知远网整理的《三角形内角和》说课稿(精选25篇),希望能帮助到大家,请阅读参考。
《三角形内角和》说课稿 篇1
一、 说教材
三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:
教学目标:
知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。
过程与方法:
1.发展学生动手操作、观察比较和抽象概括的能力。
2.情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:
学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:
三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法
整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。
四、说教学过程
基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
第一, 猜测。
通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。
第二,动手操作,探究新知。
动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。
这一环节我设计为以下三步:
1、操作感知。
组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。
2、小组合作。
针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。
3、交流反馈,得出结论。
学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的.代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。
第三是灵活应用,拓展延伸。
揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。
1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。
2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。
3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。
本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。
板书:
三角形的内角和
猜测验证结论应用
三角形内角和等于180。
《三角形内角和》说课稿 篇2
大家上午好!
“三角形的内角和”是九年义务教育六年制新课程标准教科书第八册第二单元——认识图形中第三节的内容。
一、说教材和新课标
(包括教材、新课标和教学目标)
1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于
180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。
2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。
基于新课标的要求,本课的教学目标是:
1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;
2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;
3、培养学生自主学习。
二、说教法和学法
在本课题的教法和学法主要体现在以下两方面:
1、突出学生作为学习主体的作用
学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的`发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。
2、让学生在创造中学习,在学习中创造
学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!
三、说教学过程
为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。
接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。
为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。
接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。
四、教学演示
1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;
2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;
3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);
4、练习:判断题
①钝角三角形的内角和大于直角三角形的内角和。
②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。
③直角三角形中的两个锐角和等于90°
5、学习求三角形中角的度数的方法……
《三角形内角和》说课稿 篇3
一、说教材
1、说课内容
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。
2、教材分析
《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。
教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
3、教学目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
4、教学重点难点
根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
5、教学具准备
每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。
二、说教法学法我要说的第二块是教法学法。
新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。
因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。
在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。
三、说教学流程
根据我对教材的把握和对学情的了解,设计了5个环节展开教学。
四、创设情境,发现问题
一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”
五、合作交流,引导探究
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称:三角形内角和
实验目的:探究三角形内角和是多少度。
实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(一)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(二)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的'问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(三)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
六、训练提高
使用课本两道题,以及以下习题
(1)∠1=35°∠2=47°∠3=()
(2)∠1=50°∠2=40°∠3=()
(3)∠1=20°∠2=45°∠3=()
按着难易程度逐渐提高,巩固新知。
七、数学文化
帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
八、课堂总结
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
九、反思
整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。
《三角形内角和》说课稿 篇4
一、说教学理念:
数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。
应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。
我认为教师角色的转变一定会促进学生的发展、促进教育的长久发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。
二、说教材分析与处理:
三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
三、说学生分析:
处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
四、说教学目标:
1、知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2、能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3、德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
五、说重难点:
1、重点:三角形的内角和定理探究与证明。
2、难点:三角形的内角和定理的证明方法(添加辅助线)的`讨论。
六、说教法、学法和教学手段
采用“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。
七、教学过程设计:
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。
合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4、学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5、巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6、思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)归纳总结,同化顺应
1、学生谈体会
2、教师总结,出示本节知识要点
3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)作业
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)板书设计
三角形内角和
学生拼图展示已知:求证:
证明:开放题:
《三角形内角和》说课稿 篇5
一、说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1、通过量一量、算一算、拼一拼、折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透转化;的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是内角的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。
三、说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
(一)引入
呈现情境:出示多个已学的平面图形,让学生认识什么是内角;。(把图形中相邻两边的夹角称为内角)长方形有几个内角(四个)它的内角有什么特点(都是直角)这四个内角的和是多少(360°)三角形有几个内角呢从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的'大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的横空出现
(二)猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。
(四)深化
质疑:大小不同的三角形,它们的内角和会是一样吗?
观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。
结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°,另外两个角都是0°。
【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用角的大小与边的长短无关的旧知识来理解说明。
对于利用精巧的小教具的演示,让学生通过观察,交流,想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。
(五)应用
1、基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2、变式练习:一个三角形可能有两个直角吗一个三角形可能有两个钝角吗你能用今天所学的知识说明吗?
3、(1)将两个完全一样的直角三角形拼成一个大三角形,这个大三角形的内角和是多少?
(2)将一个大三角形分成两个小三角形,这两个小三角形的内角和分别是多少?
4、智力大挑战:你能求出下面图形的内角和吗书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中,能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征,较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的变化情况,进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展,引导学生进一步研究多边形的内角和。教学中,学生能把这些多边形分成几个三角形,将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律,以此促进学生对多边形内角和知识的整体构建。能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。
《三角形内角和》说课稿 篇6
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。
一、说教材
“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
二、说学情
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、说目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。
解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
四、说模式
“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。
五、说方法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。
因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。
六、说设计
根据我对教材的把握和对学情的了解,设计了4个环节展开教学。
一、创设情境,发现问题
小游戏:猜一猜藏在信封后面的是什么三角形。
师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?
三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)
教学进入第二环节——引导探究
二、动手操作,探究规律
1.介绍内角、内角和,并提出猜想
师:我们现在研究三角形的三个角,都是它的内角。
课件演示:三角形的三个内角
师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的.看法。
2.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)
请你想个办法吧!
(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)
3.建立模型,解决问题
(一)测量法:
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称三角形内角和
实验目的探究三角形内角和是多少度。
实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片
方法一三角形的形状每个内角的度数三个内角的
方法二
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(三)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(四)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想"三角形的内角和是180度"
5.进一步感受
(1)三角形内角和与三角形大小的关系
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(2)三角形内角和与三角形形状的关系
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
6.解释课前问题
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
三、拓展应用,深化创新
本节课的练习由易到难,设计成三个层次。
1、基本练习形成技能
2、变式练习巩固技能
3、综合练习发展提高技能
介绍科学家帕斯卡(出示帕斯卡的资料)
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
多边形边形内角和
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
四、总结全课,全面提升
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
七、说设计
三角形的内角和是180度。
转化的思想:量、撕、剪、折、拼
《三角形内角和》说课稿 篇7
一、教学内容:
三角形内角和(教材85页的例五)
二、教学目标:
1、2、3、知道三角形的内角和是180°。正确计算三角形中某一个角的度数。培养学生分析、判断的能力,渗透知识间的内在联系和转化的数学思想。
三、教学重难点
理解并熟练运用三角形的内角和是180°。
四、教具学具准备
不同形状的三角形,量角器
五、教学过程:
(一)故事导入:
三角形家里的兄弟们在家里吵个不停,钝角三角形说:“我有一个角最大,我的三个角之和也是最大”,直角三角形说:“我一个角都90°,更何况我长了三只脚,我肯定比你大”,等边三角形说:“我三条边都相等,我三个角的度数之和也不比你直角三角形,钝角三角形三角之和小呀。这家兄弟就这样,你一言,我一语的吵的不可开交,直角三角形和钝角三角刚要动手打起来时,妈妈回来了。三角形妈妈很奇怪,急忙就问:怎么了孩子们?锐角三角形低着头小声说:妈妈,他们都说:他三个角之和比我大,是这样的吗?三角形妈妈哈哈大笑,我以为你们在吵什么呢?原来是这个问题,好了孩子们,要想知道你们三个角之和到底是多少?今天我带你们去城区二小四年级那里的小朋友今天就在学习这节课,兄弟们跟着妈妈一起今天也来到我们的教室。同学们一会儿学会了,把正确答案告诉这几位兄弟,好吗?
(二)教学实施
(1)小组合作把准备的三角形折下来,在拼一拼,看能拼成一个什么角?
(2)反馈结果。
(3)学生总结结果。
三角形的内角和是180°。(课件展示三角形的内角和是180度。)
(4)(课件出示学过的三角形)请几位同学告诉三角形家里的兄弟们,他们的内角和是多少?
(三)设疑。
根据三角形的内角和是180°如果知道两个角的度数,就可以求出第三个角的度数。(课件出示)
在一个直角三角形中,∠C=30°,求∠A的度数?
(1)学生读题,分析题意。
(2)尝试做题。
(3)教师订正书写。(课件出示)
∠A=180°-90°-30°=60°
(四)做一做
1、在一个三角形中∠1=140°,∠3=25°.求∠2的度数?
2、我是小判官。(对的`打√,错的打×)
①把一个等腰三角形分成两个完全一样的小
三角形,每个小三角形的内角和都是90度。
②直角三角形的两个锐角和是90度。
③任何一个三角形的内角和都是180度。
④钝角三角形的两个锐角之和大于90度,直角三角形的两个锐角之和正好等于90度
3、求下面各角的度数。(课件出示)
(五)课堂作业:
(1)三边相等,求三个角的度数。
(2)等腰三角形,顶角是96°,求底角
(3)在一个直角三角形中,有个锐角是40°,求另一个角。
(2)我给我女儿买了一个等腰三角形的风筝,他的一个底角是70°,它的顶角是多少度?
(六)智力大闯关
我的一个内角是72°,是另一个内角的4倍,我是一个什么三角形?
六、课堂小结。
三角形的内角和是多少?
三角形的内角和是180度。
七、作业布置。
P88页9、10
附板书
三角形的内角和是180°
《三角形内角和》说课稿 篇8
一、设计理念:
数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。
应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。
我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。
二、教材分析与处理:
三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
三、学生分析:
处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
四、教学目标:
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
五、重难点的确立:
1.重点:三角形的内角和定理探究与证明。
2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
六、教法、学法和教学手段:
采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。
采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。
七、教学过程设计:
(一)、创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)、探索新知
1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的'方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4.学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5.巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6.思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)、归纳总结,同化顺应
1.学生谈体会
2.教师总结,出示本节知识要点
3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)、作业:
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)、板书设计
三角形内角和
学生拼图展示
已知:
求证:
证明:
开放题:
《三角形内角和》说课稿 篇9
一、说教材
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
二、说学情
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、说教学目标
基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1、通过量一量,算一算,拼一拼,折一折的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透转化的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
教学重难点:理解并掌握三角形的内角和是180度这一结论。
四、说教学准备
教具:多媒体课件,
学具:各类三角形、长方形、量角器、活动记录表等。
五、说教法
“三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
六、说过程
本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:
(一)创设情境,激发兴趣
兴趣是最好的老师。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。
设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。
(二)动手操作,探索新知
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
1、揭示“内角”和“内角和”的概念
明确“内角”和“内角和”的.概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。
2、猜测内角和
牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。
3、动手验证,汇报交流
(1)介绍学具筐
由教师介绍学具筐中都有什么学习材料。
(2)生独立思考、动手操作
因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。
(3)组内交流
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
(4)全班汇报交流。
在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。
《三角形内角和》说课稿 篇10
《三角形的内角和》说课稿
一、 说教材:
今天我说课的内容是小学数学人教版实验教材四年级下册的《三角形的内角和》。三角形的内角和是180°是三角形的一个重要性质,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何知识的基础。三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形。学生对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,还认识了三角形的特性,知道三角形任意两边之和大于第三边以及三角形的分类等有关三角形的知识。这些都是学生感受、理解、抽象“三角形的内角和”的概念的基础。我们把握好“三角形的内角和是180°”这部分内容的教学不仅可以加深学生对三角形特征的理解,发展学生的空间观念,而且可以通过动手操作,获取新知,发展学生的思维能力和解决实际问题的能力。同时也为以后学习更复杂的几何图形知识打下坚实的基础。
二、说教学目标:
1、知识目标:知道三角形内角和是180°。
2、能力目标:①通过学生测量、撕拼、折叠、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。
②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;
②体验探索的乐趣和成功的快乐,增强学好数学的信心。
三、说重点和难点:
重点:探索和发现三角形内角的度数和等于180°。
难点:通过小组讨论、动手操作等方式,让学生自己探索和发现三角形内角的度数和等于180°,并能应用这一规律解决实际问题。
四、说教法和学法:
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验。因此,我主要采用的教学方法是:直观教学法和动手操作实验法。在教学中,根据学生的年龄特征,整节课我以学生为主的 “活动教学”贯穿全过程。设计有独立活动、同桌活动及分小组活动。在具体活动中,虽然小学生的遗忘性较强,但不得不承认学生已学过了三角形的内角和,所以一开始我大胆放手让学生说,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角,然后设疑:三角形内角和是多少?由于学生在小学学过这样的知识,所以很轻松地就可以答出。所以我直接让学生分小组讨论:有什么办法可以验证得出这样的结论。让学生大胆猜想,自主探索三角形的内角和。再通过测量、拼折、验证等方式让学生确定三角形内角和是180度。这样,既培养了学生的观察能力和归纳概括能力,又培养了学生动手操作能力和创新精神。
五、 说教学过程:
本节课的教学过程我设计了六个教学环节:一是创设情境,导入新课;二是自主探究,证实规律;三是应用延伸,解决问题;四是深化思维,拓展知识;五是课堂总结;六是作业布置。下面就具体的教学环节说说我的设想。
(一)创设情境,导入新课:
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。开始上课,我就大胆放手让学生说三角形的特性、分类等有关知识,从学生说中导入故事,“三角形三兄弟的争吵”,引出与学生要学习的内容——三角形的内角和,然后设疑:三角形内角和是多少?从而激发学生探究数学的愿望和兴趣。
(二)自主探究,证实规律:
1、理解标目:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,所以一开始我先不急于动手探索,先让学生明白什么是三角形的内角和。
2、 猜想:目标明确后,我就让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。
3、 验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量量、拼一拼、折一折――说说、议议――小结。
4、 巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的`有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:根据普遍三角形两个角求一个角,根据特殊的三角形求出三角形的三个角的度数{具体在练习一,第二、应用延伸练习一中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
5、 拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。
6、说课堂总结
采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?你有什么收获?(2)看书设疑。充分发挥学生的主体意识,培养学生的语言概括能力。
六、说教学板书
这是一节操作课,学生要掌握的概念较少,所以整个板书我以表格为主,主要把学生大量的验证成果展示出,让学生亲自动手后再通过观察,一目了然,得出结论——三角形的内角和是180度。简间但又层层涉及,形式活泼,色彩也较丰富。
总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。
《三角形内角和》说课稿 篇11
一、 说教材
“三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识目标:知道三角形内角和是180°。
2、 能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的`信心。
教学重点:三角形内角和是180°的实际应用。
教学难点:探索三角形的内角和是180°
二、说教法
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。
三、说学法
学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入—— 猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。
四、说教学程序
1、 谈话激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以两个三角形的争论为的知识“三为切入点,让学生来评理,当一回公正的法官{激趣},你认为哪一个三角形的内角和大呢?用什么方法知道谁大谁小呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。
2、 猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。
3、 验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折——看一看。
4、 巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:设计让学生用所学的知识说一说三角形内角和与三角形的大小有关系吗,又如:师说两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;让学生判断有两个直角三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
5、 拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我设计了这样一道题目:学了三角形的内角和后,你知道五边形、六边形的内角和是多少度吗?请小组合作选择一个图形求内角和。这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
《三角形内角和》说课稿范文(通用15篇)
在教学工作者实际的教学活动中,就难以避免地要准备说课稿,借助说课稿可以让教学工作更科学化。优秀的说课稿都具备一些什么特点呢?以下是小编为大家收集的《三角形内角和》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。
《三角形内角和》说课稿 篇12
一、说教材
1、说课内容
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。
2、教材分析
《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。
教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
3、教学目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
4、教学重点难点
根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
5、教学具准备
每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。
二、说教法学法我要说的第二块是教法学法。
新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。
因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。
在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。
三、说教学流程
根据我对教材的把握和对学情的了解,设计了5个环节展开教学。
四、创设情境,发现问题
一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”
五、合作交流,引导探究
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称:三角形内角和
实验目的`:探究三角形内角和是多少度。
实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(一)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(二)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(三)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
六、训练提高
使用课本两道题,以及以下习题
(1)∠1=35°∠2=47°∠3=()
(2)∠1=50°∠2=40°∠3=()
(3)∠1=20°∠2=45°∠3=()
按着难易程度逐渐提高,巩固新知。
七、数学文化
帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
八、课堂总结
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
九、反思
整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。
《三角形内角和》说课稿 15篇
作为一名人民教师,通常需要准备好一份说课稿,编写说课稿是提高业务素质的有效途径。那么说课稿应该怎么写才合适呢?以下是小编整理的《三角形内角和》说课稿 ,欢迎阅读,希望大家能够喜欢。
《三角形内角和》说课稿 篇13
一、说教材
《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。
三、说教学目标
根据教材的特点,我制定出本节课的三维目标分别是:
1、通过测量、撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。
2、在操作活动中,培养学生的合作意识、动手实践能力,发展学生的空间观念,培养学生自主探究能力。
3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。
四、说教学重点:
探究和发现三角形内角和是180°
五、说教学难点:
用不同方法探究、验证三角形的内角和是180°
六、说教学准备
课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。
七、说教法学法
这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:
(1)、引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。
(2)、引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时,自己想办法进一步探究。
(3)、引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程。
(4)、引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。
八、说教学流程
学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:
1、创设情景,以情激趣
首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。
2、 合作交流
探究新知
这一环节的设计我是分4部分完成的:
(1)、量一量
我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于180度、180度或小于180度不同的结果。在交流汇报的结果时会发现答案不统一,无法判断大小三角形内角和谁大谁小的问题。此时学生心中产生了更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”这一思维的碰撞,再次激起学生的学习探究热情,自主产生探究欲望,强烈的求知欲和好胜心让学生跃跃欲试,此时我顺水推舟,引导他们用拼一拼、折一折等不同的方法探究不同的三角形的内角和是多少度。
(2)、拼一拼、折一折
学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180度时,我充分调动学生学习的积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。
(3)、得出结论、加深内化
学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是180度,并自主得出结论:三角形的内角和是180度。然后引导他们:用科学、简练的数学语言表述探究方法学生汇报并演示三角形内角和180度探究过程。并借助多媒体在大屏幕上演示其中几种基本的剪拼、折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。
(4)、揭示课题、解决问题
在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的'内角和都是180度。在这个环节中,我自始至终充当教学研究的组织者,引导者,参与者。前后组织了几次自主探究活动,让学生在保持高度学习热情与欲望的探究过程中,始终以愉悦的心情亲身经历和体验知识的形成过程。培养了学生的探究能力、分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。
3、运用新知、解决问题
本环节我设计了以下几种题型:
1.推算题
2.辨析
3.思考题
4.拓展题
这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。
4、了解历史 、全课小结
这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生学习所提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!
《三角形内角和》说课稿 篇14
一,说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1.通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.
2.通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想.
3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的'内角和是180°.
二,说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°.
因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力".四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式.
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验.
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是"内角".( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题.
【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现".
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】引导学生提出合理猜测:三角形的内角和是180°.
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼.
(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°.
(4)画:根据长方形的内角和来验证三角形内角和是180°.
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°.从长方形的内角和联想到直角三角形的内角和是180°.
【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法.在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系.在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥.
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变.)
结论: 角的两条边长了, 但角的大小不变.因为角的大小与边的长短无关.
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小.这样多次变化, 活动角越来越大, 而另外两个角越来越小.最后, 当活动角的两条边与小棒重合时.
结论:活动角就是一个平角180°, 另外两个角都是0°.
【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响.教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明.
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因.
(五)应用
1.基础练习:书本练习十四的习题9,求出三角形各个角的度数.
2.变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗
3.(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4.智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段.在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数.
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系.
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识.
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和.教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建.
说课板书设计:
三角形内角和
引入:
猜测:
验证:
量——算
撕——拼
折——拼
《三角形内角和》说课稿 篇15
一、 说教材
三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:
教学目标:
知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。
过程与方法:
发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:
学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:
三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法
整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。
四、说教学过程
基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
第一, 猜测。
通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。
第二,动手操作,探究新知。
动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。
这一环节我设计为以下三步:
1、操作感知。
组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。
2、小组合作。
针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。
3、交流反馈,得出结论。
学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的.代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。
第三是灵活应用,拓展延伸。
揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。
1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。
2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。
3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。
本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。
板书:
三角形的内角和
猜测验证结论应用
三角形内角和等于180。
《三角形内角和》说课稿
作为一名人民教师,时常需要用到说课稿,说课稿有助于提高教师的语言表达能力。优秀的说课稿都具备一些什么特点呢?以下是小编收集整理的《三角形内角和》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《三角形内角和》说课稿 篇16
一、说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能、教学过程与方法、情感态度价值观三方面拟定了本节课的教学目标:
1、通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。
(三)教学重、难点
因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法、学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量、折一折、撕一撕、画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。
三、说教学过程
我以引入、猜测、证实、深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
(一)引入
呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。(把图形中相邻两边的夹角称为内角)长方形有几个内角?(四个)它的内角有什么特点?(都是直角)这四个内角的和是多少?(360°)三角形有几个内角呢?从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。
(二)猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢?
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度?
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。
(四)深化
质疑:大小不同的三角形,它们的内角和会是一样吗?
观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。)
结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。
实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时,
结论:活动角就是一个平角180°,另外两个角都是0°。
【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。
对于利用精巧的小教具的演示,让学生通过观察、交流、想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。
(五)应用
1.基础练习:书本练习十四的习题9,求出三角形各个角的'度数。
2.变式练习:一个三角形可能有两个直角吗?一个三角形可能有两个钝角吗?你能用今天所学的知识说明吗?
3.(1)将两个完全一样的直角三角形拼成一个大三角形,这个大三角形的内角和是多少?
(2)将一个大三角形分成两个小三角形,这两个小三角形的内角和分别是多少?
4.智力大挑战:你能求出下面图形的内角和吗?书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中,能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的变化情况,进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展,引导学生进一步研究多边形的内角和。教学中,学生能把这些多边形分成几个三角形,将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律,以此促进学生对多边形内角和知识的整体构建。
四、说课板书设计:
三角形内角和
引入:
猜测:
量——算
撕——拼
验证折——拼
画
深化
应用
《三角形内角和》说课稿 篇17
一、说教材
1、说课内容
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。
2、教材分析
《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。
教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
3、教学目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
4、教学重点难点
根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
5、教学具准备
每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。
二、说教法学法我要说的第二块是教法学法。
新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。
因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。
在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。
三、说教学流程
根据我对教材的把握和对学情的了解,设计了5个环节展开教学。
四、创设情境,发现问题
一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”
五、合作交流,引导探究
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称:三角形内角和
实验目的:探究三角形内角和是多少度。
实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。
(4)学生汇报量的'方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(一)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(二)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(三)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
六、训练提高
使用课本两道题,以及以下习题
(1)∠1=35°∠2=47°∠3=()
(2)∠1=50°∠2=40°∠3=()
(3)∠1=20°∠2=45°∠3=()
按着难易程度逐渐提高,巩固新知。
七、数学文化
帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
八、课堂总结
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
九、反思
整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。
《三角形内角和》说课稿 篇18
一、说课内容:
北师大版义务教育课程标准实验教材小学数学四年级下册第二单元第三节----《三角形的内角和》一课。
二、教材分析:
在这一环节我要阐述四方面的内容:
1、三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,教材呈现教学内容时,安排了一系列的实验操作活动。让学生通过探索,发现三角形的内角和是180度。
2、学情分析:
学生已经知道了三角形的概念、分类,熟悉了各角的特点,掌握了量角的方法。也可能有部分学生知道了三角形内角和是180°的结论。
3、教学目标:
A、让学生亲自动手,发现,证实三角形的内角和等于180度。并能初步运用这一性质解决有一些实际问题。
B、在经历“观察、测量、撕拼、折叠”的验证的过程中培养学生观察能力,归纳能力、合作能力和创造能力。
4、教学重难点:
经历三角形的内角和是180度这一知识的形成,发展和应用的全过程。
5、教学难点:
让学生用不同方法验证三角形的内角和是180度。
三、教学准备:
在备课过程中,我阅读了农远光盘中多位名师的教学案例来完善自己的教学设计,并收集了农远光盘中的多媒体课件,用课件适时播放。
四、教法分析
为了使教学目标得以落实,谈谈本课的教法和学法。新课程标准强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者。我采用了趣味教学法、情境教学法、引导发现法、合作探究法和直观演示法。
五、学法分析
在学法指导上,我把学习的主动权交给学生,引导学生通过动手、动脑、动口,积极参与知识形成的全过程。体现了学生动手实践、合作交流,自主探索的学习方式。
六、教学流程:
(一)猜迷激趣,复习旧知。,
兴趣是最好的老师,开课我出示了一则谜语。调动学生学习的积极性。
形状是似座山,稳定性能坚。三竿首尾连,学问不简单。(打一平面图形)
由谜底又得出了一个对三角形你们有哪些了解的问题,唤醒学生头脑中有关三角形的知识,同时很自然引出对“三角形内角和”一词的讲解,为后面的探索奠定基础。
(二)创设情境,巧引新知(课件出示)
(三)验证猜想,主动探究。
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
“你能运用已有的知识和身边的学具想办法验证你的猜想吗?”学生思考片刻后,我出示学习提纲:
A、先独立思考,你想怎样验证?
B、再小组合作探究,运用多种方法验证。
C、最后汇报,展示你的验证方法。
课程标准指出:数学教学应该由简单的问答式教学向独立思考基础上的合作学习转变。所以,先让他们独立思考,形成独特的个人见解。等有了合作的.需要时,再合作探究。此时的合作,学生才会有展示自己的方法的强烈欲望,才会在不同意见的相互碰撞中产生富有创意的思维火花。在足够的讨论之后,进入了汇报展示过程。学生可能出现以下几种方法
1.量角求和
这个验证方法应是全班同学都能想到的,因此,在这一环节我设计了小组活动的形式。让小组成员在练习本上任意地画几个三角形进行测量并记录。学生通过画、量、算,最后发现三角形的三个内角和都是180度。
2.拼角求和
通过讨论,有的小组可能会想到把三个角撕开,再拼在一起,刚好拼成了一个平角,由于学生在以前学过平角是180度,很快就发现这三个三角形的内角和都是180度。为了让全班学生能够真切,清晰地看到撕拼的过程,我利用了多媒体课件进行了演示。(课件出示)课件播放后学生一目了然,攻克了本课的一个教学重点。
3.折角求和
有的小组还可能想到把三个角折在一起,也刚好形成一个平角。但如何折才能够使三个内角刚好组成平角呢?这一验证方法是本课教学的一个难点。
在学生展示完验证方法后,我又让每位学生选择自己喜欢的方法,再去验证刚才的发现。最后归纳出结论:所有三角形的内角和都是180度。
(四)应用新知,解决问题。
数学离不开练习。本节课我把图像、动画等引入课件,使练习的内容具有简单的背景与情节,使学生对解题产生了浓厚的兴趣。
我设计了四个层次的练习:有序而多样。
1)基本练习:让学生通过这一习题,掌握求未知角的一般方法。
2)实践运用:这一习题的设计是为了让学生知道生活中到处都有数学,数学能解决生活实际问题,真切体验到学的是有价值的数学。
3)巩固提高:使学生了解在间接条件下求未知角的方法。
4)拓展延伸。让学生体会到数学中辅助线的桥梁作用,在潜移默化中渗透一个重要数学思想―――转化,为以后学习数学打下坚实的基础。
(五)全课小结完善新知
1、这节课我们学到了什么知识?
2、你有什么收获?
通过学生谈这节课的收获,对所学知识和学习方法进行系统的整理归纳。
(六)板书设计
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
七、说效果预测:
本课中,学生通过动手操作,测量、撕拼、折叠等实验活动,得到的不仅是三角形内角和的知识,也使学生学到了怎么由已知探究未知的思维方式与方法,培养了他们主动探索的精神。促进学生良好思维品质的形成,达到预想的教学目的。使学生在探索中学习,在探索中发现,在探索中成长!
《三角形内角和》说课稿 篇19
各位老师:
下午好!我今天说课的内容是三角形内角和定理,选自北京市义务教育课程改革实验教材第15册第十三章第三节,接下来我将根据我的教学设计,从教学内容、学情情况、教学目标、教学方法与过程四个方面进行分析,不足之处请各位老师批评指正。
一、教学内容分析
本节课是八年级上册第十三章第三节,其教学内容为三角形内角和定理及其简单应用。它是对图形进一步认识以及规范证明过程的重要内容之一,《三角形内角和定理》是在学生知道了“三角形内角和等于180°”的前提下,通过添加适当的辅助线,用平行线的性质及平角为180加以证明,培养学生逻辑推理能力,也为下一节学习三角形外角的性质作铺垫。本节课起着承上启下的作用。教学重点:三角形内角和定理的证明和简单应用。
二、学生情况分析
对于三角形的内角和定理,学生在小学阶段已通过量、折、拼的方法进行了合情推理并得出了相关的推论、在小学认识三角形,通过观察、操作,得到了三角形内角和是180°。
但在学生升入初中阶段学习过推力证明后,必须明确推理要有依据,定理必须通过逻辑证明。现在的学生喜欢动手实验,操作能力较强,但对知识的归纳、概括能力以及知识的迁移能力不强。部分优秀学生已具备良好的学习习惯,有一定分析、归纳能力。
教学难点:探索三角形内角和定理的的证明过程
三、教学目标分析
1、知识目标:掌握“三角形内角和定理的证明和简单应用”。能够探索具体问题中的数量关系和变化规律,体会方程的思想。
2、能力目标:通过几何画板验证、问题思考、合作探索、组内及组间交流,培养学生的逻辑推理、大胆猜想、将未知转化为已知等能力。
3、情感、态度、价值观:通过添加辅助线教学,渗透数学思想和方法教育。在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
四、教学方法与过程
本节课我们主要目的是通过添加不同的辅助线的演绎推理的方法,把三角形的3个内角转化为1个平角或把三角形的3个内角转化为两平行线的同旁内角证明三角形内角和定理,使学生从中体会到不同的.添加辅助线方法的实质是相同的——把一个我们不会解的新问题,转化为我们会解的问题,认识到添加辅助线是解决数学问题的一种常用方法。
为了完成这个设计理念,在本节课的教学方法上采用启发引导、合作交流的方法。学生在已有经验的基础上,要在自己的思考过程中得到进步,加深对知识的理解,就必须在教师的引导下,通过同学间的互相探讨、启发,把课堂上所学的内容完全转化为他们自己的知识。
本节课的内容主要分为以下六个环节分别是:
(一)复习旧知,引入新知
(二)合作探究,学习新知
(三)应用练习,巩固新知
(四)归纳总结,提升认识
(五)随堂检测,夯实基础
(六)布置作业,巩固新知
下面我将对这六部分进行说明
(一)复习旧知,引入新知
上节课我们已经研究了三角形的三条边之间的关系,今天我们来研究一下三角形的三个内角有什么关系,请问,你们知道三角形的内角有什么关系吗?
学生:三角形内角和是1800。
你已经已知道三角形的内角和是1800。你还记得以前用的那些方法得到的吗?
学生会回忆起小学时拼、折发现得出三角形内角和等于180°,这只是实验得出的命题,不能当做定理,只有经过严格的几何证明,证明命题的正确性,才能作为几何定理,今后,在几何里,常采用这种方法得到新知识。首先通过几何画板验证我们也能得到此结论,但是我们必须通过逻辑推理来证明结论,你知道该如何证明这个结论吗?
(二)合作探究,学习新知
首先学生回忆证明一个命题的步骤:
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
得出已知求证
刚才的撕纸、折纸都是把三角形的三个内角移到一起,如果不实际移动,你有什么方法可达到同样的效果?
这个问题学生思考起来不是很容易们可以进一步提示学生,提示:这个结论关键在于这个180°,试想一下,我们之前学过哪些内容与180°有关?
学生:
(1)平角为180°
(2)两直线平行,同旁内角互补(180°)
观察图形,我们能否转化为已有知识来证明呢?
学生通过观察,可以想到,如果要得到相等的角,就必须有平行线,通过内错角和同位角相等来证明这一结论。教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
接下来给学生一些时间,思考如何添加辅助线。
学生通过上图可直接的到添加辅助线的方法。接下来请学生说出添加辅助线的方法并口述证明过程。
进而在提问还有没有其他的方法可以证明这一结论。
通过全体同学的思考,可以想到还有其他两种方法可以证明,有学生说出解题思路后,总结,虽然添加辅助线的方法不同,但总体思路是相同的:
(1)平角为180°
(2)两直线平行,同旁内角互补(180°)
这样就得到了三角形内角和定理:文字语言:三角形内角和为180°
图形语言:
符号语言:
提醒学生注意三种语言的转换
(三)应用练习,巩固新知
练习:
通过练习依法思考
思考:在一个三角形中,最多有几个钝角?直角?锐角?
最多有一个钝角,最多有一个直角、最多有三个锐角
最少有两个锐角
例1:已知,如图:
分析:一般设所求角的度数为x
练习:
通过例题,应用定理,规范解题格式
(四)归纳总结,提升认识
小结;今天我们学习了那些内容?
1、三角形内角和定理:三角形内角和为
2、在作解答题时,一般设所求角的度数为x
3、在一个三角形中,最多有一个钝角,最多有一个直角、最多有三个锐角、最少有两个锐角
(五)随堂检测,夯实基础
(六)布置作业,巩固新知
本节课,我希望通过教师引导,学生合作交流的方式,让学生理解将不会解觉的问題转化为已经解决的问题的方法,落实教学目标,让学生体会,用添加辅助线的方法解决几何问题。
最后,感谢各位老师的聆听!谢谢!
《三角形内角和》说课稿 篇20
一、 说教材
三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:
教学目标:
知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。
过程与方法:
发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:
学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:
三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法
整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的`学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。
四、说教学过程
基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
第一, 猜测。
通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。
第二,动手操作,探究新知。
动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。
这一环节我设计为以下三步:
1、操作感知。
组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。
2、小组合作。
针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。
3、交流反馈,得出结论。
学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。
第三是灵活应用,拓展延伸。
揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。
1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。
2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。
3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。
本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。
板书:
三角形的内角和
猜测验证结论应用
三角形内角和等于180。
《三角形内角和》说课稿 篇21
一、 说教材
三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:
教学目标:
知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。
过程与方法:
发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:
学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:
三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法
整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。
四、说教学过程
基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
第一, 猜测。
通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。
第二,动手操作,探究新知。
动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。
这一环节我设计为以下三步:
1、操作感知。
组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。
2、小组合作。
针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。
3、交流反馈,得出结论。
学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的',发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。
第三是灵活应用,拓展延伸。
揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。
1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。
2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。
3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。
本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。
板书:
三角形的内角和
猜测验证结论应用
三角形内角和等于180。
《三角形内角和》说课稿 篇22
一、说教材
1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。
2、教材简析
三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。
3、教学目标
根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。
(1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。
(2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。
(3)情感目标:使学生经历探究的过程,体会与他人合作交流的乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。
4、教学重点与难点。
《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。
5、教学准备
为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。
二、说教法学法
根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。
本节课在学生学习方法的引导上尽量体现:
①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。
②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。
③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。
三、学生情况分析
学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。
四、说教学流程
为了达到本节课的教学目标,我这样设计教学流程:
1、设疑导入。
为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:
(1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。
(2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。
2、动手操作,自主探究。
为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的`是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。
3、巩固新知
本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。
五、板书设计
板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。
《三角形内角和》说课稿 篇23
一、教学目标
课程标准这样描述:
通过观察、操作了解三角形内角和是180°,分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。
课前我对学情进行了分析:
1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。
2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。
通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:
1、通过量、拼、折、剪等方法探索和发现三角形的.内角和等于180°并会应用这一规律解决实际的问题。
2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。
二、评价设计
针对这一目标的完成,我设计了一下评价方式:
1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。
2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。
3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价
评价题目
1、通过3个练习题(1、做一做。2、说一说 3、拼一拼、想一想)检测学习目标1的掌握情况。
2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况
三、教具学具准备
教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格
学具准备:三角板、量角器、
四、教学过程
这节课的教学我通过一下四个环节完成。
1、观察猜测,引入新知;
2、动手操作,探索新知;
3、巩固新知,拓展应用;
4、总结评价、延伸知识。
第一环节,观察猜测,引入新知。
由图形引入,让学生指出锐角三角形,直角三角形,钝角三角形的三个内角,发现在这些三角形中最大的内角是钝角。问:想看钝角三角形72变吗?我们一起来看一看。课件演示:
(1)钝角变小,另外两个角怎样变?
(2)钝角变大,另外两个角怎样变?
(3)钝角变大、变大、变大再变大,还能再大吗?发现再大就成平角了。平角多少度?这时把三角形三个内角的加起来,和可能多少呢?猜测:180度。
这只是我们的猜测,(板书:猜测)数学是要用事实说话的,这节课我们就来学习三角形的内角和。(板书课题)这样由三种变化的三角形引入新课,激发学生兴趣的同时为后面的学习做准备
第二环节,动手操作,探索新知。
1、直角三角形的内角和。
(一)直角三角形内角和
先让学生观察一副三角板的内角和,发现都是180度,和猜测是一样的,是不是所有的直角三角形内角和都是180度呢?课件出示一些直角三角形,让学生用手中的工具验证你的猜测。
四人小组合作,拿出学具袋里三个红色的直角三角形和表格,用不同的方法验证猜测。学生可以“量一量”,也可以“剪一剪”,还可以“折一折”。汇报时要让学生说一说方法,同时在课件上展示。
这个环节引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。
(二)锐角三角形、钝角三角形的内角和
课件出示将锐角三角形、钝角三角形,问:你能利用我们刚才学到的知识来研究它们的内角和吗?动手试一试,可以同桌讨论。(学生操作,汇报,课件演示)让学生模仿老师操作说理。由此得到了锐角三角形和钝角三角形的内角和也是180度。我们就可以说所有三角形的内角和都是180度。这是三角形的一个特性。
这样引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。
第三环节、巩固新知,拓展应用
用三角形的这一特性来解决一些问题
1、基本练习
通过做一做和说一说这两个练习来强化学生认知。
2、拓展练习
拼一拼、想一想
(1)两个三角形拼成大三角形,说出大三角形的内角和
(2)一个三角形去掉一部分
引导学生发现,无论三角形的形状或大小如何改变,内角和都是180度,看来三角形的内角和度数和他的大小形状都无关。
(3)再把这个三角形剪去一部分剪成一个四边形,它的内角和是多少度?
(4)如果变成五边形,你还能求出他的度数吗?
充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。
第四环节、总结评价、延伸知识
通过这个环节让学生谈一谈自己的收获或感受,对本节课的知识进行拓展升华。
《三角形内角和》说课稿 篇24
一、说课内容:
北师大版义务教育课程标准实验教材小学数学四年级下册第二单元第三节——《三角形的内角和》一课。
二、教材分析:
在这一环节我要阐述四方面的内容:
1、三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,教材呈现教学内容时,安排了一系列的实验操作活动。让学生通过探索,发现三角形的内角和是180度。
2、学情分析:
学生已经知道了三角形的概念、分类,熟悉了各角的特点,掌握了量角的方法。也可能有部分学生知道了三角形内角和是180°的结论。
3、教学目标:
A、让学生亲自动手,发现,证实三角形的内角和等于180度。并能初步运用这一性质解决有一些实际问题。
B、在经历“观察、测量、撕拼、折叠”的验证的过程中培养学生观察能力,归纳能力、合作能力和创造能力。
4、教学重难点:
经历三角形的内角和是180度这一知识的形成,发展和应用的全过程。
5、教学难点:
让学生用不同方法验证三角形的内角和是180度。
三、教学准备:
在备课过程中,我阅读了农远光盘中多位名师的教学案例来完善自己的.教学设计,并收集了农远光盘中的多媒体课件,用课件适时播放。
四、教法分析
为了使教学目标得以落实,谈谈本课的教法和学法。新课程标准强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者。我采用了趣味教学法、情境教学法、引导发现法、合作探究法和直观演示法。
五、学法分析
在学法指导上,我把学习的主动权交给学生,引导学生通过动手、动脑、动口,积极参与知识形成的全过程。体现了学生动手实践、合作交流,自主探索的学习方式。
教学流程:
(一)猜迷激趣,复习旧知。
兴趣是最好的老师,开课我出示了一则谜语。调动学生学习的积极性。
形状是似座山,稳定性能坚。三竿首尾连,学问不简单。(打一平面图形)
由谜底又得出了一个对三角形你们有哪些了解的问题,唤醒学生头脑中有关三角形的知识,同时很自然引出对“三角形内角和”一词的讲解,为后面的探索奠定基础。
(二)创设情境,巧引新知(课件出示)
(三)验证猜想,主动探究。
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
“你能运用已有的知识和身边的学具想办法验证你的猜想吗?”学生思考片刻后,我出示学习提纲:
A、先独立思考,你想怎样验证?
B、再小组合作探究,运用多种方法验证。
C、最后汇报,展示你的验证方法。
课程标准指出:数学教学应该由简单的问答式教学向独立思考基础上的合作学习转变。所以,先让他们独立思考,形成独特的个人见解。等有了合作的需要时,再合作探究。此时的合作,学生才会有展示自己的方法的强烈欲望,才会在不同意见的相互碰撞中产生富有创意的思维火花。在足够的讨论之后,进入了汇报展示过程。学生可能出现以下几种方法
1.量角求和
这个验证方法应是全班同学都能想到的,因此,在这一环节我设计了小组活动的形式。让小组成员在练习本上任意地画几个三角形进行测量并记录。学生通过画、量、算,最后发现三角形的三个内角和都是180度。
2.拼角求和
通过讨论,有的小组可能会想到把三个角撕开,再拼在一起,刚好拼成了一个平角,由于学生在以前学过平角是180度,很快就发现这三个三角形的内角和都是180度。为了让全班学生能够真切,清晰地看到撕拼的过程,我利用了多媒体课件进行了演示。(课件出示)课件播放后学生一目了然,攻克了本课的一个教学重点。
3.折角求和
有的小组还可能想到把三个角折在一起,也刚好形成一个平角。但如何折才能够使三个内角刚好组成平角呢?这一验证方法是本课教学的一个难点。
在学生展示完验证方法后,我又让每位学生选择自己喜欢的方法,再去验证刚才的发现。最后归纳出结论:所有三角形的内角和都是180度。
(四)应用新知,解决问题。
数学离不开练习。本节课我把图像、动画等引入课件,使练习的内容具有简单的背景与情节,使学生对解题产生了浓厚的兴趣。
我设计了四个层次的练习:有序而多样。
1)基本练习:让学生通过这一习题,掌握求未知角的一般方法。
2)实践运用:这一习题的设计是为了让学生知道生活中到处都有数学,数学能解决生活实际问题,真切体验到学的是有价值的数学。
3)巩固提高:使学生了解在间接条件下求未知角的方法。
4)拓展延伸。让学生体会到数学中辅助线的桥梁作用,在潜移默化中渗透一个重要数学思想―――转化,为以后学习数学打下坚实的基础。
(五)全课小结完善新知
1、这节课我们学到了什么知识?
2、你有什么收获?
通过学生谈这节课的收获,对所学知识和学习方法进行系统的整理归纳。
(六)板书设计
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
六、说效果预测:
本课中,学生通过动手操作,测量、撕拼、折叠等实验活动,得到的不仅是三角形内角和的知识,也使学生学到了怎么由已知探究未知的思维方式与方法,培养了他们主动探索的精神。促进学生良好思维品质的形成,达到预想的教学目的。使学生在探索中学习,在探索中发现,在探索中成长!
《三角形内角和》说课稿 篇25
教学要求:
●通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。●能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。●培养学生动手动脑及分析推理能力。
教学重点:
三角形的内角和是180°的规律。
教学难点:使学生理解三角形的内角和是180°这一规律。
教学用具:每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、复习准备
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、教学新课
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的`工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算180°-70°-70°=40°或180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
布置作业
图形的拼组
1小组同学合作,用三角形拼四边形
让学生明确:
不是任意两个三角形就能拼成四边形
两个完全一样的三角形能拼成四边形
两个相同的直角三角形能拼成长方形
两个相同的锐角或钝角三角形能拼成平行四边形
用三个相同的三角形拼成了梯形
2用三角形拼出美丽的图案
