分数的基本性质教案

知远网

2025-10-22教案

知远网整理的分数的基本性质教案(精选37篇),希望能帮助到大家,请阅读参考。

分数的基本性质教案 篇1

教学目标:

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2.理解和掌握分数的基本性质。

3.较好的实现知识教育与思想教育的有效结合。

教学重点:

理解和掌握分数的基本性质。

教学难点:

能熟练、灵活地运用分数的基本性质。

教学过程:

一、创设情景

师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的`1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以

生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

师:我们发现的这个规律,就是分数的基本性质。

同学们现在小组内总结一下,什么是分数的基本性质?

(学生认真讨论)

师:同学们汇报一下你们的讨论结果。

三、 自主练习 巩固提高

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。

课堂小结 :

一生小结,他生补充,教师评判。

分数的基本性质教案 篇2

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

重点难点:

1、使学生理解分数的基本性质。

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入

1、导入课题

生读故事。

唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

2、明确目标

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

3、预期效果

达到教学目标

二、民主导学

任务一

任务呈现

动手操作验证性质

自主学习

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

请一同学回答,

生:我们发现了8分之四的`分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)

师板书:或者除以

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

生:不成立,

师:为什么

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的'数,不是所有的数需要加上一句什么话

生:0除外

师板书0除外

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

生:同时和相同的数

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二

任务呈现

课本76页的例2,请一同学读题。

自主学习

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流

每题请二名同学回答,(集体订正答案)

检测导结

1、目标练习

76页“做一做”

练习十四的1、2、6、7题

2、结果反馈

生做完后同桌交流,再指名说说结果。

3、反思总结

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计

教具课件设计

小黑板正方形纸数块

板书设计

分数的基本性质

练习和作业设计

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本性质教案(精选20篇)

作为一位不辞辛劳的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?以下是小编为大家收集的分数的基本性质教案,仅供参考,大家一起来看看吧。

分数的基本性质教案 篇3

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、 动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

2、出示做一做(1)

(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

(3)观察,说说你发现了什么? = = (课件揭示)

(4)交流:你还有什么发现?

分数的分子和分母变化了,分数的大小不变。

分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以相同的数)(课件演示)

3、出示做一做图片(2),学生独立填写分数。

(1)说说你是怎么想的?

(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)

4、想一想:引导归纳分数的基本性质

(1)从刚才的演示中,你发现了什么?

板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、

相同的数、0除外。 都可以换成哪个词?同时。

板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?

师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9 /12)(课件揭示)

师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

6、趣味比拼,挑战智慧

给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

三、多层练习,巩固深化。

1、考考你(第43页试一试和练一练第2题)。

2/3=( )/18 6/21=2/( )

3/5 =21/( ) 27/39=( )/13

5/8=20/( ) 24/42=( )/7

4/( )=48/60 8/12=( )/( )

2、涂一涂,填一填。(练一练第1题)

3、请你当法官,要求说出理由.(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

(2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

(3)3/4的分子乘3,分母除以3,分数的大小不变。( )

(4) 10/24=102/242=103/243 ( )

(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

(6)3/4=30/4 0=30/4 0 ()

4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

(2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的`?

四、拾捡硕果,拓展延伸。

1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

(或用分数表示这节课的评价,快乐和遗憾各占多少?)

2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

3、拓展延伸

师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

五、动脑筋退场

让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

分数的基本性质教案 篇4

教学目的

1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

2.培养学生观察、分析、思考和抽象、概括的能力.

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

教学过程

一、谈话.

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.

二、导入新课.

(一)教学例1.

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

1.分别出示每一个圆,让学生说出表示阴影部分的分数.

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

4.观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化?

( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

(2)观察

(二)教学例2.

出示例2:比较 的大小.

1.出示图:我们在三条同样的数轴上分别表示这三个分数.

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

(1)这三个分数从形式上看不同,但是它们实质上又都相等.

(教师板书: )

(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质.

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

(板书:“基本性质”)

4.谁再说一遍什么叫分数的基本性质?

教师板书字母公式:

四、应用分数基本性质解决实际问题.

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

2.分数基本性质的应用:

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

决一些有关分数的问题.

3.教学例3.

例3 把 和 化成分母是12而大小不变的分数.

板书:

教师提问:

(1) ?为什么?依据什么道理?

( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的`几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?

( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?

(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五、课堂练习.

1.把下面各分数化成分母是60,而大小不变的分数.

2.把下面的分数化成分子是1,而大小不变的分数.

3.在( )里填上适当的数.

4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

5.请同学们想出与 相等的分数.

规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

六、课堂总结.

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

七、课后作业.

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

分数的基本性质教案 篇5

教学前的思考:

一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

教学设计:

一 故事提供“猜想”素材:Flash动画故事引入.(教师出示课件)

师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

生:高兴!

师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)

师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

生1:胖和尚吃的多。

生2:矮和尚吃的多。

……

师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)

二 用事实“验证”,完整性质。

1.实际操作列等式证实分数大小相等。

师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)

师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

生:阴影部分的大小相等。

师:阴影部分相等说明这三个分数怎样?

生:三个分数相等。

(随着学生的`回答,老师将板书的三个分数用“=”连接。)

2.观察课件证实分数大小相等。

师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

师:这三个分数所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接。)

3.初步概括分数基本性质.

师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)

师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)

生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)

师:你们观察的真仔细!请大家给点掌声好吗?

(学生掌声起,激情高长,课堂教学充满活力。)

师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?

(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)

4、完整分数基本性质:

师:(出示课件)请同学们填空:

(教师请一位会操作鼠标的同学在课件中填空)

师:第3题( )里可以填多少个数?第4题呢?

生:可以填无数个。

师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)

生:不能填零。

师:为什么不能填零?

生:分数的分母不能为零。

(教师对学生的回答进行评价)

师:所以我们总结的这条规律必须加上一个条件“零除外”

(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)

师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)

三 深入理解分数基本性质

1.学生自学,深入理解性质。

师:请同学们把书翻到108页,自读分数的基本性质。

师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?

生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)

2.学生独立完成做一做1。(完成后小组内互相评价)

3.找出与

相等的分数:

(教师出示课件,请一位同学在课件中连线,教师进行评价)

4.请同学们自学并完成例2、(教师巡视,个别进行辅导)

……

四 照应Flash动画故事,渗透“形式与实质”的辩证观点

教师在黑板上出示自制的三个同样大小的圆饼

师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)

生:三个和沿吃的一样多。

师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

……

五 课堂小结:这节课你有什么收获?(学生板书课题)

教学后的感悟:

1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

分数的基本性质教案范文10篇

作为一名老师,就难以避免地要准备教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的分数的基本性质教案10篇,仅供参考,大家一起来看看吧。

分数的基本性质教案 篇6

分数的基本性质

教学目标:

知识与技能:

初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

过程与方法:

结合趣味故事和填数活动,经历认识分数的基本性质的过程。

情感态度与价值观:

积极参与数学活动,发展学生数学思维,感受分数基本性质的合理性和确定性。

教学重点:

会应用分数的基本性质进行分数的改写。

教学难点:

理解分数的基本性质。

教学过程:

一、故事引入

同学们,你们爱看《西游记》吗?唐僧、孙悟空、猪八戒、沙和尚在去西天取经的过程中,路过了很多地方,虽然经历了很多磨难,但是也得到了很多人的帮助。下面我们来欣赏一下《西游记》的动画片。

二、探求新知

1、课件出示配乐故事和相应画面。

唐僧师徒四人去西天取经,有一天,路过女儿国,国王给了他们师徒四人一块饼。唐僧说:"咱们把这块饼平均分成四块,每人一块吧。"猪八戒听见了,急忙说:"一块太少了,师傅,我吃得多,就多分给我一块吧。"唐僧看了看这贪吃的徒弟,不知道怎么办好,孙悟空说:"师傅,那就把这块饼平均分成八块,给他二块吧。"唐僧笑了笑说:"你这个猴子,真狡猾。"

[上课时先看一段故事,学生一定非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

师:从上面的故事中,你了解到那些数学信息,想到了什么问题?

生1:唐僧要把饼平均分成四块,每人一块,很公平。

生2:孙悟空说把饼平均分成八块,给猪八戒两块。

生3:我知道猪八戒没有多吃到饼。

师:你们同意他的说法吗?让学生讨论:八戒到底有没有多吃到饼。

引导学生小组合作想办法证实自己的想法。

[分组讨论问题充分体现了学生合作学习的良好氛围,激发了他们的求知欲,学生在激烈的讨论中思维能力得到进一步的提升。]

汇报:

生:我们组用画图的方法证明猪八戒没有多吃到饼。

展示了本小组的图

师:非常好,清楚明白,还有其他的'方法吗?

学生们都认同他们组的做法

师:想一想我们上节课学得分数与除法的关系,能不能把分数转化成除法进行证明?

生:14=1÷4,1和4都同时扩大2倍,变成2÷8,商不变。2÷8写成分数形式是。

〔师进一步引导,培养学生知识的迁移能力。〕

最后得出结论:等于,八戒没有多吃到饼。

2、看图填数让学生用分数表示图中的涂色部分,填完后汇报。

师:观察上面的图和分数,说一说你发现了什么?

生:这几个分数都相等。

3、议一议

让学生仔细观察,看一看分数的分子和分母怎样变化,分数的大小不变?和同桌讨论一下。

学生试着归纳:分数的分子和分母都乘或除以相同的数,分数的大小不变。

师:"根据同学们的回答,老师也进行了总结 。"

师出示分数的基本性质贴在黑板上,指名学生读,学生自由读。

师告诉学生这就是分数的基本性质。

对照分数基本性质,让学生说说我们自己总结的比分数的基本性质少了什么?

生:我发现少了"零除外"

师:想一想:为什么性质中要规定"零除外"?

生:分数的分母不能为零,所以分母不能乘或除以零。

[新知识力求让学生主动探索,逐步获取。"孙悟空分饼"和看图填数得出的三组相等的分数为学生探索新知提供了材料,议一议是学生探求新知、独立思考的指南,引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。]

三、试一试

1、把34化成分母是12而大小不变的分数。

思考:要把34化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

2、讨论:猴子运用什么规律来分饼的?如果猪八戒要三块,猴子怎么分才公平呢?如果要四块呢?

[总结出分数的基本性质后,再让学生说出孙悟空的想法,并回答如果猪八戒要三块饼、四块饼,孙悟空怎么办?既前后照应,又让学生在帮孙悟空想办法的过程中,运用新知解决实际问题。]

四、多层练习,巩固深化

以游戏的方式完成,教师说分母或分子,学生说出相应的分子或分母,使组成的分数与给定的分数相等。

[练习设计由易到难,由浅入深,既巩固新知,又发展思维。]

分数的基本性质教案 篇7

分数基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

根据分数的基本性质,我们能够把任何一个分数变换成另一个分数单位的等值分数。也就是说,分数基本性质解决了分数单位的换算问题。统一了分数单位,异分母的分数才能进行加减运算。

例如,+=+

=×2+

=×(2+1)

=。

在分数的运算中,把异分母分数变成同分母的分数的过程,叫通分;通分是把较小的分数单位变换为较大的分数单位。在分数的运算中,有时也需要把较大的分数单位变换成较小的分数单位,这个过程叫约分。

例如,×=

=。

通分和约分的理论根据都是分数的基本性质。

分数基本性质还是分数集合分类的一个标准。根据分数基本性质,可以把分数集合中所有等值分数都归为一类,于是分数集合就被分成无数个这样的等值分数的类别。如,上述和属于同一类,和属于同一类。

在分数集合的每一个等值分数的类别中,都有且只有一个最简分数。所谓最简分数,就是它的分子和分母除1以外再也没有其他的公因数了。如,上述、都分别是它们所在的等值分数类别中的最简分数。

在分数集合中,最简分数就是每一个等值分数类别的代表。确定这一个代表的重要意义是,确保分数运算与自然数运算一样,运算结果具有单值性(唯一性)。这就是为什么要对运算结果进行约分,直到最简分数为止。

小数单位0.1、0.01、......分别与分数单位、、......是等价的,小数是特殊的分数。小数与分数可以互相转化。

例如,把0.25化为分数。

方法1:(根据小数的意义)

0.25=0.01×25

=×25

=。

方法2:(把小数视为分母是1的分数)

0.25=

=。

方法1和方法2中,每一步都是可逆的,所以如果把化为小数,也有与上述对应的两种方法。此外,把分数化为小数还可以直接利用除法,即=1÷4=0.25。

在上述两种方法中,分数的基本性质都发挥了作用。

分数基本性质与商不变规律,事实上是从不同的形式表示相同的规律。本质相同而形式不同,主要是适应不同的情境。所以,从商不变规律的重要性亦可反观分数基本性质的重要性。

遇到小数除法,根据商不变规律可以转化为整数除法,从而以整数除法为基础把把小数除法与整数除法统一起来。

例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;

或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.

如果把2.4÷0.4写成分数形式,也未尝不可,不过将出现被称为“繁分数”的分数形式。把繁分数化为简单分数,也必须根据分数的基本性质。

例如,=

=6.

有了“商不变规律”,在算式的等值变形中可以避免出现繁分数的形式,所以繁分数的概念很早以前就已经不出现在小数数学的教科书中了;即使出现了“繁分数”,我们就把它当作一般分数来对待,也不必专门为之增加一个新名称。

当沟通了分数、除法与比的`本质的联系后,我们可以想到,其实比也有一个与分数基本性质等价的基本性质。即比的前项与后项都乘或除以相同的数(0除外),比值不变。

根据比的这一基本性质,比可以进行等值变形。在比的实际应用中,如果不掌握比的等值变形,就会寸步难行。不过,比的等值变形不能局限于比的化简。在笔者《分数认识的三次深化与发展》中,已经说明把按比分配转化为分数问题来解决的时候,事实上要把整数比转化为分数比的形式,而且这些表示部分与整体关系的分数的总和还必须等于1(即部分之和等于整体)。

下面再看两个实例,进一步体会比的必要性。

例1一种混凝土是由水泥、沙子和石子混合成的,其中水泥与沙子的比是1︰1.5,沙子与石子的比是1︰。这种混凝土中水泥、沙子和石子的比是多少?

问题中两个已知的比,分别表示混凝土中两个成分的比,而且这两个比的基准不一致。解决这个问题的关键是统一比的基准。因为这两个比中都含有沙子的成分,所以选择沙子为统一的基准,就能把两个比统一起来。

解:水泥︰沙子=1︰1.5=10︰15=︰1;

沙子︰石子=1︰。

所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。

当某种混合物的成分多于两种,并要表示它各种成分之间的倍比关系时,比的表示形式就得天独厚志显示出它的优越性。

例2(阿拉伯民间流传的数学故事)有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的、、。儿子们想来想去没法分:他们所得的都不是整数,即分别为、和,总不能把一匹马割成几块来分吧?聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,还剩一匹我照旧牵回家去。”这样把分的问题解决了。

学习比的知识,我们都会变得和阿拉伯兄弟的那个邻居一样聪明。这个知识就是比的等值变形。

解:︰︰=(×12)︰(×12)︰(×12)

=6︰3︰2,

而且6+3+2=11。

所以,老大、老二、老三分别分得的马分别是6匹、3匹和2匹。

这位阿拉伯邻居一定是一名优秀教师,他善于把上述抽象的演算过程直观地表现出来。他牵来自己的一匹马,凑成12匹马,这个12恰是这三个分数分母的最小公倍数,这个数也是把这三个分数的比化为整数比的关键所在。

综上,可以看到分数基本性质的重要地位和作用:

⒈是把分数从一个分数单位换算为另一个分数单位的基础;

⒉是分数的通分与约分的根据,也是一些算式等值变形的重要途径之一;

⒊是分数集合被分成等值分数类别的分类标准,在每一个类别中都有且只有一个最简分数,使得分数运算的结果具有唯一性。

分数的基本性质教案 篇8

教学内容人教课标实验教材五年级下册P75分数的基本性质

教学目标

1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点使学生理解分数的`基本性质。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学关键:经历预测猜想——实验分析——合情推理——探究创造的过程

教学过程:

一、故事导入,确定目标。

1.唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?

2.通过这节课的学习同学们就知道其中的奥秘了!板书课题,共议目标。

二、目标的教学

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之一、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?现在你们知道孙悟空为什么笑了吗?请同学回答。猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

师板书:或者除以

板书八分之四同时除以0,问:这个式子成立吗?(打上问号)不成立,为什么?因为0不能作除数,0不能作除数,所以这个式子是错误的。(画*)我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)不成立,因为在分数当中分母相当于除数,除数不能为0。对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画*)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话?0除外。师板书:0除外。到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

”同时“和”相同的数“(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

3、教学例2

出示例2:把3/4和15/24化成分母是8而大小不变的分数。

思考:要把3/4和15/24

分数的基本性质教案 篇9

教学内容:

苏教版小学数学教材第十册,第95~96页,例1、例2,分数的基本性质。

教学目标:

1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。

2、能正确理解分数的基本性质,能应用分数的基本性质,把一个分数化成指定分母而大小不变的分数。

3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。

教具、学具:4张同样大小的'纸条/每人

教学过程:

教学环节与教学内容

学生学习活动

教师教学活动

一、

复习准备:

1、出示:

除法

分数表示

小数表示

1÷2

2÷4

3÷6

2、启思引入。

口算。

回忆、口答分数与除法的关系。

回忆并口述商不变的规律。

提出问题。

板书。谈话引导。

“用分数表示时,你是根据什么来做的?”

“观察用小数表示的结果,体现了什么规律?”

“完成上题后,你产生了哪些疑问?”

二、

进行新课:

1、直观验证

2、发现规律

(1)探索

(2)应用

==

==

==

(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。

(4)概括规律。

3、组织练习。

(1)判断:

=()

=()

=()

=()

(2)说一说,和有什么关系?

(3)说一说,商不变的性质和分数的基本性质有什么关系?

4、教学例2。

用纸条操作、验证,并展示。

思考、口答。

讨论、交流。

填空、交流。

交流,发现“(零除外)”。

讨论、交流。

口述。

理解、记忆。

判断、口答。

交流,

交流。

尝试解答。

集体交流。

“你能直观验证一下==吗?”

“你能从操作过程中体会到这三个分数为什么会相等吗?”

“你能再写一个统它们相等的分数吗?”“写的时候你是怎样想的?”

“你发现了什么规律?”

“怎样填才能又对又快?

总结规律。

“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”

“你是怎样发现的?”

“能把它们合成一句话吗?”

揭示、板书课题。

指导。

巡视、个别辅导。

评讲。

三、

课堂小结:

反思、回顾、整理、交流。

“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”

四、

巩固练习:

练习十八1

练习十八2

练习十八3

先操作,再比较。

先判断,再说理。

指名口答。

“这题验证了什么性质?”

教后反思

分数的基本性质教案 篇10

教学内容:

人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。

设计思路:

《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

教学目标:

1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。

教学重点:

理解和掌握分数的基本性质。

教学难点:

应用分数的基本性质解决实际问题。

教学方法:

直观演示法、讨论法等。

学法:

合作交流、自主探究。

教学准备:

每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。

教学过程:

一.创设情景,激发兴趣

(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

二.大胆猜想,揭示课题

学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?

随着学生的回答,教师板书课题:分数的基本性质。

三 .探索研究,验证猜想

1. 动手操作,验证性质。

(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12

份,并分别给其中的.1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?

(2)小组合作:①观察、分析、比较在组内交流你的发现。

②合作交流,各抒己见。

123③选代表全班汇报、交流,师相机板书:4812

123(3)合作讨论: 为什么相等? 4812

①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。

2.分组汇报,归纳性质。

a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

(根据学生回答

b.从右往左看,分数的分子和分母又是按照什么规律变化的?

(根据学生的回答)

c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?

d.综合刚才的探究,你发现什么规律?

(4)引导学生概括出分数的基本性质,回应猜想。

对这句话你还有什么要补充的?(补充“零除外”)

讨论:为什么性质中要规定“零除外”?

(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)

33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212

的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)

分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x

四.回归书本,探源获知

1.浏览课本第75—78页的内容。

2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)

3.分数的基本性质与商不变性质的比较。

(1)小组合作:讨论分数的基本性质与商不变性质的异同。

(2)小组内交流。

(3)选代表全班交流、汇报。

(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!

4.自主学习并完成例2,请二名学生说出思路。

五.巩固深化,拓展思维(PPT演示文稿出示下列题目)

1.想一想,填一填。

33×( )988÷( )() 55×( )( )2424÷( )3

学生口答后,要求说出是怎样想的?

2.在下面( )内填上合适的数。

要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

3.思维训练(选择你喜爱的一道题完成)

3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5

(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?

讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

六.全课小结

本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)

七.布置作业

P77—78练习十四第1、5、8题。

教学反思

“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:

1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!

2.学生在操作中大胆猜想。

新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。

3.学生在自主探索中科学验证。

分数的基本性质教案 篇11

教学目标

(一)理解和掌握分数的基本性质。

(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点和难点

(一)理解和掌握分数的基本性质。

(二)归纳分数的基本性质,运用性质转化分数。

教学用具

教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

学具:每位同学准备三张相同的长方形纸片。

教学过程设计

(一)复习准备

1.口答:(投影片)

根据 120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

2.说一说依据什么可以不用计算直接得出商的?

3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课

1.分数基本性质。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

教师:请比较这三个分数的大小?

你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

请同学观察,思考和讨论。投影出思考题:

如何?

结果如何?

变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

的变化规律是什么?(学生小组讨论后汇报)教师板书:

教师:试说一说这时分子、分母的变化规律?

学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

(3)请根据上面的.研究,说一说你发现了什么规律?请概括地说一说。

学生口述分数基本性质的内容,老师把板书补充完整。

教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。

请学生打开书读两遍。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

用学生自己的例题说明后,用投影片再说明:

口答填空:(投影片)

2.把一个分数化成大小相等,而分子或分母是指定数的分数。

分子应怎样变化?谁随着谁变?

化?谁随着谁变?

教师:上面两个分数的变化依据是什么?

(2)口答练习:(学生口答,老师板书。)

教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

(三)巩固反馈

1.口答:(投影片)

2.在括号里填上“=”或“≠”。(投影)

3.在( )里填上适当的数。(投影)

4.判断正误,并说明理由。

(四)课堂总结与课后作业

1.分数基本性质。

2.把分数化成大小相同而分子或分母是指定数的分数的方法。

3.作业:课本108页练习二十三,1,2,4,5。

课堂教学设计说明

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

板书设计

分数的基本性质教案 篇12

教学内容:教科书第60~61页,例1、例2、

练一练,练习十一第1~3题。

教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学重点:让学生在探索中理解分数的基本性质。

教学过程:

一、导入新课

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(4)观察每个等式中的两个分数,它们的'分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

三、巩固练习

1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

2、完成第2题。独立完成,交流想法。

四、课题总结

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

分数的基本性质教案 篇13

设计说明

1.注重情境创设,激发学生的学习兴趣。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

2.突出学生的主体地位,在实践操作中掌握新知。

学生是学习的.主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

课前准备

教师准备 PPT课件

学生准备 若干张同样大小的圆形纸片 彩笔

教学过程

⊙故事引入

1.教师讲故事。

师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

大毛、二毛、三毛都满意地笑了,妈妈也笑了。

设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

2.探究验证。

(1)提出猜想。

师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

生:同样多。

师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

(2)验证猜想。

请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

③剪一剪:把圆形纸片中的涂色部分剪下来。

④比一比:把剪下的涂色部分重叠,比一比。

师:通过比较,结果是怎样的?

生:同样大。

设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

3.揭示课题。

师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

⊙探究新知

1.观察比较,探究规律。

(1)请同学们观察,比较三个分数的大小。

师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

(课件出示:比较它们的分子和分母)

①从左往右看,是按照什么规律变化的?

②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

(3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇14

教学内容:

人教版数学五年级下册第57页例1、例2。

教学目标:

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

(3)培养学生的观察、比较、归纳、总结概括能力

(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质

教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:自主探究、归纳概括分数的基本性质。

教学过程:

一、情境设置,引入新课:

唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”

问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?

问2:猪八戒有没有多吃到饼了?

二、探究新知,解决问题

1、师:到底谁的猜想是正确的呢?

(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?

(2)学生汇报

(3)得出结论:1/4=2/8

2、初步概括分数基本性质

(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?

提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?

师板书:分数的`分子分母同时乘相同的数,

分数的大小不变。

(2)师:谁来举一个例子。师板书,并问:同时乘以了几?

(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。

师板书:或者除以

3、理解运用分数基本性质

(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)

学生回答,并说明理由。

(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。

(课件出示式子:)这个式子成立吗?

生:因为在分数当中分母乘就等于0,分母不能为0。

师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?

生:不成立,因为除数不能为0

(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)

师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.

三、知识运用

1、例2:把2/3和10/24化成分母是12而大小不变的分数。

(1)问:分子分母应怎样变化?变化的依据是什么?

(2)让生独立完成,完成后汇报你是怎样想的?

2.完成课件练习

3、拓展延伸:

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.

四、课堂小结

1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

五、板书设计

分数的基本性质

1/4 =2/8

分数的分子分母同时乘相同的数(0除外),

除以

分数的大小不变。

分数的基本性质教案 篇15

教学目标

1 、知识与技能:

使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、过程与方法:

学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3 、情感态度与价值观:

激发学生积极主动的情感状态,体验互相合作的乐趣。

教学重难点

1、教学重点:

使学生理解分数的基本性质。

2、教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学工具

课件

教学过程

一、故事情境引入

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的xx,老二分到了这块地的xx。老三分到了这块的xx。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

2、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4

3、说一说:

(1)商不变的`性质是什么?

(2)分数与除法的关系是什么?

4、让学生大胆猜测:

在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

(随着学生的回答,教师板书课题:分数的基本性质。)

二、新知探究

1、动手操作,验证性质。

(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

你发现了什么?

(2)观察比较后引导学生得出:

它们的分子、分母各是按照什么规律变化的?

(3)从左往右看:

平均分的份数和表示的份数有什么变化?

引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

(4)从右往左看:

引导学生观察明确:

xx的分子、分母同时除以2,得到什么?

板书:

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

(7)小结:

分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。

2、分数的基本性质与商不变的性质的比较。

在除法里有商不变的性质,在分数里有分数的基本性质。

想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3、学习把分数化成指定分母而大小不变的分数。

教学例2

(一)把分数化成分母是12而大小不变的分数。

(1)出示例2,帮助学生理解题意。

(2)启发:要把化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

(3)让学生在书上填空,请一名学生口答。教师板书:

(二)巩固提升

1、下面算式对吗?如果有错,错在哪里?为什么会这样错。

2、判断,并说明理由。

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。(×)

(2)把x的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。(√)

(3)把x分子乘以3,分母除以3,分数的大小不变。(×)

课后小结

这节课我们学习了什么内容?你们有了什么收获呀?

利用分数的基本性质时,应该明确一下几点:

①分子、分母进行的是同一种运算,只能是乘以或除以。

②分子、分母乘或除以的是相同的数。而且必须是同时运算。

③分子、分母同时乘或除以的数不能使0。

④分数的大小是不变的。

板书

分数的基本性质。

分数的分子和分母同时除以相同的数,分数的大小不变。

分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。

分数的基本性质教案 篇16

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的.数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5.组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的分子和分母都乘或除以相同的数,分数的大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10○()/24○()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6.通过练习在此性质中哪些是关键词?

7.巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇17

教学目标 :

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>

4、较好实现知识教育与思想教育的有效结合。

教学重点 :理解和掌握分数的基本性质。

教学难点 :能熟练、灵活地运用分数的基本性质。

教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

教学过程:

一、巧设伏笔、导入新课。

1、出示课件:120÷30的商是多少?

被除数和除都扩大3倍,商是多少?

被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

2、在下面□里填上合适的数。

1÷2=(1×5)÷(2×□)

=(1÷□)÷(2÷4)

①想一想,你是根据什么填上面的数的?(生口答)

(课件:商不变的性质)

②商不变的性质是什么?(生口答)

③除法与分数之间有什么关系?

生答,师板书:被除数÷除数=被除数/除数

二、讨论探究,学习新知。

1、课件出示:1÷2= (怎么写)

①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?

让生合作探讨。

②生出示答案:1/2=2/4=4/8……

有选择填入上数。

2、引导学生证明它们相等。

①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

(课件演示)

上述演示让学生感知后,问你发现了什么?(生讨论)

②再逆向思考,观察板书和课件。

问你又发现了什么?(生讨论)

得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

3、验证、补充、强调

①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

④归纳出上述板书为“分数的基本性质”(课题)。

4、信息反馈、纠正、巩固。

①判断(出示课件)

A、分数的分子,分母都乘上或除以相同的'数,分数的大小不变。

B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

C、3/4的分子乘上3,分母除以3,分数的大小不变。

D、10/24=10÷2/24÷2=10×3/24×3 ( )

完成后,强调重点,加以巩固。

②完成课本108页例2(学生尝试练习)

强调运用了什么性质?课件:“分数的基本性质”醒目强调。

三、实践练习,信息综合

1、练一练

①3/5=3×( )/5×( )=9/( )

②7/8=( )/48

③4÷18=( )/( )=4×5/18×( )=2/( )

2、练习二十二1—3题。

四、课堂总结、整体感知。

(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

五、发散巩固、自主选择。

想一想:(选择一道你喜欢的题做)

课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

分数的基本性质教案 篇18

教学内容:

苏教版小学数学教材第十册,第95~96页,例1、例2,分数的基本性质。

教学目标:

1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。

2、能正确理解分数的基本性质,能应用分数的基本性质,把一个分数化成指定分母而大小不变的分数。

3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。

教具、学具:4张同样大小的纸条/每人

教学过程:

教学环节与教学内容

学生学习活动

教师教学活动

一、

复习准备:

1、出示:

除法

分数表示

小数表示

1÷2

2÷4

3÷6

2、启思引入。

口算。

回忆、口答分数与除法的关系。

回忆并口述商不变的规律。

提出问题。

板书。谈话引导。

“用分数表示时,你是根据什么来做的?”

“观察用小数表示的结果,体现了什么规律?”

“完成上题后,你产生了哪些疑问?”

二、

进行新课:

1、直观验证

2、发现规律

(1)探索

(2)应用

==

==

==

(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。

(4)概括规律。

3、组织练习。

(1)判断:

=()

=()

=()

=()

(2)说一说,和有什么关系?

(3)说一说,商不变的'性质和分数的基本性质有什么关系?

4、教学例2。

用纸条操作、验证,并展示。

思考、口答。

讨论、交流。

填空、交流。

交流,发现“(零除外)”。

讨论、交流。

口述。

理解、记忆。

判断、口答。

交流,

交流。

尝试解答。

集体交流。

“你能直观验证一下==吗?”

“你能从操作过程中体会到这三个分数为什么会相等吗?”

“你能再写一个统它们相等的分数吗?”“写的时候你是怎样想的?”

“你发现了什么规律?”

“怎样填才能又对又快?

总结规律。

“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”

“你是怎样发现的?”

“能把它们合成一句话吗?”

揭示、板书课题。

指导。

巡视、个别辅导。

评讲。

三、

课堂小结:

反思、回顾、整理、交流。

“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”

四、

巩固练习:

练习十八1

练习十八2

练习十八3

先操作,再比较。

先判断,再说理。

指名口答。

“这题验证了什么性质?”

教后反思

分数的基本性质教案 篇19

一、 教材

根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:

1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:

一是基于对课程标准的理解。

《义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。

二是基于对教材的认识。

《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

三是基于对学情的认识。

作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。

据此,

我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。

二、教法

课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。

三、说学法

学生是学习的'主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

四、说教学过程

本着让学生

“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。

环节一:联系旧知,质疑引思。

“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。

环节二:操作体验,概括规律

1.观察发现,提出猜想。

通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想

2.举例操作,验证猜想。

课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。

3.概括性质,深化理解

通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。

4.运用规律,完成例2

尝试运用发现的规律,解决问题。

环节三:知识应用,巩固提高

在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。

环节四:回顾总结,完善认知

通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。

有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。

分数的基本性质教案 篇20

教学目标

1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

教学重难点

理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

教学工具

课件

教学过程

一、复习旧知,沟通联系。

1、口答下面各题。

12÷3 =(12×10)÷(3×□)

18 ÷6 =(18÷□)÷(6÷ 3)

你是根据什么填的?还记得商不变的规律是怎样叙述的吗?

4 ÷5=()÷3

你是根据什么填的?分数与除法之间有什么关系?

2、猜想。

同学们,在除法里,有商不变的规律,而分数与除法是有联系的,那么,请同学们猜测一下,在分数里会不会也有类似的性质存在呢?

在分数里究竟有没有类似的性质存在,如果有,它又是怎样的呢?今天我们一起来研究这个问题。

二、探究新知,揭示规律。

1、感知规律

(1)动手操作

①小组合作分别把三张一样大的圆形纸片平均分成两份、四份、八份。

②涂色:把平均分成两份的将其中的一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。

③把涂色部分用分数表示出来。

④比一比:这3个分数之间有什么关系?

生通过动手操作,发现这三个分数之间是相等的关系。

学生汇报后,教师用电脑演示。

生观察分子分母变化规律发现:分数的分子和分母同时乘相同的数,分数大小不变。

(2)继续发现

师课件出示三个大小形状完全相同的长方形,请学生用分数表示涂色部分,并观察涂色部分,看有什么发现。

生发现涂色部分是相同的。

观察分子分母的变化规律发现:分数的'分子和分母同时除以相同的数,分数大小不变。

也不能同时除以0。

2、抽象概括,总结规律。

引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。(讨论为什么0除外)

想一想:根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3、运用规律,自学例题。

(1)分组讨论。

把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?

(2)汇报讨论情况。

(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

三、多层练习,巩固深化

1、基本练习。

根据分数的基本性质,把下列等式补充完整。

学生口答后,要求说出是怎样想的。

2、判断。(手势表示,并说明理由。)

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()

(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

(3)的分子乘以3,分母除以3,分数的大小不变。()

3、把2/3和4/24化成分母是12而大小不变的分数。

四、今天你有哪些收获。

分数的基本性质教案 篇21

教学内容

教科书第80~81页,练习十六的习题.

教学目的

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

2.使学生在理解的基础上掌握分数、小数的基本性质.

教学过程

一、数的整除

1.整除的意义.

教师:想一想,什么叫做整除?指名回答.

教师进一步强调:整除中说的数是什么数?(整数.)

商是什么数?(整数.)有没有余数?(没有余数.)

教师:什么叫做除尽?(两数相除,余数是0.)

整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

被除数 除数 商 余数

整除 整数 不等于O的整数 整数 O

除尽 数 不等于O的数 数 O

教师:可以看出整除是除尽的一种特殊情况.

2.能被2、5、3整除的数的特征.

教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

能被3整除的数,在判别方法上与能被2、5整除的`数有什么不同?气根据各个数位上的数之和进行判别.)

教师:什么叫做奇数?什么叫做偶数?

根据什么来判断一个数是奇数还是偶数?

3.约数和倍数.

教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

能说6是约数,15是倍数吗?应该怎么说?

教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

教师:一个数的约数的个数是怎样的?(有限的.)

其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

一个数的倍数的个数是怎样的?(无限的.)

其中最小的倍数是什么数?(这个数本身.)

做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

5.分解质因数.

指名说一说质因数、分解质因数的含义.

做练习十六的第5题.学生独立解答,教师巡视,集体订正.

6.公约数、最大公约数和公倍数、最小公倍数.

(1)复习概念.

教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

两个不同的质数一定互质吗?(两个不同的质数一定互质.)

互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

(2)课堂练习.

做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

分数的基本性质教案 篇22

教学目的:

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点:

掌握分数的基本性质。

教学难点:

抽象概括分数的基本性质。

教具学具准备:

多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤:

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的`?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

分数的基本性质教案 篇23

本单元教学分数的基本性质,约分、通分,比较分数的大小等知识,让学生进一步理解分数的意义,并为分数四则计算作必要的准备。分数的基本性质是约分和通分的依据,比较几个异分母分数的大小往往先通分。根据知识间的联系,全单元内容分三部分编排。

第60~64页分数的基本性质,约分。

第65~68页通分,比较分数的大小。

第69~73页全单元内容的整理与练习,实践与综合应用。

1、 精心安排探索分数基本性质的教学活动。

例1和例2教学分数的基本性质,按“呈现现象——发现规律——联系相关知识”的线索组织教学活动。

例1的图形是四个大小相等的圆,各个圆平均分的份数不同。用分数表示每个圆里的涂色部分,分别写出13、12、26、39四个分子、分母都不相同的分数。比较各个圆里的涂色部分,能够看到从左往右第1、3、4个圆的涂色部分大小相等,由此得到写出的分数大小相等,即13=26=39。这道例题让学生初步感受分子、分母都不相同的分数中,有些分数的大小相等,有些分数的大小不等。并对分子、分母不等,但分数大小相等的现象产生兴趣。

例2承接例1,在对折正方形纸的活动中又得出一些与12大小相等的分数,分别写成等式12=24、12=48、12=816,再次让学生感受分子、分母不同的分数,大小可以相等。写出的三个等式,是研究分数基本性质的素材。

教材分三步引导学生发现分数的基本性质。第一步研究例2每个等式中的两个分数,它们的分子、分母是怎样变化的,感受变化是有规律的。在记录变化的方式时,教材写出了乘号或除号,启示学生从分子、分母乘或除以一个数的角度去观察。让学生在括号里填数,体验分子、分母乘或除以的是相同的数,有助于发现规律。对每个等式的研究,既从左往右观察,也从右往左观察,充分利用了素材,从中获得尽量多的感性知识。填写连等式12=()()=()()=()(),把12、24、48、816有序地排列起来,能从中得到许多感受。如,12的分子、分母都乘2得到24,24的分子、分母都乘2得到48,48的分子、分母乘2得到816,照这样还能写出1632、3264……这些分数的大小都相等。又如,与12大小相等的分数有无数多个,每个分数的分子、分母除以相同的数都能得到12。

第二步利用例2的经验观察例1等式中的三个分数的分子、分母是怎样变化的,体会这些分数相等的原因和例2一样。而且分子、分母乘或除以的数,除了2、4、8,还可以是3和其他的数。这样,对分数基本性质的感受就更丰富了。

第三步概括两道例题中分子、分母变化但分数大小不变的规律。在充分交流之后,阅读教材里的叙述,理解“同时”乘或除以“相同”的数这些规范的语言,知道这个规律叫做分数的基本性质。联系除数不能是0,明白分数的分子、分母同时乘或除以的数不能是0,使得到的规律更严密。

在得出分数的基本性质后,教材还安排了两项活动: 一是根据分数的基本性质写出一组分数,要先任意写一个分数,再把它的分子、分母同时乘或除以相同的数,得到大小不变的分数。写出的一组分数,可以是两个分数,也可以是几个分数。这项活动起巩固分数基本性质的作用,还渗透了通分、约分所需要的思想。二是用整数除法中商不变的规律说明分数的基本性质,由于除法里的被除数和除数分别相当于分数的分子和分母,所以除法中商不变的规律和分数的基本性质是一致的。沟通这两个知识,有助于学生建立新的认知结构,进一步理解分数的基本性质。

练习十一第1~3题配合分数基本性质的教学。第1题继续体验分数基本性质的内容,在方格纸上涂色表示1224,再说出涂色部分还表示612、48、36、24、12等分数,还要从不同角度说明这些分数的大小相等。如,因为这些分数是用同一个涂色部分表示的,所以大小相等;又如,这些分数可以把1224的分子、分母同时除以2、3、4、6或12得出,所以大小相等。第2题应用分数的基本性质判断同组的两个分数是不是相等,其中两组分数的分子、分母没有除以相同的数,是学生初学分数的基本性质时容易出现的错误。这些反例能加强对分数基本性质的理解。第3题运用分数的基本性质对分数进行等值变化,是通分、约分需要的基本功。

2、让学生把分数等值改写,理解约分和通分。

例3教学约分,分三步安排。首先看图写出和1218相等,而分子、分母都比较小的分数,为理解约分的含义搭建认知平台。教学分数基本性质的时候,曾经用几个分子、分母不同,但大小相等的`分数表示同一个图形里的涂色部分。现在联系这个经验教学约分,写出的分数分子、分母都应该比1218的分子、分母小,体会大小相等的分数中,分子、分母小的分数比较简单。这种体会在说说写分数时的思考能够获得,如长方形里的涂色部分,可以看作长方形的1218,也可以看作长方形的69、46或23。显然,这个涂色部分用23表示最简便。然后教学什么是约分和怎样约分,是例题的主要内容。关于约分的含义,联系1218与69、46、23的关系,突出了两点: 与原来的分数大小相等,分子、分母都比原来的分数小。关于约分的方法,示范了分步约分,也示范了一次约分,让学生从自己的实际出发,选择适宜自己的约分方法。教学约分的意义和方法,都是学生有意义地接受新知识。要充分体验约分是应用分数的基本性质化简分数,不改变分数的大小。还要注意约分的书写格式,分子和分母分别除以它们的公因数,得到的商(即新的分子和分母)应该写在适当的位置上。最后以23为例教学最简分数,指出约分通常要约成最简分数。

练习十一第4~7题配合例3的教学。正确约分需要两个能力: 一是看出分子与分母的公因数,第4题为此而安排。把分数的分子、分母同时除以2、5或3,是最常用的约分方法,学生对2、5、3的倍数的特征比较熟悉,因此先观察分子、分母有没有公因数2、5、3。至于分子与分母同时除以7、11、13等数的约分,稍后再作安排。二是识别一个分数是不是最简分数。如果不是最简分数则需要约分,如果是最简分数则不能约分,第5题进行这方面的判断。这两个能力是相互依存、相互影响的。判断一个分数不是最简分数,一定发现了分子、分母除1以外的公因数。反之,分子与分母除1以外,找不到其他公因数,就判断这个分数是最简分数。约分的时候,必须把分子、分母除以相同的数,学生往往在这一点上发生错误,第6题能给学生这方面的体会。

第8~15题是分数的意义、基本性质的综合练习。第8、9题在分数与除法相互改写时,还要应用分数的基本性质。第10题把最简分数与真分数两个概念联系起来,才能理解最简真分数。第11题先约分,再比较大小就非常容易。第12~15题的分数加、减计算,计量单位改写,小数化成分数,解决求一个数是另一个数的几分之几的实际问题,都提出把结果约成最简分数的要求。增加习题的知识容量,把新旧知识结合应用,能帮助学生温故知新,不断提高能力。

例4教学通分,重点放在通分的含义和方法上。把34和56改写成分母相同而大小不变的分数,是一个具有挑战性的问题。学生对分数改写成大小不变的另一个分数并不陌生,在学习分数的基本性质的时候,曾经多次进行过这样的改写。把两个分母不同的分数改写成分母相同的分数,是首次遇到的新问题。思考的焦点是改写成分母是几的分数,只要确定新的分母,分别改写两个分数就容易了。教材让学生凭数感,主动联系公倍数的知识和分数的基本性质,独立进行改写分数的活动。把两个分数改写成分母相同、大小不变的分数就是通分。可见,这道例题未教通分之前就让学生尝试通分,先积累把34和56都化成分母是12或分母是24的分数的切身体验,为理解通分的含义,有意义地接受教材关于通分的讲述作了充分的准备。

公分母是通分的关键。例题有层次地教学公分母的知识: 首先联系34和56的改写,让学生知道12、24是公分母,是34和56的分母的公倍数;然后比较34和56以12为公分母和以24为公分母的改写,体会什么数作公分母比较简便,得出一般用两个分母的最小公倍数作公分母。

例4只教学通分的含义和关于公分母的知识,不再另行教学怎样通分。这是因为34和56改写成分母是12与24的分数就是通分,不需要再重复。学生经过“试一试”,应用通分的知识,能够掌握通分的步骤与方法。同时又考虑到“试一试”毕竟是学生第一次进行通分,所以在怎样表达两个分数的公分母、怎样应用分数的基本性质以及书写通分的过程和结果的一般格式等方面,都给予较具体的指导。

练习十二第1~4题配合例4的教学。第1题两个长方形里的涂色部分分别用12和23表示,这两个分数通分后分别化成36和46。在两个长方形里表示出通分的结果,让学生联系直观图形体会通分的意义,感受异分母分数化成同分母分数,便于比较和计算。第2题是寻找公分母的基础练习,进一步明白两个异分母分数的公分母,是它们分母的最小公倍数。把求最小公倍数的经验应用到求公分母上来。第3题让学生深刻体会两点: 一是通分不能改变分数的大小,通分后的分数必须与原来分数的大小相等,否则会发生类似第(1)小题的错误;二是通分时的公分母要用两个分数分母的最小公倍数,像第(2)小题那样的通分不够简单。

3、 比较分数的大小,体验策略与方法的多样性。

在三年级的教材里,已经教学借助图形比较同分母分数的大小和分子是1的异分母分数的大小。在本册教材“认识分数”时,比较了一个分数与一个小数的大小。所以说,学生已经有一些比较分数大小的经验。在此基础上,例5教学比较两个分数的大小,有两个显著的特点: 一是在现实情境中收集数学信息,把实际问题抽象成数学问题。看同一本故事书,小芳看了这本书的35,小明看了这本书的49。这两个分数都把一本故事书看作单位“1”,分别平均分成5份和9份,看了其中的3份和4份。因此,比谁看的页数多,只要比较35和49这两个分数的大小。例题非常重视这些思考活动,提示学生想到“比较这两个分数的大小”,用数学的方法解决实际问题。在这样的过程中,能回忆起有联系的知识,激活相关的技能。二是先让学生独立解决问题,再交流方法,鼓励策略、方法多样化。35与49是分子、分母都不相同的分数,比较它们的大小对学生来说是新的问题。联系分数的意义、通分和分数化成小数等知识,能够找到许多解决问题的方法。让学生独立解决新颖的问题,有利于创新精神和实践能力的发展。各种方法都很有特色,第一种方法数形结合,在相同的长方形里分别表示两个分数,直观看出哪个分数比较大。第二种方法及时应用学到的通分知识,把异分母分数化成同分母分数进行比较,运用了转化的策略。第三种方法以12为中介,把两个分数分别与12比较大小,间接得到35和49的大小关系,思维灵活、快捷,策略巧妙。学生中还会有其他的方法,组织充分的交流,相互理解和借鉴,能体验解决问题策略的多样性。

比较分数大小的练习,安排很有层次。在巩固基础知识、掌握基本技能的基础上灵活运用知识,发展数感。“练一练”紧接例题,要求先通分,再比较分数的大小。这样安排有两个原因: 一是能巩固通分的知识,形成通分技能,把分数加、减计算需要的基础练扎实。二是这种策略、方法适用于比较分数大小的通常情况,用得比较多。练习十二第5~11题都配合例5的教学,第5题写出的三组分数比较大小各有特点,35和58通分或化成小数都很方便;16和49通分比较方便;114和1310如果写成带分数,分别是2和真分数、1和真分数的合并。第6题根据分数的意义比较分子相同、分母不同的分数的大小,能进一步体验分数的分子、分母及分数单位的含义,还能从中概括出分子相同,分母大的分数比较小的结论。第8题在使用常规比较方法的同时,留出了创新的空间。如比较23和78的大小,从13>18得到23<78;比较134与103的大小,如果把它们都化成带分数,就只要比较14与13的大小。教师对这些有创意的方法要给予鼓励,但不作为基本方法要求全体学生都掌握。第9题通过8个分数与12比较大小,能够发现一些规律: 如分子乘2的积仍小于分母的分数比12小,分母除以2的商小于分子的分数比12大……这对发展数感很有好处。

分数的基本性质教案15篇(优选)

作为一名人民教师,通常需要准备好一份教案,借助教案可以提高教学质量,收到预期的教学效果。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的分数的基本性质教案,欢迎大家借鉴与参考,希望对大家有所帮助。

分数的基本性质教案 篇24

内容:P15、16例1、2 ,练习四第1-3题。

目标:

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

重点:正确理解与分析运用分数的基本性质。

过程:

一、创设情境,导入新课。

“大圣”分桃:

话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?

二、师生共研、发现规律。

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2 = 1×2 / 2×2 = 2/4

从右往左看:

2/4 = 2÷2 / 4÷2 = 1/2

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的`变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

小结:

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

三、数学小报,再次验证。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

四、理解性质、简单运用。

例2的教学

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑

让学生通过讨论,深化对分数大小不变的要求的理解。

(4)议一议

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

五、练习巩固、拓展提高。

1.课堂活动

2.提取第一题的结果,进行深入思考:

当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?

结论:大小不变,分数单位要变。

六、全课总结:

这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?

七、作业:

练习四第1-3题。

分数的基本性质教案 篇25

教学目标:

1、理解分数的基本性质。

2、初步掌握分数的基本性质。

3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的'电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =

从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习

(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

3、请找我的好朋友练习。(以游戏的形式来进行)

要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。

分数的基本性质教案 篇26

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、 动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

2、出示做一做(1)

(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

(3)观察,说说你发现了什么? = = (课件揭示)

(4)交流:你还有什么发现?

分数的分子和分母变化了,分数的大小不变。

分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以相同的`数)(课件演示)

3、出示做一做图片(2),学生独立填写分数。

(1)说说你是怎么想的?

(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)

4、想一想:引导归纳分数的基本性质

(1)从刚才的演示中,你发现了什么?

板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、

相同的数、0除外。 都可以换成哪个词?同时。

板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?

师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9 /12)(课件揭示)

师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

6、趣味比拼,挑战智慧

给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

三、多层练习,巩固深化。

1、考考你(第43页试一试和练一练第2题)。

2/3=( )/18 6/21=2/( )

3/5 =21/( ) 27/39=( )/13

5/8=20/( ) 24/42=( )/7

4/( )=48/60 8/12=( )/( )

2、涂一涂,填一填。(练一练第1题)

3、请你当法官,要求说出理由.(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

(2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

(3)3/4的分子乘3,分母除以3,分数的大小不变。( )

(4) 10/24=102/242=103/243 ( )

(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

(6)3/4=30/4 0=30/4 0 ()

4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

(2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

四、拾捡硕果,拓展延伸。

1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

(或用分数表示这节课的评价,快乐和遗憾各占多少?)

2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

3、拓展延伸

师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

五、动脑筋退场

让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

分数的基本性质教案 篇27

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:

多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5.组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的分子和分母都乘或除以相同的数,分数的.大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10()/24()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6.通过练习在此性质中哪些是关键词?

7.巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇28

教学目标

1、进一步理解通分的意义,

2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。

3、能灵活的运用通分的方法进行分数的大小比较。

教学重难点:

运用通分的方法进行分数大小比较

教学准备:

分数卡片

一、回顾

1、什么是通分?怎样通分?

2、我们可以在什么时候应用通分?

3、互动:相互出题练习相互交流(3分钟)

二、教学例5

出示例题:小芳和小明看一本同样的故事书。

学生提出问题。

分析解答。

师:谁看的页数多?

这个问题实质是什么?

生:比较两个分数的大小。

师:小组研究,比较两个分数的'大小。

方法一:画图比较

方法二:通分比较

转化成同分母的分数

方法三:化成小数再比较

学生汇报,分类领悟比较的方法。

注意方法的规范。

你还有什么别的比较方法吗?

:通分的方法在比较分数大小中的运用

三、巩固练习

1.先通分,再比较下面各组分数的大小66页练一练

2、练习十二第五题

先明确题目的要求有两个。

4、自由练习

分小组编拟交换练习

四、全课

五、课堂作业:第7题,第8题

分数的基本性质教案 篇29

第一课时

课题:分数的基本性质

教学目标:

1、知识与技能

1、能说出分数的基本性质。

2、能说出分数基本性质与商不变性质的关系

2、过程与方法

3、会通过操作发现分数的分子分母扩大缩小的规律,并推导出基本性质。

4、会运用分数的基本性质解决数学问题。

3、情感态度与价值观

5、培养学生自主探究、合作学习、创新思维的能力。

6、让学生在学习过程中养成互相帮助,团结协作的良好品德。

7、通过知识间的内在联系,渗透辩证唯物

学情分析

从学生思维角度看,分数的基本性质,在日常生活中应用广泛,是以分数大小相等为基础的。两个分数大小相等,学生容易联想到分数的分子、分母分别相等。为此,就需要课件先通过直观动画使学生了解、两个分数的分子、分母虽然不同,但是分数大小是相等的。接着研究分数的分子、分母是按照什么规律变化的,要学生一下子说明道理比较困难,就需要一步一步分析,最终让学生自己归纳出分数的基本性质。

重点难点:

学习重点:熟悉掌握分数的基本性质及基关键词同时、同数、不为0

学习难点:分数的基本性质在具体解题环境中的具体应用

教具学具:

多媒体课件,学具袋(内含正方形纸,线段,直尺)

教法学法:

讲授法,活动探究法,任务驱动法。

活动设计:

通过正方形和线段的平分探究和的大小关系。

教学课时:

一课时

教学过程:

一、精彩导入

同学们,今天刘老师能在这里和在大家一起研究数学问题,感到非常的开心。你们想看老师的魔术表演吗?(想),好,那老师就在在座的各位面前献丑了(表演)还想看吗?(想)那我就给大家表演一个数学的魔术吧!

出示课件:56=1012=1518=20xx

师:我能写无限多个与56相等的除法算式来,这个魔术你们会吗?那我有一个除法算式45,请你写出与它相等的除法算式(点名)教师板书:45

师:哇,你真厉害!那你能给大家介绍一下,你是把被除数和除数怎么变化了,但商还是不变了?

生:(引导说出)被除数和除数同时扩大或缩小相同的倍数(0除外),商不变

师:是的,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。这在数学中有一个专有名词叫商不变的性质。(板书:商不变的性质)

全班同学把商不变的性质说一遍,好吗?(全班齐读)

【设计意图】:

本节设计是为了

二、活动探究

师:我们知道,分数和除法是有着密切联系的,除法算式都可以写成分数,那么这些除法算式可分别改写成几分之几呢?

生:学生回答,教师出示课件:

师:上面的这些算式的商是相等的,那么由它们改写的下面这些分数的大小关系又怎样呢?

生:也是相等的,出示“=”

师:请同学们看,这些分数的分子,分母各不相同,可它们的大小却相等,难道除法中商不变的性质,分数中也有大小不变的性质?同学们,猜猜看,有没有?

生齐答:有

师:它是把分数的分子和分母怎样变化后,分数的大小不变?谁来说说?点名回答

师:你们同意吗?

生:同意

师:那刘老师把同学们的。猜想写到黑板上。

板书:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:数学是一门很严谨的学科,光凭猜想是不能下结论的,我们得想办法去证明它。

师:举一个很简单的例子(出示课件)

师:比如,如果根据同学们的猜想,它的分子分母同时乘2得到,这个和是相等的,反过来看,如果把的分子和分母同时除以2,这个和的大小还是相等的。

师:那么我们用什么办法证明=呢?请同学们取出学具袋中所有学具,充分利用它们想出证明和相等的办法,谁想的办法最多,谁就是最聪明的,下面开始吧!教师行间指导。

师:同学们想了几种办法?(各不相同),想出一种方法的请举手先说说,请有两种方法的同学举手再说说,依次说完(出示学生说的课件内容)

师:同学们想出这么多办法,真不简单!(范文先生网)刘老师也有几种办法要介绍给大家,我们学过分数与除法的关系,可以用分子除以分母,用小数表示分数值你们看(出示课件:可以写为12=0.5=2 4=0.5)

它们的结果都是0.5,说出和的大小怎样?(相等)

师:通过刚才一系列的证明,看来分数中确实有这样的大小不变的`规律,其实,数学家们早就发现了这个规律,还给它起了个名字,叫做分数的基本性质

板书:分数的基本性质

师:刚才我们把同时乘或除以的是一个相同的整数,那么同时乘或除以一个相同的小数,又会怎样呢?(出示课件:)

师:如果把的分子和分母同时乘或除以2.5,那么又变成了几分之几呢?它们的大小还会相等吗?请同学们猜猜?(会或不会)光凭猜想是不行的,现在我们一起来验证。

师:请一大组算的分数值,请二大组算乘2.5后变成了几分之几?再请三大组算除以2.5后变成了几分之几?引导: =再把它改成1520,求它的商,=再把它改成2.43.2,求它的商。

师:请一大组齐声说得数是0.75,二大组的得数呢?三大组呢?这三个数的商都是0.75,这说明的分子和分母同时乘2.5和同时除以2.5后大小都是怎样的?(不变的)

师:是的,分数的分子和分母不仅可以同时乘或除以相同的整数,分数的大小不变,同时乘或除以一个相同的小数,分数的大小是不变的,那么,分子和分母可以同时乘或除以任何相同的数吗?(0不能)如果分子,分母同时乘0后,变成了0,可以吗?(不可以,分母是0没有意义,另外也改变了的大小啊)(出示课件)

师:是的,这个相同的数必须0除外(板书:0除外)

【设计意图】:

本节设计是为了

三、巩固练习

师:同学们真棒啊!不仅发现了分数的基本性质,还能想出各种办法证明它,完善它,下面我们一起来看看书上怎么说的?请同学们打开课本第页的内容,看到分数的基本性质请做上记号,看完的同学请举手示意给老师(大部分同学看完后)请把书上分数的基本性质齐读一遍。

师:同学们读的好!那么同学们会不会运用分数的基本性质解决一些问题呢?老师试目以待,敢不敢迎接老师的挑战?

师:我有一个分数(板书)你能说出与它下相等垢分数吗?每次都问:你是把它的分子,分母同时怎样?问:这样的分数你能写出多少个?

生:无数个

师:是的,任何一个分数都会有无数个分数与它相等地。

【设计意图】:

本节设计是为了

师:出示课件

例2把和化成分母是12而大小不变的分数(请一位同学读题)并点名回答,并问你是怎么想的?

师:请同学们看“做一做”

师:再请看下一题(判断题)

⒈把分数变成后,分数的值就扩大了2倍()

⒉==()说明”同时”很重要。

⒊==()说明不仅要”同时”,还要求这个数要怎样?”相同”

⒋==()

⒌==()

⒍==()说明了什么很重要?”0除外”

⒎==()

师:通过这个题目的练习,请同学们想想,在运用分数的基本性质时,要注意哪些问题呢?(同时,相同,0除外)板书时老师把这几个词语换成红字。

师:那我们再把分数的基本性质齐读一遍,把这3个关键词重读,大家会读吗?要不要老师示范一遍?(全班齐读)

【设计意图】:

本节设计是为了

师:课件出示小明蛋糕题

小明过生日时,全家人在一起吃蛋糕,小明分给爸爸这个蛋糕的,分给妈妈这块蛋糕的,小明给自己分,谁分的最多,谁分得最少?

方法一:=方法二:==

因为因为

所以所以

师:小明真是个孝顺的孩子,分蛋糕会给爸爸,妈妈多分上些,希望同学们也要像小明一样,能够孝顺父母。

【设计意图】:

本节设计是为了

师:再请看下一题

的分子加上6后,分母要加上几,分数的大小不变。

1)(6+2)2=4 54-5=15

2)==

师:这是一道思考题,试试看,你能想出哪些办法?

【设计意图】:

本节设计是为了

四、全课总结

我想问问大家,你们今天有什么收获?(点名回答)

师:是的,只要学习就会有进步,希望同学们每天努力学习,每天都有新的进步,个个成为知识渊博而又充满自信的人。这节课我们就上到这里,同学们再见!

【设计意图】:

本节设计是为了

五、板书设计:

分数的基本性质

分子和分母同时乘或除以相同的数,分数的大小不变

商不变的性质

被除数和除数同时扩大或缩小相同的倍数(0除外),商不变

六、课后反思:

第一:我能够在选取学生作品时选取有代表性的作品,这为接下来的教学起到了重要的作用。

第二:我能较好的放手让学生自己去发现,自己去总结,这对培养学生的探索能力以及小组合作能力起到了很好的作用。但在组织学生进行分类时,我的语言不够准确,导致了部分学生分类的方向出现了偏差。

在今后的教学当中,我要加倍注意数学语言的严谨性和准确性。通过这节课的教学,我发现了很多自己的不足之处。特别在细节的处理和语言的严谨性方面,我做得还不够好,今后应加强这方面的锻炼。

分数的基本性质教案 篇30

教学目标:

1、学生能理解和掌握分数的基本性质;

2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生的动手操作能力和观察、比较、分析、概括的思维能力

教学重点:理解和掌握分数的基本性质

教学难点:运用分数的基本性质解决实际问题。

教学过程:

一、导入新课

你眼中的猪八戒是什么样的?请用词语来表述一下。

今天老师给大家带来一个关于猪八戒的小故事,你们猜猜猪八戒会做出怎样的选择:唐僧把一张饼分给三个徒弟,三份分得有点不一样,一份是一块,一份是两块,还有一份是三块,你们认为猪八戒会挑选哪一份?猪八戒是否真的会得如所愿?(PPT进行展示)

二、探究分数的基本性质

1、出示PPT,学生说出分数,(用PPT展示:首先重合,然后进行对比。)再让学生用三个图片进行重合并质疑:分子、分母都不相同,这些数的大小怎么会一样?

2、引导学生观察分子分母的变化:

(1)从左往右看,三个分数得分子和分母是按什么规律变化的?(分子、分母同时乘以相同的数,分数的大小不变)

(2)从右往左看,三个分数得分子和分母是按什么样的.规律变化的?(分子、分母同时除以相同的数,分数的大小不变)

3、进行总结:分数的分子和分母都乘以或都除以相同的数,分数的大小不变。

质疑:可以同时乘以或者同时除以0吗?

总结分数的基本性质:分数的分子和分母都乘以或都除以相同的数(0除外),分数的大小不变。

三、殊途同归利用商不变验证分数基本性质

从商不变规律来验证分数的基本性质。

被除数和除数同时除以一个非0的数,那么商不变。

分子相当于被除数,分母相当于除数,它们也同时除以一个非0的数,大家想一下:分数的大小会发生变化吗?

刚才我们是从实际的例子中总结出了分数的基本性质,现在我们是用逻辑推理的形式证明了分数的基本性质,殊途同归。

只不过不同的是,在除法中,叫做商不变规律;在分数中,是分数的基本性质。

四、运用提升

1、奇效的红方块,能用几分之几表示?

分数的基本性质教案 篇31

教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。

教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。

教学难点:理解分数的基本的性质。

教学课型:新授课

具准备:课件

教学过程:

一,复习铺垫,准备迁移 [课件1]

1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢

2,比较下列每组数的大小。

3/4( )3/5 15/20( )4/20

3,把下面的分数改写成两个数相除的形式。

2/3=( )÷( ) 5/8=( )÷( )

二,探索新知,发展智能

1,同学操作:将手中的纸圆片平均分成若干份。

2,反馈。

(1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几

B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样

板书: 1/2=2/4=3/6

C,观察一下:这些分数的分子,分母变化有什么规律

(2)引导同学概括出分数的基本性质,并与前面的猜测相回应。

(3)小结:这里的"相同的数",是不是任何数都可以呢

(零除外)

板书:分数的'分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

3,分数的基本性质与商不变的性质的比较。

提问:在除法里有商不变的性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗

4,巩固认识。

P109 。1

(2)说数接龙。

5/6=5+5/( )……

三,运用延伸,深化概念

1,要求大小不变。[课件2]

1/3=( )/6 10/15=( )/6 1/4=5/( )

2,下面分数中哪两个分数相等 [课件3]

3/4 21/32 15/20 1/5 4/20

习后提问:A,依据是什么

B,3/4和1/5哪个大 你是怎么比较出来的

C,那么,从中你又有什么新发现 你的新发现是什么

四,全课总结

提问: A,这节课你学习了什么

B,运用分数的性质,你能做什么

C,本节课你还有哪些疑问 你还想从哪些方面去探索分数

的知识呢

五,家作

P109 。3,5,6

板书设计: 分数的基本性质

1/2=2/4=3/6

分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇32

设计说明

1.注重情境创设,激发学生的学习兴趣。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

2.突出学生的主体地位,在实践操作中掌握新知。

学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

课前准备

教师准备 PPT课件

学生准备 若干张同样大小的圆形纸片 彩笔

教学过程

⊙故事引入

1.教师讲故事。

师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

大毛、二毛、三毛都满意地笑了,妈妈也笑了。

设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

2.探究验证。

(1)提出猜想。

师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

生:同样多。

师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

(2)验证猜想。

请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

③剪一剪:把圆形纸片中的涂色部分剪下来。

④比一比:把剪下的涂色部分重叠,比一比。

师:通过比较,结果是怎样的?

生:同样大。

设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

3.揭示课题。

师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

⊙探究新知

1.观察比较,探究规律。

(1)请同学们观察,比较三个分数的大小。

师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

师:这三个分数的`分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

(课件出示:比较它们的分子和分母)

①从左往右看,是按照什么规律变化的?

②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

(3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇33

教学内容:省编义务教材第十册第91—93页例1、例2。

教学目标:

1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

课前准备:

课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

教学过程:

1.创设情境,作好铺垫

出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

为什么你会猜是一道除法算式?(分数与除法有密切的关系)

除法与分数有什么样的关系?

(黑板上出示:被除数÷除数=)

根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

2、迁移猜想,引疑激思

分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

3、自主探究,验证猜想

也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

(1)初步验证

①出示:探究报告单,让学生读要求:

a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

b.选择合理的方法验证所前后两个分数是否相等。

c.填写好探究报告单。

选择探究的'

分 数

分子和分母同时乘以或除以

一个相同的数

得到的

分 数

选择的分数与得到的分数是否相等

相等( ) 不相等( )

猜想是否成立

成立( ) 不成立( )

选择的分数与得到的分数是否相等相等()不相等()

猜想是否成立成立()不成立()

*:验证方法可用折纸、画线段图、计算、实物……

②学生合作进行探究。

③全班交流:

a、同桌一起上来,拿好探究报告单及验证材料等。

b、两人合作,一人讲解、一人验证演示。

c、得到结论:

(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

4、议论争辩,顿悟创新

读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

5、训练技能,激励发展

刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

(1)练习明目的

根据分数的基本性质,填空。

1/2=()/8=5/()=()/6=7/()

采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

(2)慧眼辩是非

(3)变式练思维

把下面每组中的异分母分数化成同分母分数。

A、3/4,4/7B、5/6,4/9C、3/5,5/8

分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

(4)竞赛促智慧

①在1—9九个数字中任选一些数字组成大小相等的分数。

可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

②出示:1/a=7/b(说明:a、b都不是0。)

抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6、回顾,掌握方法

今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

学生可能会回答:

生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

生2:我们是通过猜测的方法学的。

生3:我们还用验证的方法学习。

……

结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

分数的基本性质教案 篇34

设计说明

1.注重情境创设,激发学生的学习兴趣。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

2.突出学生的主体地位,在实践操作中掌握新知。

学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

课前准备

PPT课件

若干张同样大小的圆形纸片 彩笔

教学过程

⊙故事引入

1.教师讲故事。

师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

大毛、二毛、三毛都满意地笑了,妈妈也笑了。

设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

2.探究验证。

(1)提出猜想。

师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

生:同样多。

师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

(2)验证猜想。

请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

③剪一剪:把圆形纸片中的涂色部分剪下来。

④比一比:把剪下的涂色部分重叠,比一比。

师:通过比较,结果是怎样的?

生:同样大。

设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

3.揭示课题。

师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的'内容:分数的基本性质。(师板书,生齐读课题)

⊙探究新知

1.观察比较,探究规律。

(1)请同学们观察,比较三个分数的大小。

师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

(课件出示:比较它们的分子和分母)

①从左往右看,是按照什么规律变化的?

②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

(3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇35

分数的基本性质(教案)

大泊中心小学

眭金明

教学内容:分数的基本性质。(95页例1、96页例2练一练等)教学要求:

1、组织学生探究、发现、归纳分数的基本性质,并理解它与商不变的性质之间的联系。

2、使学生能初步应用分数的基本性质,把一个分数化成分母不同而大小不变的分数。

教学重点:组织学生探究、发现、归纳分数的基本性质

教学难点:应用分数的基本性质,把一个分数化成分母不同而大小不变的分数。教学过程:

一、复习铺垫,猜想导入

1、仔细观察,不计算,很快得出每个算式的商。

80÷20=4(80×5)÷(20×5)=()(80÷4)÷(20÷4)=()(80×a)÷(20×a)=()(80÷m)÷(20÷m)=()你的依据是什么?(商不变的性质)

2、还记得3÷是怎样简便运算的吗?试试看。

3÷=(3×4)÷(×4)=12÷1=12

3、小结(商不变的性质)

被除数和除数同时乘或除以相同的.数(0除外),商不变.4、启发学生大胆猜想:

除法和分数是有关系的,除法有商不变的性质,分数是不是也有什么性质呢?听说过或是看到过吗?

二、观察、探究、发现、归纳

1、小明和小华小玲分吃一块月饼(出示图)

小明吃这块月饼的1/3小华吃这块月饼的2/6小玲吃这块月饼的3/9(1)从图上看他们三人分得同样多。(2)板书:1/3 = 2/6 = 3/9(3)观察:从左往右1/3 = 2/6(子、母同时乘2)1/3 = 3/9(子、母同时乘3)

从右往左2/6 = 1/3(子、母同时除以2)

3/9 = 1/3(子、母同时除以3)(4)从刚才的分析中你发现了什么规律?(5)归纳:

分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。(6)板书课题:分数的基本性质

2、想一想:

商不变的性质和分数的基本性质有什么联系?

3、应用分数的基本性质,可以把一个分数化成分母不同而大小不变的分数。例: 3/4和15/24都可以化成分母是8而大小不变的分数3/4=3×2/4×2=6/8 15/24=15÷3/24÷3=5/8

4、想试试吗?

(1)、把2/3和10/24化成分母都是12而大小不变的分数。(2)、在()里填上合适的数1/5=()/15 9/18=()/6 1/4=3/()15/20=3/()

三、巩固练习看谁学得好

1、口答:

把2/7的分母乘4,要使分数的大小不变,分子应当怎样变化?把10/15的分子除以5,要使分数的大小不变,分母应当怎样变化?

2、下列每组中的两个分数相等吗?为什么?

1/3和3/9(等)15/33和5/11(等)4/16和1/8(不等)2/4和9/12(不等)3、这一点可以表示那些分数?

4、思考、讨论

6/8 = 9/12你能解释它们为什么相等吗?

分数的基本性质教案 篇36

教学目的

1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

2.培养学生观察、分析、思考和抽象、概括的能力.

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

教学过程

一、谈话.

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.

二、导入新课.

(一)教学例1.

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

1.分别出示每一个圆,让学生说出表示阴影部分的分数.

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

4.观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化?

( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

(2)观察

(二)教学例2.

出示例2:比较 的大小.

1.出示图:我们在三条同样的数轴上分别表示这三个分数.

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

(1)这三个分数从形式上看不同,但是它们实质上又都相等.

(教师板书: )

(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质.

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

(板书:“基本性质”)

4.谁再说一遍什么叫分数的基本性质?

教师板书字母公式:

四、应用分数基本性质解决实际问题.

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的.性质相类似.)

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

2.分数基本性质的应用:

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

决一些有关分数的问题.

3.教学例3.

例3 把 和 化成分母是12而大小不变的分数.

板书:

教师提问:

(1) ?为什么?依据什么道理?

( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?

( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?

(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五、课堂练习.

1.把下面各分数化成分母是60,而大小不变的分数.

2.把下面的分数化成分子是1,而大小不变的分数.

3.在( )里填上适当的数.

4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

5.请同学们想出与 相等的分数.

规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

六、课堂总结.

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

七、课后作业.

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

分数的基本性质教案 篇37

教学目的:

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点:

掌握分数的基本性质。

教学难点:

抽象概括分数的基本性质。

教具学具准备:

多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤:

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的'相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

大家都在看