1里面有10个0.01,0.01里面有10个0.001……数形结合,形象直观,把“十进制”思想深入植根于学生的头脑中。
三、练习巩固,加深意义理解
教师引语:明确了小数的意义,用它去解决一些问题,行吗?
1、分别用分数和小数表示图中的涂色部分
◆请大家快速完成练习卡——(边巡视边说,有的同学用小手指着数,这样不容易错,真好;有的同学做完了还知道检查,好习惯。)
组织学生交流,重点探讨最后一个小题0.238。
◆刚才表示的是涂色部分,还可以表示?组织交流空白部分怎样用小数和分数表示。
◆学习数学要有问题意识,看着0.4,你能不能提个数学问题?
(学生先随便提问题,之后老师再指板书引导:0.4里面有几个0.1?)
生依次当小老师根据所填的小数提出问题,并请好朋友回答。
教师适时总结:咱班同学真不简单,既能提问题,还能解答,了不起!
设计意图:本练习的设计体现了一题多练,“以一当十”,重在引导学生举一反三,触类旁通,力求以最少的练习获得知识的全面到位、方法的全面掌握、智力能力的有效提高。
2.以上我们认识了很多的小数,接下来再来认识一个特殊的小数。请看——,它们都和一个小数有关,哪个小数呢?(点击课件)(指读)——0.618,没想到吧?数学家说过:哪里有0.618,哪就闪烁着美的光辉。
这儿还有一个问题——在这条数线上,怎样找到与0.618对应的点?
0.618该在哪?请几个学生指。
师:每个人都指的是0.618,指的位置却不一样,也就是我们现在指的都是0.618的——大体位置。看来只标出——0和1,能不能找准0.618的位置?
学生可能交流:需要分一分。
教师引导:一下子分成1000份,不太好分,是吧?我们从10份开始,可以吧?
师点击课件:把0至1之间平均分成了10份,引导学生继续在0.6和0.7之间找0.618,并引导学生思考只有继续将0.6和0.7之间等分,再等分——实际上相当于把0到1之间平均分成了1000份,才可以找到与0.618相对应的点。组织学生交流,从这个过程,体会到了什么?
学生可能交流:越细分,精确度就越高。
师追问:那么精确有什么用?
生说。
我们一起来看一段视频资料,注意看仔细——(点击课件)播放梁文豪夺冠的视频,分析6名参赛选手的成绩统计,从而得出:只有很精确记录,才能分出胜负。由此看来研究位数很多的小数,有必要吧?
设计意图:继续引入在数线上表示点的练习,有助于巩固所学知识,同时也蕴含了数的顺序和大小关系,有利于学生更完整地建立起小数的知识体系,感悟数学的精确性。
四、自我评价,做到学以致用
这节课,我们一起学习了——(指板书)生说小数的意义。(点击课件)如果用0~1之间的数评价自己的表现,你会用哪个数呢?组织学生交流。
设计意图:学小数,用小数,用小数来评价本节课的学习,学以致用,能使感受小数的应用的广泛性。
五、课后延伸,进行继续探究
看图写小数,并观察三个小数之间有什么联系和区别(0.4、0..40、0.400)
比的意义教学设计 篇19
教学目标:
1、使学生理解分数的意义及分子分母的含义。
2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。
3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。
教学重点:通过具体的操作活动,使学生理解分数的意义,发展学生的数感。
教学难点:在比较辨析中体会部分与整体的关系,感受分数的相对性。
教学过程:
一、导入
出示:数
1、你们都学过哪些数?(整数、小数、分数)
把你知道的分数知识说出来,让我们大家分享一下好吗?
预设:(1)分数有分母、分子、分数线
(2)把一个苹果平均分成两份,取一份就是1/2
(3)分数的比较大小
2、关于分数,你还想知道什么呢?
预设:(1)分数加减法
(2)约分、通分
看来大家的求知欲很强,今天咱们就继续研究分数
二、实践操作,研究新知
(一)认识单位1
出示:1/4
1、你能举例说明1/4的含义吗?把它画下来
2、学生活动,教师巡视
先完成的同学再举举其他的例子
3、汇报交流
学生边汇报,教师边板书
预设:
(1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4
板书:平均分
强调:是谁的1/4
(2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4
(3)我把一米平均分成四份,这样的一份就是一米的1/4
(4)我把四根小棒平均分成四份,这样的一份就是(这四根小棒的)1/4
这一份是谁的1/4啊?(这四根小棒的)
也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4
你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4
上面这些图中,把谁看做单位1?分别说一说
4、你还能把多少图形平均分,也能用1/4表示其中的一份?
(5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4
这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4
(6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4
5、请同学们观察我们操作的结果,有什么相同点和不同点?
相同:都是平均分成四份,表示其中的一份,也就是意义相同
不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分
分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根
6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示
7、每一份出现数量不同是因为(单位1不同)
8、如果把他们平均分成四份,表示其中的'两份呢?(2/4)
你能说说它表示的含义吗?三份呢?四份呢?
1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式
(1)、把12个图形平均分一分,你可以得到哪些分数?
(2)、要求:以小组为单位操作,思考有几种分法。
根据操作过程填写记录单。
说清每个分数的含义。
把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。
记录单:
方法一
方法二
方法三
方法四
画图表示
用分数表示
()
()
()
()
()
()
()
()
与分数对应的个数
2、小组汇报,根据汇报情况,学生质疑、解答。
结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?
2、教师:这样的2份、3份是单位1的几分之几?是几个图形
那也就说既可以平均分成若干份,又可以表示其中的一份或几份
3、归纳概念:
刚才大家开动脑筋,得出了这么多的分数,你能结合刚才的学习活动,结合表格试着总结出什么叫分数吗?
师在学生回答的基础上概括小结:把单位1平均分成若干份,它的一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)
三、简单应用,生活中解释意义
1、分数不仅在我们的课堂中,而且还出现在我们的生活中。
中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。
学生自主阅读,结合具体情境说说每个分数的意义。
谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)
2、用分数表示下面个图中的涂色部分。
3、判断并说明理由。
四、总结
通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?
比的意义教学设计 篇20
教学内容:比例的意义
教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:比例的意义。
教学难点:找出相等的比组成比例。
教学过程:
一、旧知铺垫
1、什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:=15:10=
5:=15:105:=2.4:1.6
==
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三巩固练习
完成课文练习六第1~3题。
四作业
课后记:
教学内容:比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?]
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4:和5:2
:和:0.2:和1:4
3.用下面两个圆的.有关数据可以组成多少个比例?
如(1)半径与直径的比:=
(2)半径的比等于直径的比:=
(3)半径的比等于周长的比:=
(4)周长与直径的比:=
二探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
比的意义教学设计 篇21
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的.基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2、4:1、6=3/260:40=3/2
2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。
2、4:1、6=5:10/32、4;1、6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2、4X40=96在比例里,两个外项的积等于两
1、6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
比的意义教学设计
作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么应当如何写教学设计呢?以下是小编为大家收集的比的意义教学设计,欢迎阅读,希望大家能够喜欢。
比的意义教学设计 篇22
教学内容:青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。
教学目标:
1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。
教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
教学难点:自主探究比例的基本性质。
教学过程:
一、导入
1、谈话
师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?
生1:比的意义。
生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
生3:比的前项除以后项,所得的商就是比值。
……
(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)
二、合作探究,学习新知
1、比例的意义
师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?
生:比例?(书:课题比例)
师:看到这个课题你想知道什么?
(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)
生:什么叫比例呢?
生:(书)表示两个比相等的式子叫做比例。
师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)
师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?
(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。
师:通过以上练习,你认为这句话中哪些词最重要?为什么?
生1:两个比,不是一个比
生2:相等,这个比必须相等
生3:式子,不是两个等式是式子。
师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?
(1)0、8:0、3和40:15
(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15
(4)3/18和4/24
(学生独立判断,师巡视指导,然后汇报)
师:先说能否组成比例,再说明理由,
生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。
同理教学:(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。
师:怎样改能使它组成比例呢?
生:4:8=15/2:15或8:2=15:15/4
同理教学(4)3/18和4/24
师:像3/18和4/24是比例吗?
师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?
2、认识比例各部分的名称。
师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?
生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)
师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?
生:2和32是它的内项,16和4是它的外项。
师:请同学们快速抢答老师指的数是比例的外向还是内项。
生:(激烈抢答):外项、、、、、、
师:同学们反应真快,分数的形式中哪些是比例的项呢?
生:2和32是内项,16和4是外项。
师:老师指分数比例学生抢答。
3、探索比例的基本性质。
师:同学们学得真不错,敢不敢和老师来个比赛?
生:(兴趣高涨):敢!
师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?
师:谁来。
生1:4:5,生2:8:9不能组成比例。
生:对。
师:服气吗?不服气咱们再来一次,
生1:1、2:1、8,生2:3:5
师:不能。对吗?
生:对。
师:老师又赢了,这回服气了吧。(学生点头)
师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?
生:想。
师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:
1、可以通过观察、算一算的方法进行研究。
2、你能得出什么结论?)
师:现在请将你的发现在小组里交流一下,看看大家是否同意。
(学生讨论)
师:哪个小组愿意将你们的发现与大家分享?
生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。
师:有道理,不错,还有其他发现吗?
生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。
师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)
师:这是两个外项的积,(师板书:两个外项的积)
(学生板书:16×4=64)
师:这是两个内项的积,(师板书:两个内项的积)
师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?
师:其他组的同学同意他们这个结论吗?
生:同意。
(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的.积=两个内项的积呢?怎么验证?)
师:真的所有的比例都是这样吗?怎么验证?
生:可以多举几个例子看看。
师:这是个好建议,那快点行动吧。(学生独立验证)
生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、
生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、
师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。
4、比和比例的区别
师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)
师:哪一组的代表来说一说。
生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。
生:比和比例形式不同。比是一个比,比例是两个比。
生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。
5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。
三、巩固练习
1、下面每组比能组成比例吗?
(1)6:3和8:5(2)20:5和1:4
(3)3/4:1/8和18:3(4)18:12和30:20
生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。
生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。
师:怎样改一下使它们能组成比例?
生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。
生4:还可以把1:4改成4:1,也能组成比例。
生5:第(3)个可以组成比例,因为3/4×3=1/8×18。
生6:第(4)个可以组成比例,因为18×20=360,12×30=360。
师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。
2、填一填。
2:1=4:()1、4:2=():3
3/5:1/2=6:()5:()=():6
师:最后一题还有没有别的填法?
生1:5:(1)=(30):6
生2:5:(30)=(1):6
生3:5:(2)=(15):6
生4:5:(15)=(2):6
师:怎么会有这么多种不同的填法?
生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。
3、用2、8、5、20四个数组成比例。
师:你能用这四个数组成比例吗?
师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?
生:2和20做外项,8和5做内项时有4种:
2:8=5:202:5=8:20
20:8=5:220:5=8:2
8和5做外项,2和20做内项时也有4种:
8:2=20:58:20=2:5
5:2=20:85:20=2:8
四、课堂总结
师:说一说,这节课你有哪些收获?
生1:知道了比例的意义。
生2:学习了比例的基本性质
生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。
师:这节课哪个地方给你留下的印象最深刻?
比的意义教学设计 篇23
知识点:
理解比例的意义和基本性质。
能够根据比的意义或者比的基本性质来判定两个比是否能组成比例。
重点:
比例的意义和基本性质。
难点:
应用比例的意义和基本性质判断两个数能否成比例。并能正确地组成比例。
教学准备:
课件
教学过程:
一.导入
(课件中有《比的意义和基本性质》这一课题)看到这一题目时,有的同学可能会想比例是什么?比例和比有关系吗?如果有关系,会是什么关系呢?有什么区别吗?等等。这节课,我们就展开研究!
二.探究新知
1.教学比例的意义
(1)课件出示“天安门广场升旗”图,同学们请看,这是在干什么?对,这是天安门广场庄严肃穆的升旗仪式,你知道这面国旗的长和宽各是多少吗?
(2)出示数据:看到这两个数据.你能提出什么数学问题?(周长,面积,长宽的比)根据学生的回答板书:5:10/3(板书:比)
(3)你还记得哪些关于“比”的知识。(求出比值)
(4)同学请看,这是其它不同场合用到的国旗,请分别算出它们长和宽的比值。(汇报.师板书)
(5)你有什么发现吗:(比值相同)这些国旗的大小相同吗?但比值相等,两个比也就相等,我可以用等式来表示:板书:5:10/3=2.4:1.6像这样两个比相等的式子,你还能写出几个吗?(汇报:板书)
(6)像这样的式子就叫做比例:(板书:比例)哪位同学能说说什么叫做比例。(板书:表示两个比相等的式子叫做比例)这就是比例的意义,(板书:意义)
(7)说起比例,它必须是各两个条件,一个是……另一个是……
2.教学比例的判定
(1)课件出示:下面就请同学们根据比例的意义来判断一下下面这四组,哪两个比可以组成比例?把组成的'比例写出来。
(2)汇报:为什么20:5和1:4不能组成比例:要判断两个比能不能组成比例,关键看什么?
(3)师小结:通过上面的学习,我们知道比例是由两个相等的比组成的……
板书:1:2=():()
师小结:像这样的比例能写完吗?只要比值是1/2就可以了。
(4)“比”和“比例”的区别
现在请同学们想一想,比例和比有什么区别。
3.教学比例的基本性质
(1)刚才,我们知道了,比例有4个项,我们把外边的两个叫做外项,把里面的两个叫做内项。
(2)谁来说一说(1:2=6:12)这个比例的外项和内项。
(3)现在把内项和外项分别相乘,看看会有什么发现?(汇报,板书:外项的积=内项的积)
(4)检验
(5)师总结:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(板书:基本性质。
(7)根据比例的基本性质,判断是否成比例。
(8)师:判断两个比是否成比例,我们既可以用比例的意义,也可以用比例的基本性质。
(9)练习(用自己喜欢的方法来判断)
12:6和10:51/2:1/3和6:4
1.5:3和15:0.32/5和12/30
汇报:
(10)师:五分之二和三十分之十二相等吗:(板书:2/5=12/30)它是一个比例吗?说出你的理由?(指出这个比例的内项和外项)
三.巩固练习
在()里填上合适的数.(想一想,你填数的根据是什么?)
1.5:3=():4()/40=9/60
():4=9:()
四.课堂小结
比的意义教学设计 篇24
教学目标:
知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。
能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。
情感目标:在生活情境中了解小数的产生;体会数学与自然及人类社会的密切联系,了解数学的价值,增加对数学的理解和应用数学的信心
教学重点:
小数的意义,计数单位及进率。
教学难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率
学情分析:
三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。
教学方法:
操作法,观察法,讨论法,引导尝试法。
教学课时:1课时
教学过程:
一、情景导入
1.同学们,华东超市大家熟悉不熟悉啊?去过吗?今天,老师带大家再去哪儿逛逛,好不好?(课件出示)请大家在逛超市的同时,找找看,你在哪儿发现了数?是哪些数?
2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?
3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。
二、新课教学
(一)认识一位小数
出示一米长的纸条
1.估一下,大概有多长?
2.确定是一米长的纸条。
出示长方形的纸片,老师想知道这个表的.长和宽,怎么办?(量)
3.用一米的纸条做尺子,来量数位表的长。
4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)
(板书)1分米
1/10米
0.1米
把1米平均分成10份,每一份是1分米。
也就是说1分米是把1米平均分10份里面的1份,也就是1/10米
也可以用小数表示为0.1米
【设计意图】
用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。
5.通过测量,得到:长是3分米。
3分米
3/10米
0.3米
6.学生活动
(1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。
(2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?
涂其中的几份?
【设计意图】
即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。
(二)认识两位小数
1.量出长方形的宽
比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)
(板书)
1厘米
1/100米
0.01米
2.得到21厘米,用米作单位怎么表示?
21厘米
21/100米
0.21米
3.学生活动
(1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?
(2)如果要在方格纸上涂出0.65呢?
(三)认识三位小数
如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)
1毫米
1/1000米
0.001米
(四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?
【设计意图】
在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。
(五)小数的计数单位
课件演示:用一个正方体的分解来演示
小数的计数单位分别是:十分之一,百分之一,千分之一……
分别写作:
0.1、
0.01、
0.001……
(六)教学小数计数单位之间的进率
10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。
师:同整数一样,小数里面每相邻的两个计数单位进率都是10。
【设计意图】
直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。
三、巩固练习
“勇闯智慧岛”
1.看图写出分数和小数。
2.我是小法官
四、课堂总结
1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)
2.评价学生活动,下课。
比的意义教学设计 篇25
教学内容
教材第34、第35页的内容及第36页练习九的第4—10题。课型新课
教学目标
1、认识小数的小数部分的数位、计数单位和数位顺序表。
2、掌握小数的读写方法会正确读写小数。
3、经历小数的读写过程,体验迁移、比较的学习方法。
4、感受正活中处处有数学,培养学生自主学习的意识和创新精神。
教学重点
会读、写小数。
教学难点
理解小数部分的数位顺序表。
教具学具
多媒体课件
教学设计个性化设计及反思
一、情境导入
师:同学们,你们知道陆地上最高的动物是什么吗?
课件出示教材情境图。
师:请仔细观察,从这幅图中你得到什么信息?
(老师相继吸入出数字1.8、5.63和12.378)
师:请大家仔细观察这些小数有什么共同特征?它们都是由哪几部分组成的?
生:这些数都多了一个点。
师:对,这个圆圆的`点就是小数点,它把小数分成了整数部分和小数部分。这就是我们今天要学习的内容—小数的读法和写法。(板书课题:小数的读法和写法)
二、自主探究
1认识小数的组成和数位顺序表。
师:在小数12.378中,2在哪位上?它表示什么意义?你还记得吗?
生:2在个位上,它的计数单位是一,表示2个一。
师:3、7、8分别表示什么意义呢?
生:3在12.378中的十分位上,表示3个十分之一。
师:对,3在十分位上,表示3个十分之一。
师:谁能说出7、8表示的意义?
学生小组讨论,教师组织汇报。
生1:7在百分位上,表示7个百分之一。
生2:8在千分位上,表示8个千分之一。
师:现在你能把下面的数位顺序表补充完整吗?
(学生单独补充,全班交流)
师生共同总结:小数是由整数部分,小数点,小数部分组成的。在小数里,小圆点叫小数点,它的左边是整数部分,从右往左数一次是个位、百位、千位……小数点的右边是小数部分,从左往右依次是十分位、百分位、千分位……这两边都有省略号,表示后面还有很多数位。
师:你能说出这些数里面“4”所表示的意义吗?
课件出示:40.38、3.4、0.24、1.004)
2、小数的读法。
师:今天,老师还给同学们带来了世界上最大的古钱币。
出示古钱币图
师:哪位同学可以尝试着读出它的高、厚、重。(0.58、3.5、41.47随即板书)
生:0.58读作零点五十八。
师:同学们,他读的对吗?
生:不对吧,和58的读法一样了。
师:是的,读小数时,小数部分从左往右是依次读出每一个数字。谁还想尝试着读出每一个数。
生:零点五八、三点五、四十一点四七。
师:对,读小数时,小数点就读作“点”,小数部分从左往右依次读出每个数字。
师:谁能用自己的语言说说小数该怎样读?然后读出教材第35页“做一做”的第一题。
(学生尝试读出,全班交流汇报)
师:读数时,如果小数部分有“0”,你是怎样处理的?
生:小数部分的0也是依次读出,和整数部分的0的读法有些不同,有几个0就读几个0.
3、小数的写法。
师:同学们,累了吗?现在咱们一起听一段广播吧。
课件出示并播放下面内容。
据国外专家试验研究预测:到2100年与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。
师:听了上面的广播,你能写出广播里的小数吗?
(学生尝试写,然后板演或者汇报)
生:一点四写作:1.4,五点八写作:5.8.
师:上面两个小数的写法正确吗?你能说说怎样写小数吗?
生:写小数时,整数部分按照整数部分的写法去写,小数点写作“.”,小数部分读几就写几。
师:谁还想尝试写出后面的两个小数?
生:零点零九写作:0.09零点八八写作:0.88
师:写小数时,如果小数部分有零,该怎么办呢?
生:写小数时,小数部分读了几个零,就写几个零。
师生共同总结:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0“),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
三、探究结果汇报
师:有关小数读写知识,通过上面的探究,你知道了哪些?
生1:一个小数由整数部分、小数点和小数部分三部分组成。
生2:小数部分从小数点向右数分别是十分位、百分位、千分位……计数单位分别是0.1、0.01、0.001……
生3:读小数时,小数部分从左向右依次读出每一个数字,有几个0,就读几个零。
生4:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
四、师生总结收获
师:通过本课时的学习,同学们有哪些收获?
生:小数的读法和写法与整数的读法和写法类似,可以参照整数的读写法来读写小数。
师:对,在数学上这叫知识的迁移,它们完全相同吗?
生:不是完全相同,有0的时候就不一样。
师:对,同学们学习新知识时要学会从相同中寻找不同。
比的意义教学设计 篇26
教学目标:
(一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(三)培养学生的观察、分析、推理能力。
教学重点和难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.
教学过程:
一、小数的产生。
1、谈话导入
问:在三年级时我们初步认识了小数,你能说一个小数吗?
(根据学生的回答,选一部分板书)
问:你还知道小数的哪些知识?
2、那小数是怎样产生的呢?(出示课件)
①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?
②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)
二、小数的意义。
1、认识一位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/10米
生2: 1分米
师:你是怎么想的'?
生:把 1米 平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是 米 。
师: 米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师: 米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:像、、……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。
(板书:一位小数)
2、认识两位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/100米
生2: 1厘米
师:你是怎么想的?
生:把 1米 平均分成100份,每一份是 1厘米 ,用分数表示是1/100米,用小数表示是 米 。
师: 米 是几厘米?用分数表示是多少米?(生略)
师: 米 是几厘米?用分数表示是多少米?(生略)
师:像、、……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。
(板书:两位小数)
3、认识三位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/100米
生2: 1毫米
师:你是怎么想的?
生:把 1米 平均分成1000份,每一份是 1毫米 ,用分数表示是1/1000米,用分数表示是1/1000米。
师: 米 是几毫米?用分数表示是多少米?(生略)
师: 米 是几豪米?用分数表示是多少米?(生略)
师:像这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)
师:分母是几的分数能写成四位小数?(1000)
分母是几的分数能写成五位小数?()
师:依次类推(板书:......)
4、概括小数的意义
师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成;
5/100可以写成; 12/1000可以写成。
那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?
师:下面分小组说一说你们各自的想法。
(汇报讨论结果。)
组1:分母是10、100、1000的分数可以用小数来表示。
组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。
组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。
小结:
我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。
这就是。(板书:小数的意义)
5、认识小数的计数单位。
师:里面有( )个 里面有( )个
生1:里面有( 3 )个
生2:里面有( 8)个
师:像、这样的一位小数都是由许多个 组成的,我们就说 是一位小数的计数单位,用分数表示是十分之一。
师:那么你们猜一猜,两位小数的计数单位是什么?
生: 是两位小数的计数单位,用分数表示是百分之一。
师:那三位小数的计数单位是(? )
生:(千分之一)
师:那四位小数的计数单位是( ?)
生:(万分之一)
师:依次类推(板书:......)
6、认识进率
(结合板书)一位小数的计数单位是,两位小数的计数单位是,三位小数的计数单位是,那里面有( )个
里面有( )个 (课件出示)
生:里面有( 10)个
里面有( 10 )个
师:为什么里面有( 10)个,里面有( 10 )个,同学们可以结合板书去思考?(四人一小组进行讨论)
生:讨论
生:汇报
生1: 米 =1分米 米 = 1厘米 1分米= 10厘米
所以里面有( 10 )个 ......
师:里面有( 10)个,里面有( 10 )个 ,依次类推(板书:......)
用一句话可以怎么概括?
师:(课件出示) 每相邻两个计数单位之间的进率是10
师:(结合板书)里面有( 10)个,里面有( 10 )个 ,那里面有( )个 ?
生:里面有( )个 ?
师:你们是怎么想的?生:......
四、巩固练习。
师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)
师:请看大屏幕,第一关(课件出示)
1、填一填(书51页做一做)
2、哪两只手套是一副?用线连一连。(书55页第2题)
第二关
3、在( )里可以填几
( )个是 里面有( )个
里面有( )个和( )个组成的
里面有( )个,有( )个,有( ), 个
4、想一想
1元4角2分=( )元 元=( )元( )角( )分
35厘米=( )米=( )分米 米 =( )分米=( )厘米
第三关
5、在括号里填上适当的分数和小数
五、课堂小结。
这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?
比的意义教学设计 篇27
教学内容:
《分数的意义》是苏教版义务教育教科书五年级下册第四单元第一课时的内容。
教材分析:
《分数的意义》是在三年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体组成的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。
知识目标:
能力目标:
使学生经理有具体到抽象的认识,理解分数意义的过程,感受分数形成,体会数的发展,培养学生观察,比较,综合和抽象、概括等思维能力。
情感目标:
体验学习数学的成功和愉悦,培养学生学习数学的积极情感。
教学重点:
教学难点:
认识理解单位“1”。
教具准备:
作业纸。
一、复习导入。
(根据学生回答,板书平均分)。
导入课题:三年级的时候我们已经初步认识了分数,今天这节课,我们就深入认识分数,系统学习分数的知识。
(设计意图:首先,通过激趣谈话问学生,把一个饼分给4个学生,怎么分大家才公平?根据学生的已有经验明确分数是建立在平均分的基础上。)。
二、互动新授。
1、教学例1。
(1)教学单位“1”的含义。
相机指出:一块饼称为一个物体,、一个长方形可以称之为一个图形,“1米”是一个计量单位,最后一幅图是把6个圆看成一个整体。一个物体、一个图形,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(板书:单位“1”)。
提问:想一想,在这几幅图中,分别是把什么看作单位“1”的?
这几个分数分别把单位“1”平均分成了几份,表示这样的几份?
(设计意图:为了突破这难点便于理解和认识,我先引导学生联系每个分数观察各是“把什么平均分”,关注平均分的对象,感受平均分的对象包括一个物体,一个计量单位,一个整体,其中特别注意对由一些物体组成的一个整体的理解:接着以及这些平均分的对象,说明这样的一个物体,一个计量单位,一个整体,通常看做单位1,依据各类具体事务抽象出单位1,使学生体验与认识:忍受追问上面表示的分数中,是把什么看做单位1,用具体对象支撑对抽象的单位1的理解。有具体到抽象,再把抽象的概念赋予具体对象,帮助深化理解。)。
提问:从这几个例子来看,什么样的数叫做分数呢?同桌之间讨论一下。
小结:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(设计意图:首先,让学生用单位1平均分来分别解释、说明每个分数的含义,从抽象的层面分析、体验每个分数的含义,接着让学生综合这些分数“都是怎么得到的?”思考不同分数表示的含义的共同点,抽象分数本质的特征,然后依据交流出的本质特征,引导学生“说出怎样的数是分数”,水到渠成的概括出分数的意义。本环节主要引导学生感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。)。
过渡:我们知道,在整数和小数里都有计数单位,分数里也有相应的单位,这个单位我们把它叫做分数单位。把单位1平均分成若干份,表示其中一份的数,叫做分数单位。
(板书:分数单位)。
提问:那这四个分数的分数单位各是多少?各有几个这样的分数单位呢?
同学们说得很棒,可是光说不练怎么行,老师为大家准备了一张练习纸,这里把6个三角形看做一个整体,分一分,涂一涂找到喜欢的'分数。
(学生自己操作,交流)。
谈话:和你的同桌说说你喜欢的分数的意义,以及分数单位,有几个这样的分数单位。
师:我也涂了其中的4个,想一想,可以用几分之几来表示呢?(板书:6432)。
64,说说你的理由。还有不同答案吗?32,说说你的理由。
小结:同样涂四个三角形,还可以用不同的分数来表示。
师:同学们,刚才都把6个三角形看做单位“1”,为什么找到的分数不一样呢?(是的平均分成几份分母就是几,有这样的几份,分子就是几)。
(设计意图:让学生在作业纸上表示出不同的分数,在操作的过程中让学生体会到单位1相同却表示出了不同的分数,从而得出份数不同,取的份数不同,分数也就不同,深化分数的意义,培养学生的创新思维。)。
三、巩固练习。
1、师:同学们说的真不错,相信这些都难不倒你,谁能快速的说一说。练习八。
2、直线上的点也可以用分数表示?在直线上同长用0—1之间的线段表示单位1,页可以用1—2、2—3之间的线段表示单位1。小眼睛仔细看,这里把单位1平均分成了几份?那这里可以填多少呢?你觉得还可以填多少呢?说说你的想法,下面的请你试着填一填。
3、你会涂色表示2|3吗?打开书本,自己试试看。
师:同学们同样是2|3,为什么涂色的桃子个数不一样呢?
小结:一个圈里不管都多少个桃子,都是把它看作单位1,平均分成3份,表示这样的2份,就是2|3。
4、师:今天我们重点学习了分数的意义,那么下面分数的意义是什么?,给大家点提示:
同桌相互说一说。你会说哪一个,谁来说说看。
出示3:一节课的时间是32小时。32小时的意义是什么?刚我们已经说过这个分数的单位“1”了。
(四)巩固游戏。
要求1:我先请他,他举手发言最为积极。
听清楚:请你拿出这15块橡皮橡皮的51;(停顿一会)开始。
(1)他还没拿,可能是紧张了,我们一起来帮帮他,要拿出15块橡皮的51,应该把什么看做单位“1”?应该把什么看做单位“1“,平均分成几份?你能在展台上分一份吗,平均分成5份,你来说,要拿几份?1份是几块?(3块)。很遗憾,这三块不能给你,送你一张我们学校的书签作为鼓励,谢谢你的参与,请回坐。我拿掉这3块。
(2)给大家看看你拿了几块?(2块)他拿对了吗?。你来想一想,要拿出15块橡皮的51,应该把什么看做单位“1“,平均分成几份?在展台上分给大家看一看,(这2块也放进去),平均分成5份,要拿几份?1份是几块?(3块)。你只拿了2块,很遗憾,橡皮不能给你,送你一张我们学校的书签作为鼓励,谢谢你的参与,请回坐。我拿掉这3块。
(3)给大家看看你拿了几块?(3块)你是怎么想的?把什么看做单位“1”?平均分成几份?在展台上分给大家看一看,(这3块也放进去),平均分成5份,要拿几份?1份是几块?(3块)。他拿对了吗?橡皮送你了,请回坐。
要求2:还剩几块?我们继续,他的手举得最快,我请他听清楚,拿出这些橡皮的123;(停顿一会)开始,把什么看做单位“1”?平均分成12份。
要求3:还剩几块?继续吗,这回要请两位同学一起来。你先来,听清楚,拿出这些橡皮的31;(停顿一会)开始。
请你拿出剩下橡皮的31;(停顿一会)开始,(......停);
从剩下的4块橡皮里拿出几分之几给他,就一样多了呢?41,几块?
要求4:还有3块,已经有同学举手了,等等,这回我们换个要求,根据你们自己所想的分数,上来拿。(笨的)。
如果你们上来拿,想拿几分之几呢?拿几块啊,3块全拿走。
(设计意图:练习的设计有浅入深,分为基础性练习和实践性练习,不仅巩固课堂所学知识,还把学生所学知识运用到现实生活中去,让学生感受到数学与现实生活的紧密联系。
最后设计游戏,不但加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的灵活性。)。
三、总结:今天和大家继续学习了分数,一起来说一说分数的意义是什么,还认识了分数单位,那什么是分数单位。
(1)最后留一题作业给大家,练一练第三题,利用今天所学的知识课后去解决,好吗?
这堂课就到这结束了,感谢大家,也感谢在座的各位老师,谢谢!下课吧,同学们。
比的意义教学设计 篇28
教学内容:
人教版数学四年级下册P50-51
内容分析:
本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”
教学设想:
三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。
教学目标:
1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。
2、认识小数的数位和计数单位。
3、知道小数每相邻两个计数单位间的进率是10。
教学重点:
理解小数的意义
教学难点:
小数每相邻两个计数单位间的进率是10
教学过程:
课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。
下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果
课件出示学案内容
一.复习导入
(出示一位学生的分类结果)
师:请这位同学来回答,你把这些小数分成了几类?
生:三类
师:你是怎么想的?
生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类
师:你们分的和他一样吗?
小数点右边的部分是小数部分(板书补充数位顺序表)
小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?
生:两位小数
师:三位的呢?
生:三位小数
师:今天我们一起来探究小数的意义(板书:小数的意义)
【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】
二、新授
(一)认识一位小数
1、出示尺子图
师:看这幅图,你是怎样填的?
生:分数:1/10米,小数:0.1米
师:你是怎么想的?
生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。
师:谁再来说一说?
2、出示面积图
师:再看这个图,你还能用分数和小数表示吗?
生:分数是1/10,小数是0.1
师:为什么它也能用0.1表示?
生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.
师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1
(出示课件:1/10=0.1)
3、出示第二幅面积图
师:那现在涂色部分是多少?
生:分数是3/10,小数是0.3
师:0.3表示什么意思?
生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3
师:0.3里面有几个0.1?
生:0.3里面有3个0.1
4、出示
师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义
(同桌互说)
汇报:
师:第一个谁来说?
生:分数是6/10,小数是0.6
师:0.6里面有几个0.1?
生:0.6里面有6个0.1
师:第二个是多少?
生:分数是9/10,小数是0.9
师:0.9表示什么?
生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9
师:0.9里面有几个0.1?
生:0.9里面有9个0.1
5、课件出示
师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?
生:分母都是10,都是平均分成了10份得到的
师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?
生:一位小数
师:十分之几的数用一位小数表示(课件出示)
给同桌读一读这句话
6、课件出示
师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?
出示
生:10/10、1
师:十分之十就是1
1里面有几个0.1?
生:1里面有10个0.1(课件出示)
7、出示
师:这个图怎么表示?
生:1.2
师:1.2里面有几个0.1?
生:1.2里面有12个0.1(课件出示)
8、出示
、
师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)
0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)
十分之一所占的数位就是十分位(补充数位顺序表)
师问:十分位的计数单位是什么?
生:十分之一
师:十分位所占的数位是?
生:十分位
师:老师在说一个小数:0.8
8在哪一位?(生:十分位)
它的计数单位是什么?(生:十分之一)
有几个这样的计数单位?(生:8个)
【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的`意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】
(二)认识两位小数、三位小数
1、自主探究
师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?
接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。
先请一位同学读一读
学生活动
2、练习反馈
师:同学刚才讨论的很积极,这几个问题都解决了吗?
那老师出几个问题考考大家
3、出示
师:涂色部分是多少?
生:分数是1/100,小数是0.01
师:你怎么想的?
生:把正方形平均分成100份,其中的一份是1/100,小数是0.01
师:谁再来说一说?
出示
师:这一个呢?
生:分数是4/100,小数是0.04
师:0.04里面有几个0.01?
生:有4个0.01
出示
师:这是多少?
生:分数是21/100,小数是0.21
师:0.21里面有几个0.01?
生:有21个0.01
4、认识两位小数的计数单位和数位
师:两位小数的计数单位是什么?(生:0.01)
也可以说是百分之一(补充数位顺序表)
百分之一所占的数位是?(生?百分位)(补充顺序表)
两位小数表示的是?(生:百分之几的数)
5、三位小数的意义
出示
师:再看这个图,涂色部分是多少?
生:分数是1/1000,小数是0.001
师:0.001表示什么?
生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001
师:谁再来说?
出示:0.125
师:再看这个数,是多少?(生:零点一二五)
没有图了,你还能说出他的意义吗?
生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125
师:0.125里面有几个0.001?
生:有125个
6、三位小数的计数单位和数位
师:三位小数的计数单位是什么?(生:0.001)
也可以读作千分之一
千分之一所占的数位是?(生:千分位)
(补充数位顺序表)
三位小数表示的是什么数?(生:千分之几的数)
【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】
7、延伸
师:那四位小数呢?(生:万分之几)
计数单位是?(生:万分之一)
往下说的完吗?(生:说不完)
我们可以用省略号表示(补充数位顺序表)
8、拓展
师:小数部分有没有最小的计数单位?
生:有
师:有不同意见吗?
生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小
师:你们听懂了吗?
想一想,0.1是怎么得到的?
生:平均分成10份,1份是0.1
师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?
生:没有最小的计数单位。
师:小数部分有没有最大的计数单位?
生:十分之一
9、修改数位顺序表
师:拿出你刚才写的数位顺序表,看一看你写的对吗?
有问题的修改一下
(三)计数单位间的进率
1、出示:
师:第一个图的涂色部分用小数表示是?(生:0.1)
第二个图的涂色部分用小数表示是?(生:0.10)
你发现了什么?
生:两个图的涂色部分一样大
师:也就是他们大小相同。(出示:0.1=0.10)
有什么不同吗?
生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份
师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份
第一个表示1个0.1,第二个表示10个0.01
你还有什么发现?
生:10个0.01是0.1(板书)
师:一起读一遍
2、出示(由1个0.1增加到10个0.1)
生一起数到1
师:你发现了什么?
生:10个0.1是1
师:(板书)再读一读
3、小结
师(指数位顺序表):你有什么发现?
生:进率是10
师:对,小数和整数一样,相邻两个计数单位间的进率是10
比的意义教学设计 篇29
一、教学目标
1、理解小数的意义,能够说出小数各部分的名称。
2、正确掌握小数的读、写方法。
3、通过观察、测量体验小数与生活的关系。
4、在合作与交流中的过程中,感受数学学习的乐趣。
5、体验数学在身边,感受数学学习的价值和乐趣。
二、教学重点和难点
1、认识小数学概念。
2、小数表示形式。
3、理解小数的含义是本课的重点、也是难点。
三、教学过程
一)创设情景,导入新课
创设情景,引导学生交流搜集到的生活中的小数。
教师根据学生回答随机板书:
1、一张桌子的高度是米;
2、教室窗户的宽是米;
3、一份汴梁晚报价格是元
4、每度电的`价格是元。
5、一棵包菜的重量是千克。
6、奥运冠军刘翔的身高是米,体重是千克。
问题思考:
为什么在这些地方需要用小数来表示?
引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。
问题:
1、这些都是小数,你知道关于小数的哪些知识呢?
2、关于小数你还想知道些什么?
3、今天我们就进一步研究小数的意义。(揭示课题)
这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
二)新授部分
米表示什么意义?谁来说说(借助课件,帮助学生理解)
引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成米。谁也来就像这样完整说一说。
师:这就是米的意义。对照板书中的分数和小数,你能发现什么?
学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。
问题:十分之五等于多少?等于多少?
我们过去三年级所认识的米、米以及米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?
每份长1厘米,就是1/100米,还可以写成米.
问:谁愿意再来说说米的意义。学生完整地说出:
1米平均分成100份,每份长1厘米,就是1/100米,还可以写成米。
想一想米表示什么?
重点让学生自己来说一说。
观察:对照板书,那么你们又有什么新的发现?
得到:百分之几可以写成两位小数,两位小数表示百分之几。
师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?
你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。
师:如果将1米平均分成份呢?能再举例吗?
接着学习下面的几个小数:元、元、千克
把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。
归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。
三)练习加强理解
1、读小数:元米千米千克
2、1厘米=()/()分米5角=()元
3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示
四)教学反思
1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。
2、本节课教学包括一位小数的意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。
3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。
4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。
5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。
比的意义教学设计 篇30
教学目的
1.使学生知道小数的产生过程,理解分数与小数的联系,明确小数的计数单位,从而认识小数并理解小数的意义.
2.培养学生的观察能力、分析能力、抽象概括和迁移能力.
3.通过小数这个新的数域的学习,使学生认识到科学是没有止境的,培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质,并受到唯物主义的教育,感受数学与生活的紧密联系.
教学重点
使学生通过分数与小数的联系从而理解小数的意义.
教学难点
使学生真正理解小数的意义.
教学步骤
一、设疑激趣:
1、我们都学过那些数?举例说明。(整数、分数)
2、你还见过那些数?(小数)
3、你在那里见过?(学生举例,教师可以适当出示:如出租车的计价牌、商场的价签等。)
4、你对小数还有那些了解?你想知道有关小数的那些知识?
(教师可以根据学生的.回答,有选择的进行板书:小数的意义,产生,与整数、分数的关系等)
(二)探究新知
1.教学小数的产生.
①口算:10÷10=1÷10=
100÷10=1÷100=
1000÷10=1÷1000=
教师提问:你能说说两组题有什么特点吗?
②学生活动:分组测量课桌的长与宽.(利用直尺)
教师提问:从测量结果中,你发现了什么?
教师小结:在进行计算和测量时,往往得不到整数的结果.除了可以用分数的形式表示以外,还可以用另一种新的数来表示,这就是小数.
2.教学小数的意义.
(1)认识一位小数:演示课件小数的意义
①根据图意,填出对应的分数.
②教师出示:把1米平均分成10份,每份是()分米,是()米;这样的3份是()分米,是()米.
③教师指出:1分米=米,也可以写成0.1米.3分米=米,也可以写成0.3米.
④教师提问:你能将刚才填写的另外两个分数改写成小数吗?
(米=0.5米;米=0.9米)
⑤教师小结:你发现分数与小数的联系了吗?
(分母是10的分数,可以写成一位小数。一位小数表示十分之几。)
⑥教师提问:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
(2)认识两位小数:继续演示课件
猜一猜:你能猜一猜两位小数与什么样的分数有关系吗?
①教师出示:把1米平均分成100份,每份长()厘米,是()米;这样的7份是()厘米,是()米.
②引导学生观察米尺,结合教师出示的习题然后进行分组讨论.
(指名回答并板书:1厘米=米=0.01米;7厘米=米=0.07米.)
③教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几.
(3)认识三位小数继续演示课件
教师提问:把1米平均分成1000份,每份长是多少?
学生在尺上找出1毫米后,教师出示1厘米的放大图.
引导学生从图中找出1毫米的,并说明理由,使学生明确:1米是千分之一米,还可以写成0.001米.
(板书:1毫米,米,0.001米)
教师提问:8毫米是千分之几米?写成小数是多少呢?13毫米昵?
(板书:8毫米,米,0.008米)(板书:13毫米,米,0.013米)
教师提问:分母是1000的分数可以写成几位小数?(板书:三位小数)
教师说明:照这样分下去,还可得到米写成0.0001米......
(板书:米,0.0001米)
(4)抽象、概括小数的意义
教师提问:把1米看成一个整体,如把一个整体平均分成10份、100份、1000份......
这样的一份或几份可以用分母是多少的分数表示?
教师讲解:
②把分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开.
学生讨论:什么叫小数?
教师补充并概括:分母是10、100、1000、......的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几......的数叫做小数.
3.教学例1继续演示课件(出示例1)
教师出示:1角是元,用小数表示是()元.
2分是元,用小数表示是()元.
2角5分是元,用小数表示是()元.
牛奶每袋8角5分,用“元”作单位是()元.
组织学生讨论,并指名说一说每道题都是怎样想的?
教师提问:你发现分数与小数之间有什么关系吗?
(分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数......)
(三)巩固练习:
1、书P86做一做:0.3里面有()个十分之一.
0.05里面有()个百分之一.0.009里面有()个千分之一.
2、书P89(1)把下图中图色的部分用分数和小数表示出来.
分数:_______分数:_______分数:_______
小数:_______小数:_______小数:_______
3、书P89(2)用线段把相等的小数和分数连起来.
(四)课堂小结:
我们以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系.
①当测量、计算的结果不能用整数表示的时候,就可以用分数或小数表示.
②分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数......
③分数的计数单位分别是......,这也是小数的计数单位.
④整数、分数、小数每相邻两个计数单位之间的进率都是10.(举例说明)
板书设计:
比的意义教学设计 篇31
教学内容:
人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。
教学目标:
1。借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2。能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3。在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。
教学重点:
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
教学难点:
方程与等式的关系;方程中等量关系的建立。
教学准备:
课件、写式子的卡片、磁钉。
教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):这是什么?同学们知道天平的用途吗?
一般在称东西时,我们在天平的`左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。
二、探究新知
(一)天平演示,初步感知等与不等。
1。出示天平图1。
现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)
2。(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用
g表示,那么杯子和水共重多少呢?(100+)
3。如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。
这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。
4。来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。
5。(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?
【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。
(二)分类整理,建构概念
1。观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)
2。学生反馈,教师根据反馈在黑板上移动式子。
预设1:按左右相等和不等分类(补充等式和不等式);
预设2:按是否含有未知数分类。
注:教师在按照两种分类方式摆放式子时整理成如下表格所示:
含有未知数
不含有未知数
等式
不等式
3。(指表格)像这样,含有未知数的等式称为方程(揭题)。
4。写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)
5。说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)
(三)概念辨析,理清等式与方程之间的关系
1。“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)
2。这两个式子是否是方程呢?
反馈分析:
(1)式1:一定是。为什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么联系呢?
(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。
【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。
三、实践反思,巩固提高
1。“做一做”第2题及练习十四第2题:看图列出方程。
学生练习并进行反馈。
反馈侧重:使学生明确,可以根据量相等来列出方程。
2。练习十四第3题:看情境图,思考数量关系再列方程。
(1)从图上你知道了什么?
(2)你能根据你知道的数量关系列出方程吗?
(3)学生自行根据数量关系列出方程,并进行反馈。
【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。
四、总结回顾,介绍历史
1。你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)
2。教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)
【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。
比的意义教学设计 篇32
【教学内容】苏教版P40页例3、练一练及练习九的3----7题。
教学目标:
1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的'更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)
2厘米
3.2厘米
4.8厘米
3厘米
6.4厘米
4厘米
9.6厘米
6厘米
二、新授
师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(学生板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(学生写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)
?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。
三、巩固应用
(一)数的比例
课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)
(二)形的比例
出示两个具有放大关系的三角形
3厘米
5厘米
4.5厘米
7.5厘米
师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)
(三)生活中的比例
师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!
1、课本41页第3题(学生独立完成,小组订正交流。)
2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)
四、总结
师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
五、课堂检测
1、下面哪些组的两个比可以组成比例?如果能,在()打对号。
10:2和35:42()0.6:0.2和:()
:4和3:():和12:8()
2、在下面的六个比中,选择两个比组成比例。
::4:71.4:2.8:10:15
3、写出比值是的两个比,并组成比例。
4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?
六、布置作业
课本练习九4题、7题
