知远网整理的小学五年级上册数学教学设计(精选12篇),希望能帮助到大家,请阅读参考。
小学五年级上册数学教学设计 篇1
教学目标:
1、理解事件发生的可能性与不可能性及事件发生的可能性大小,并能对一些简单事件发生的可能性大小进行比较。
2、在游戏、试验、统计、分析、归纳总结中,培养实践能力和在实践中发现问题、解决问题、创造性运用知识的能力。
3、结合学习内容,进行思想教育,体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
在活动中发现、体验0、1、2、8、9、10和这6个和出现的可能性较小;3、4、5、6、7这5个和出现的可能性较大。
教学难点:
理解可能性大小与实践发生不确定性的关系。
教学准备:
课件、色子 、统计表、
教学过程:
一、课前活动
课前观看百事可乐广告视频。
1、教练准备用什么决定哪个队先开球?
2、为什么用硬币开球? 生答:用硬币比较公平(掷出硬币正反两面的可能性是一样的)
3、除了硬币,还有什么公平的方法进行选择?(抛硬币、猜拳、掷色子)
4、我们知道,类似的游戏方式有很多,那么今天我们就从小色子走进掷一掷的课堂。教师板书课题。掷一掷
二、设置问题,猜想的开始
1、我们玩一个掷色子的游戏,出示课件游戏规则:如果掷出4,则女生赢。如果不是4,则男生赢,大家觉得公平吗?为什么?(色子有6面,4只是其中一种情况,还有1、2、3、5、6占5种情况都是男生赢。)那怎么给规则才公平?
2、现在增加1个色子,我们来玩两个色子得游戏,如果两个色子,点数和可能是几?课件出示游戏规则,如果是2、3、4、10、11、12,则蓝队赢。如果点数和是5、6、7、8、9则红队赢。现在你认为哪个队赢得可能性大?
让同学举手表示自己愿意参加哪个队,并询问原因。
3、现在让我们来实际做一做这个游戏,首先让两个同学上来示范一下。
(两人各掷3次,让学生大声报出点数和和哪队赢)老师随机往1号记录单演示涂格子。
4、同学们,我们掷了六次,能判断哪队赢的可能性大吗?为什么?
(试验次数少,有偶然性。)
5、那么我们全班都来玩。课件出示活动要求及分工。四人轮流掷色子,每人掷5次,副组长负责报点数和,组长在1号记录单上记录。记完的同学把记录单贴到黑板上。
(1)操作实践,学生小组合作。
(2)汇报小组合作交流的结果,汇总全班统计结果到课件的柱形图中。
学生汇报结果,红队赢的次数多。
(3)观察柱形图你能发现什么?总体趋势是中间高两边低。
6、为了使我们的结论更有说服力,继续掷色子。请来我们的神奇小助手,计算机。你想掷多少次?根据学生回答操作课件。
三、发现问题,猜想的深入。
1、实验结果红队获胜的可能性大。与我们猜想的结果不一样,为什么点数和少的红队反而赢了?点数和多的蓝队反而输了呢?结合刚才掷色子的过程思考,为什么掷出中间数字的'次数比较多?(生以某一个点数和为例说明)掷出几的可能性?掷出几的可能性最小?为什么?
2、提示同学先思考,为什么掷出的点数和2和12最少。(因为2和12都只有一种情况才能掷出)
3、那掷出其它数都有哪种情况呢?请小组为单位讨论并写一写?完成2号记录单,读一读温馨提示。用自己喜欢的方式写理由。例如:算式、数字等等。列举点数和可能出现的情况。
提醒:点数和为6,不可能有7、8、9等数。
小组汇报展示。
四、解决问题,猜想的验证
1、出示课件,请同学回答掷两个色子,一共可以出现多少种情况。(36种)其中,红队赢的情况有多少种(24种),蓝队赢的可能有多少种(12种)
2、师:现在,大家知道为什么红队赢的可能性大了吗?(红队赢的情况多,可能性大)
五、一锤定音
1、刚才观察柱形图,掷出几的可能性》?现在我来掷两个色子,请大家猜一猜我掷出的点数和是多少?只有一次机会。掷出7的可能性大,就一定掷出7吗?
提问学生,这说明了什么?(说明掷色子有偶然性)
课件出示概率论是一门研究事情发生的可能性的学问,虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
六、全课总结
说一说你有什么收获?
七、拓展延伸
某商店举行一次抽奖活动
游戏规则:两个骰子同时掷出,每掷一次五角钱。得到的数字的和如果是下列几种情况那就可以得到相应的奖品。
1 特等奖:奖品为漫画书一套,价值五十元
2或12 一等奖:奖品为一本笔记本,价值五元
3或11 二等奖:奖品为一支圆珠笔,价值一元
4或10 三等奖:奖品为一支铅笔,价值两角
5或9 鼓励奖:奖品为糖一颗,价值一角
对于这样的抽奖活动你想说什么?商家为什么这样设置奖项呢?你对这样的活动有什么看法?
小学五年级上册数学教学设计 篇2
设计说明
在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:
1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。
2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。
3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。
课前准备
教师准备PPT课件平行四边形纸片方格纸剪刀
学生准备硬纸板做的平行四边形三角尺剪刀
教学过程
⊙创设情境,提出问题
1.出示公园里的一块长方形空地的示意图:长10米,宽6米。
提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?
生:10×6=60(平方米)
师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?
生:数方格。
2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。
提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?
3.学生回答后引入新课:这节课我们就来学平行四边形的面积。
设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。
⊙猜想尝试,获取新知
1.出示教材53页问题一。
师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?
学生讨论,猜想求这块空地面积的方法。
预设
生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。
生2:把平行四边形的相邻的两边相乘。
过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?
2.借助方格纸数一数,比一比。
师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?
(1)请大家仔细观察方格纸上的两个图形,数一数。
(2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的`平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。
(3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?
引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。
提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?
设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。
3.推导平行四边形的面积计算公式。
师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。
(1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?
释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。
(2)师生共同总结。
①通过剪一剪、拼一拼,把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。
(3)推导平行四边形的面积计算公式。
长方形的面积=长×宽,得出:平行四边形的面积=底×高。
字母公式:S=ah。
(4)梳理平行四边形面积计算公式的推导方法。
师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
(学生汇报)
师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。
设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。
小学五年级上册数学教学设计 篇3
教案设计
设计说明
本课是在前几节课的基础上进行教学的,分为图案欣赏和绘制图案两部分内容。在教学中主要突出以下几方面的特点:
1.通过欣赏教材和生活中的一些美丽图案,激起学生对美丽图案的探究欲望,唤起学生的审美意识,使学生认识数学的美,体会图形世界的神奇。
2.通过小组合作探究、自由讨论及各种操作活动,培养学生利用所学知识解决实际问题的能力,开发学生智力。体验合作探究学习的乐趣,真实感受图形的特点,培养学生的动手操作能力和空间想象力。
3.在学生绘制好美丽的图案后,让每位学生都能充分展示自己的作品,使每位学生都能够体验到成功的快乐。同时,让学生对别人的作品进行多种形式的评价,锻炼学生的口语表达能力,让学生在相互交流和老师的.总结性评价中提高自己的审美能力,使全体学生得到不同程度的提高和进步。
课前准备
教师准备PPT课件
学生准备收集各种美丽的图案
教学过程
⊙创设情境,导入新课
1.创设情境,激发兴趣。
师:同学们,在日常生活中有许多美丽的图案在美化着我们的生活,老师收集到了一些图案,请同学们欣赏。(展示图案)
2.揭示课题。
师:今天我们就来学习欣赏与设计。
设计意图:通过欣赏美丽的图案,激发学生探究美丽图案的兴趣,唤起学生制作美丽图案的欲望。
⊙合作交流,探究新知
1.观察、分析图案。
(课件出示教材27页上面的三幅图)
师:观察这三幅图,想一想这三幅图是由哪些简单图形经过怎样的变换得到的?(请学生仔细观察,与同伴说说自己的发现)
2.全班交流。
预设
生1:图①是一个轴对称图形,左右两侧的图形能够完全重合,它是利用轴对称得到的。
生2:图②是由左上角的那个小图案经过向右和向下的逐步平移得到的。
生3:我认为图②也可以看作由左面一排或上面一排的小图案经过平移得到的。
生4:我认为图③可以看作一个左右或上下对称的轴对称图形。
生5:我认为图③运用了轴对称和平移。
师:你们观察得很仔细,我们制作的图案,往往都是由一个基本图形经过轴对称、平移等变换得到的。
设计意图:通过汇报交流,进一步明确图案制作的方法,感受轴对称、平移等方法在图案设计中的实际应用。
3.自主动手,操作实践。
请你在方格纸上继续画下去。(课件出示教材27页中间例题)
师:先观察第二个图形是由第一个图形经过怎样的变换得到的?接下来你想怎样画?
通过观察可以明确:制作这幅图需要用平移的方法,请学生尝试制作,小组展示。
4.激发想象,自主创造。
请你运用轴对称或平移的方法,设计一幅美丽的图案(出示课堂活动卡)。
设计意图:鼓励学生利用不同的方法来制作图案,注重培养学生想象与操作相结合的能力,形成初步的空间观念,获得成功的喜悦。
小学五年级上册数学教学设计 篇4
设计说明
本节课是在学生会画对称轴,深刻理解对称轴两侧的图形能够完全重合的特点的基础上进行教学的。本节课的教学目标有以下两点:
1、合作交流,总结方法。
在教学中充分发挥了学生的主体作用,让学生在合作交流中画出轴对称图形的另一半,并总结出画法,加深印象。
2、培养学生的想象力和空间观念。
教学中让学生先想象已知轴对称图形的另一半及整体分别是什么样的,然后动手操作,充分发挥了学生的想象力和空间观念。
课前准备
教师准备PPT课件
学生准备方格纸
教学过程
创设情境,导入新知
师:还记得照镜子的游戏吗?我们来玩玩照镜子的游戏吧!
两人一组,一名同学做动作,另一名同学与之面对面,扮演镜子里的人,做出方向相反的动作。
引导学生回答出镜子里和镜子外面所形成的轴对称图形的特征:两边对称、大小相等、距离相等、方向相反。
师:这节课我们就根据轴对称图形的这些特征继续学习轴对称的知识。[板书课题:轴对称再认识(二)]
设计意图:以“照镜子游戏”引入,有利于学生利用已有的生活经验进行判断,初步感知对称,为新课的学习做好铺垫。同时,通过游戏活动营造一种活跃的课堂气氛,诱发学生进一步探究新知的热情。
合作交流,学习新知
1、课件出示教材23页上面情境图中的图①。
师:看这幅图,请同学们猜一猜这是什么的'一半。
预设生:它是一座房子的一半。
师:请同学们在头脑中想一想它的另一半是什么样的,整座房子应该是什么样的?
(课件出示教材23页上面情境图中的图②)这是淘气根据轴对称的知识画出的房子,他画得对吗?
2、学生发表自己的看法,全班进行交流。
预设生1:淘气画出的房子对折后不能完全重合,他画得不对。
生2:房子下面最左边一点到对称轴有2格,最右边一点到对称轴也应该有2格,所以他画得不对。
3、补全轴对称图形。
(1)尝试画图。
那么怎样在方格纸上根据轴对称图形已有的一半画出它的另一半呢?请同学们在下图(教材23页中间例题情境图)中试一试,再在小组内说一说自己的方法。
(学生画图、讨论,教师巡视)
(2)展示作品,交流方法。
将学生画好的图形展示出来,集体评议,请画得正确的同学说说自己是怎么画的。
4、师生共同总结方法。
补全一个轴对称图形的方法:
一是找出图形上每条线段的端点;
二是根据对称轴画出每一个端点的对称点;
三是顺次连接这些对称点,得到轴对称图形的另一半。
5、画出已知图形的轴对称图形。(课件出示教材23页下面例题)
(1)独立解决,先与同伴说说自己的画法,再全班交流。
引导学生明确画轴对称图形的方法:找出每条线段的端点,画出所有端点关于对称轴的对称点,再顺次连接这些对称点。
(2)思考:比较第二个和第三个问题,它们的相同点和不同点是什么?
学生观察、讨论后师小结:这两个问题画图的方法相同。不同点在于第二个问题给出的图形是轴对称图形的一半,对称轴在图形上,第三个问题给出的图形是一个完整的图形,对称轴在图形之外。
设计意图:在合作交流中总结出画轴对称图形另一半的方法,再学以致用画已知图形的轴对称图形,巩固所学,培养了学生的空间观念和想象力。
巩固练习
完成教材24页“练一练”1、2题。
课堂总结
轴对称现象在我们生活中的应用非常广泛,给了我们许多美的享受,课后要多观察,并将所学知识应用到实际生活中去。
布置作业
教材24页“练一练”3题。
小学五年级上册数学教学设计 篇5
第5节 除得尽吗?
[教学内容] 除得尽吗?(第15~16页) [教学目标]
1:通过计算蜘蛛和蜗牛每份爬行多少米,发现余数和商的特点,知道什么是循环小数。 2:会用四舍五入法对循环小数取近似值。
[教学重点] 认识循环小数,会用四舍五入法对循环小数取近似值。
[教学难点] 会正确表示循环小数,掌握余数和商的特点以及它们和被除数 、除数之间的关系。 [教学过程]
一、创设情境,激发兴趣
1、师:动物王国要举行一场有意义的爬行比赛,蜘蛛和蜗牛正在奋力的爬行着,请同学们认真观察主题图,从中找出有用的数学信息。学生找数学信息:蜘蛛3分爬行73米,蜗牛11分钟爬行9.4米。
2、师:同学们观察得很仔细,根据这些信息你能提出哪些数学问题? 生1:蜘蛛平均每分钟爬行多少米? 生2:蜗牛平均每分钟爬行多少米? 生3:谁爬得快???
师:下面我们就来研究同学们所提出的.问题。 二、探索新知
1、估一估,谁爬得快一些?
学生可能会汇报的几种情况:蜘蛛只用了3分钟就爬了73米,而蜗牛用了11分钟才爬了9.4米,蜘蛛用了较短的时间爬了较远的路程,而蜗牛用时较长路程却较短,所以蜘蛛爬得快;
根据路程÷时间=速度,可以对比蜗牛与蜘蛛爬行的速度,73÷3大约等于二十几,而9.4÷11还不到1,所以很明显蜘蛛爬得快??
2、师:蜘蛛和蜗牛每分钟爬行的速度到底是多少呢?我们来算一算。
同桌比赛:一人计算蜘蛛的速度,一人计算蜗牛的速度,看谁算得又准又快。
3、学生会发现怎么除也除不尽,小组合作讨论:除得尽吗?余数、商各有什么特点?它们之间有什么联系?
引导学生发现:余数和商重复出现,总也除不尽。因为余数重复出现所以商也会重复出现,继续除下去总也除不尽,商的小数部分有时一个数字重复出现,有时几个数字重复出现。
4、师介绍:像24.333?,0.85454?这样从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫作循环小数。
5、介绍写法。
在国际上有一种通用的表示循环小数的简便方法,那就是在循环小数中,如果是一个数字重复出现,就在这个数字上面点一个点;如果是几个数字重复出现,就在首尾两个数字上面各点一个点。
6、试着将下面的循环小数用这种方法表示出来。 24.333?,0.85454?
7、求循环小数的近似值。
根据需要,可以用四舍五入的方法对循环小数取近似值。 试着将24.333?,0.85454?保留两位小数。 三、巩固练习
1、完成教材第15页计算下面各题,并说一说哪几题的商是循环小数。 2、完成教材第16页练一练第1、2、4题。 [课堂总结]本节课你有什么收获? [板书设计]
除得尽吗?
蜘蛛平均每分钟爬行多少米?
73÷3=24.333??
蜗牛平均每分钟爬行多少米?
9.4÷11=0.85454??
小学五年级上册数学教学设计 篇6
本节课是解方程的第1课时,要求学生通过演示操作理解天平平衡的原理,初步理解方程的解和解方程的含义,会检验一个具体的值是不是方程的解,掌握检验的格式。
1.充分发挥学生的自主能动性,培养学生的自学能力。
《数学课程标准》中指出“教师活动是师生积极参与,交往互动,共同发展的过程”“学生是学习的主体,教师是学习的组织者、引导者、合作者”。本设计首先采用“先试后教,先做后说”的方法,充分发挥学生的主体性和主动性,引导学生从复习天平平衡的原理入手,产生质疑,然后认识“方程的解”和“解方程”这两个概念,明确两者之间的区别与联系,师生共同探讨解方程的过程,培养学生的自主探究能力,探索交流解方程的方法。
2.规范书写格式,养成良好的学习习惯。
数学学习要求学生养成规范书写,认真检验的良好习惯。因此在解方程的过程中,对书写格式进行要求,强化必要的书写规范。通过安排小组对解方程的检验进行交流,明确检验的思路,培养学生良好的学习习惯。
课前准备
教师准备PPT课件天平盒子乒乓球
学生准备练习卡片天平盒子乒乓球
教学过程
⊙创设情境,生成问题
师:现在我们一起玩一个猜球游戏。
(出示一个不透明的盒子,让学生猜里面有几个球;学生可以任意猜)
师:你们能准确说出盒子里有几个球吗?
生:不能!(师引导学生可以用字母x来表示球的个数)
(课件出示教材67页例1情境图)
师:从图上你知道了什么信息?
师:你能用一个方程来表示吗?(板书:x+3=9)
设计意图:通过猜一猜游戏导入新课,为下面的学习创设良好的问题情境,提高学生的学习兴趣。
⊙探索交流,解决问题
1.教学例1。
(1)独立思考:盒子里有几个球?x的值是多少?(由于数据较小,学生能够独立思考出结果)
(2)小组内交流:说说你是怎样想的。
(这里给予学生一定思考和交流的时间,重点让学生说说自己的思考过程)
(3)全班交流:x的值是多少?说说你是怎样想的。
学生可能有以下几种想法:
预设生1:利用加减法的关系计算:9-3=6。
生2:想6+3=9,所以x=6。
生3:把9分成6和3,想x+3=6+3,所以x=6。
生4:在方程两边同时减去3,就得到x=6。
师:同学们的.想法真不少!前3个同学都是利用加减法的关系或数的分成想出了答案。第4个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。
(4)操作验证:师拿出课件演示中的天平实物。(天平左边有一个不透明盒子和3个球,右边有一个相同的透明的盒子,里面有9个球,天平平衡)
师:现在谁来试一试?左右两边同时拿走3个球,天平会怎么样?(学生拭目以待,跃跃欲试)
学生操作演示,天平平衡。
2.指导解方程的书写格式。
师:通过操作我们发现他的想法是对的。以后我们就用等式的性质来求方程中未知数的值。这个演算过程应该如何书写呢?
(让学生与同桌交流,发表自己的看法)
师:从方程的第二行起写一个“解:”,利用等式的性质两边同时减去一个3,为了美观,要注意每步中的等号要对齐。(师边强调边示范)
师:左右两边同时减去的为什么是3,而不是其他数呢?
学生纷纷说出自己的想法。
小学五年级上册数学教学设计 篇7
教学目标:
1、理解事件发生的可能性与不可能性及事件发生的可能性大小,并能对一些简单事件发生的可能性大小进行比较。
2、在游戏、试验、统计、分析、归纳总结中,培养实践能力和在实践中发现问题、解决问题、创造性运用知识的能力。
3、结合学习内容,进行思想教育,体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
在活动中发现、体验0、1、2、8、9、10和这6个和出现的可能性较小;3、4、5、6、7这5个和出现的可能性较大。
教学难点:
理解可能性大小与实践发生不确定性的关系。
教学准备:
课件、色子 、统计表、
教学过程:
一、课前活动
课前观看百事可乐广告视频。
1、教练准备用什么决定哪个队先开球?
2、为什么用硬币开球? 生答:用硬币比较公平(掷出硬币正反两面的可能性是一样的)
3、除了硬币,还有什么公平的方法进行选择?(抛硬币、猜拳、掷色子)
4、我们知道,类似的游戏方式有很多,那么今天我们就从小色子走进掷一掷的'课堂。教师板书课题。掷一掷
二、设置问题,猜想的开始
1、我们玩一个掷色子的游戏,出示课件游戏规则:如果掷出4,则女生赢。如果不是4,则男生赢,大家觉得公平吗?为什么?(色子有6面,4只是其中一种情况,还有1、2、3、5、6占5种情况都是男生赢。)那怎么给规则才公平?
2、现在增加1个色子,我们来玩两个色子得游戏,如果两个色子,点数和可能是几?课件出示游戏规则,如果是2、3、4、10、11、12,则蓝队赢。如果点数和是5、6、7、8、9则红队赢。现在你认为哪个队赢得可能性大?
让同学举手表示自己愿意参加哪个队,并询问原因。
3、现在让我们来实际做一做这个游戏,首先让两个同学上来示范一下。
(两人各掷3次,让学生大声报出点数和和哪队赢)老师随机往1号记录单演示涂格子。
4、同学们,我们掷了六次,能判断哪队赢的可能性大吗?为什么?
(试验次数少,有偶然性。)
5、那么我们全班都来玩。课件出示活动要求及分工。四人轮流掷色子,每人掷5次,副组长负责报点数和,组长在1号记录单上记录。记完的同学把记录单贴到黑板上。
(1)操作实践,学生小组合作。
(2)汇报小组合作交流的结果,汇总全班统计结果到课件的柱形图中。
学生汇报结果,红队赢的次数多。
(3)观察柱形图你能发现什么?总体趋势是中间高两边低。
6、为了使我们的结论更有说服力,继续掷色子。请来我们的神奇小助手,计算机。你想掷多少次?根据学生回答操作课件。
三、发现问题,猜想的深入。
1、实验结果红队获胜的可能性大。与我们猜想的结果不一样,为什么点数和少的红队反而赢了?点数和多的蓝队反而输了呢?结合刚才掷色子的过程思考,为什么掷出中间数字的次数比较多?(生以某一个点数和为例说明)掷出几的可能性?掷出几的可能性最小?为什么?
2、提示同学先思考,为什么掷出的点数和2和12最少。(因为2和12都只有一种情况才能掷出)
3、那掷出其它数都有哪种情况呢?请小组为单位讨论并写一写?完成2号记录单,读一读温馨提示。用自己喜欢的方式写理由。例如:算式、数字等等。列举点数和可能出现的情况。
提醒:点数和为6,不可能有7、8、9等数。
小组汇报展示。
四、解决问题,猜想的验证
1、出示课件,请同学回答掷两个色子,一共可以出现多少种情况。(36种)其中,红队赢的情况有多少种(24种),蓝队赢的可能有多少种(12种)
2、师:现在,大家知道为什么红队赢的可能性大了吗?(红队赢的情况多,可能性大)
五、一锤定音
1、刚才观察柱形图,掷出几的可能性》?现在我来掷两个色子,请大家猜一猜我掷出的点数和是多少?只有一次机会。掷出7的可能性大,就一定掷出7吗?
提问学生,这说明了什么?(说明掷色子有偶然性)
课件出示概率论是一门研究事情发生的可能性的学问,虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
六、全课总结
说一说你有什么收获?
七、拓展延伸
某商店举行一次抽奖活动
游戏规则:两个骰子同时掷出,每掷一次五角钱。得到的数字的和如果是下列几种情况那就可以得到相应的奖品。
1 特等奖:奖品为漫画书一套,价值五十元
2或12 一等奖:奖品为一本笔记本,价值五元
3或11 二等奖:奖品为一支圆珠笔,价值一元
4或10 三等奖:奖品为一支铅笔,价值两角
5或9 鼓励奖:奖品为糖一颗,价值一角
对于这样的抽奖活动你想说什么?商家为什么这样设置奖项呢?你对这样的活动有什么看法?
小学五年级上册数学教学设计 篇8
设计说明:
本节课通过学习分数的大小比较,既能使学生掌握分数大小比较的方法,又能使学生从中学习通分的相关知识。通分也是分数基本性质的应用,它是把几个分母不同的分数化成分母是指定数的同分母分数题目的进一步发展。学习通分的关键是确定公分母及找出原分数的分子、分母需要扩大的倍数。因此,在学习通分时,应先明确通分的思路,再准确地掌握通分的方法。
在教学过程中,引导学生说出各种不同的分数大小比较的方法,使学生充分体会比较策略的多样性。同时利用数形结合的方法,让学生掌握分数大小比较的方法,有效地培养学生的动手操作能力及数学思维,使学生体会到学习数学的乐趣。
课前准备:
教师准备:
PPT课件
教学过程:
⊙创设情境,谈话激趣
引导学生观察教材情境图,明确学习任务。
课件出示学校的平面图,上面标出教学楼、操场和宿舍楼的面积分别占校园面积的,和,并出示教材83页第一个问题。
师:题中要求什么?(求操场和宿舍楼谁的占地面积大)
师:实际上就是求什么?(就是求和谁大)
师:同学们,这节课我们就来探究和谁大谁小,从而求出操场和宿舍楼谁的占地面积大。
设计意图:结合例题,开门见山,揭示课题,激发学生的探究欲望。
⊙实践探究,学习分数大小比较的方法
1、观察和,找出这两个分数的特点。(这两个分数的分子和分母都不相同)
2、质疑:运用以前学习的分数大小比较的方法,能比较出这两个分数的大小吗?(小组讨论后汇报:运用分子相同或分母相同的分数大小比较的方法,都不能比较出这两个分数的大小)
3、探究和哪个分数大。
(1)学生先独立思考,然后在小组内交流、探究,教师巡视指导。
(2)整理各小组的比较方法。
方法一:画图比较法,如下图。
从图中可以看出>。
方法二:先化成分母相同的分数,再进行比较。
因为=,=,>,所以>。
方法三:先化成分子相同的分数,再进行比较。
因为=,>,所以>。
师:有的同学用画图比较法直观、形象地比较出两个异分母分数的大小;有的同学利用分数基本性质把两个异分母分数转化成分子或分母相同的分数,比较出了和的大小。你们都能充分利用已有知识经验解决问题,真棒!
(3)判断操场和宿舍楼谁的占地面积大。
师:通过上面的比较,说一说谁的占地面积大。
(操场的占地面积大)
设计意图:在课堂教学中,学生是学习的主体。为此,教师大胆放手让学生自己探究分母、分子均不相同的分数大小比较的方法,并给予充分的空间和时间让学生经历知识的形成过程,这样不仅可以让学生从中体验到成功的快乐,还能让学生理解和应用新知。
⊙探究通分的意义和方法
1、明确通分的意义。
师:观察方法二,这两个分数是根据什么转化成了分母相同的分数?(分数的基本性质)
师:在利用分数基本性质转化的`过程中,分数的大小变不变?(不变)
师:把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。
2、明确通分的方法。
师:将和进行通分,是以什么作分母?(以和的分母的最小公倍数作分母)
师:试一试,能用7和6的公倍数作分母吗?(学生在练习本上尝试)
学生讨论后得出:可以用两个分数分母的公倍数作分母。
师:你喜欢哪一种通分的方法?为什么?(喜欢用两个分数分母的最小公倍数作分母这种方法,因为这种方法比较简便)
3、试一试。
师:你能用通分的方法比较宿舍楼和教学楼谁的占地面积大吗?
(学生先独立解决,然后全班交流,说一说通分的方法)
预设生1:通分时,可以用6和10的公倍数作分母。
生2:可以用6和10的最小公倍数30作分母,因为=,=,<,所以教学楼的占地面积大。
设计意图:通过实际演练、讨论,经历探究知识的过程,更好地理解和掌握新知。
⊙拓展练习,巩固新知
1、把下面各组分数通分。
和和和
2、甲、乙二人安装同一种机床,甲安装3台用4时,乙安装5台用6时。谁安装得快?
3、在>>中,()里可以填哪些整数?
⊙课堂总结
通过本节课的学习,你有哪些收获?
小学五年级上册数学教学设计 篇9
1、教学目标
1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;
2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
2、学情分析
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
3、重点难点
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4、教学过程
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的'三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛
五、拓展总结。
师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听X先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
小学五年级上册数学教学设计 篇10
一、导引目标,激发兴趣
师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)
二、创设条件,主体参与
1 、创设情境
投影课本例6主题图,教师讲述故事
2 、问题质疑。
师:同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。
预设:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。
师:在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。
3、教学例6。
(1)呈现信息:人的嗅觉细胞约有0、049亿个,狗的嗅觉细胞个数是人的45倍,狗的嗅觉细胞约有多少亿个?(得数保留一位小数。)根据已知条件与所求问题你认为应该怎样列式呢?并说明理由。
(2)教师板书:0、049×45
(3)学生独立完成求积的近似数。
(4)与你的同桌交流你所求得的结果,互相检验。指名学生板书计算过程,由其讲解保留近似数的依据。
全体学生对他的板演过程和解释作出评价。
(5)反馈、评价。引导学生反馈、评价自己的计算过程、结果是否正确,更正自己做错的地方。
(6)师小结:求2、205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是0,0<5,所以要舍去小数部分的0和5,积的近似数约是2、2。由于求得的结果是近似数,所以在横式中要用约等号“≈”。
(7)这里追问如果要求得数保留两位小数,应该是多少呢?并说明理由。
(8)独立完成10页做一做。
(设计意图:通过引导质疑,引出人和狗的嗅觉细胞的有关信息,让学生提出问题、列式计算,自主探索求积的近似数的方法。通过交流研讨、反馈、评价、更正错误,提升学生的认知能力。同时渗透人类与动物和谐相处的思想教育。)
三、组织研究,体验发现
师:同学们,有些应用问题取近似数时,还要联系实际想一想。下面这道题的.答案没有要求保留几位小数,应保留几位小数才合理呢?
出示:小丽家上个月的用水量是16、85吨,每吨水的价格是2、5元。小丽家上个月应付水费多少元?
(1)学生独立列式计算。16、85×2、5=42、125≈42、13(元)
(2)讨论交流:这道题为什么要保留两位小数?
(3)预设:由于是计算钱数,人民币最小的单位是分,应精确到分(百分位),所以将计算结果保留两位小数是合理的。根据“四舍五入”法把百分位后面的数省略,千分位上的数是5,向百分位进1,得到近似数42、13。
数学源于生活,服务于生活。在解决实际问题时我们要注意数学的灵活性。下面我们来交流提纲中的第三个问题:你认为在求积的近似数时需要注意什么?
(设计意图:增强学生应用数学的自觉性,通过总结求积的近似数的方法,促进学生思维的内化,提升迁移、类推能力。)
四、精讲释疑,应用实践
1 、选一选
2、判一判
下面的计算对吗?把错误的改正过来。
(1)9、1×0、5=4、6(得数保留一位小数)
(2)2、34×0、15≈0、36(得数保留两位小数)
先让学生算一算,再判断计算是否正确,然后把错误的改正过来。
3、想一想
4、解决问题我最棒
学生独立完成列式计算,教师巡视,进行个别辅导,集体订正。
(设计意图:本环节设计了选择、判断、改错、解决问题等练习,旨在巩固所学知识,形成技能,发展智力。通过练习,不仅可以加深学生对求积的近似数方法的理解和掌握,还能促进学生思维的发展,提高解决问题的能力。)
五、反思小结,巩固提高
我们的身边处处有数学,相信聪明的你们通过今天的学习一定是受益匪浅的,下面和同学们共同交流一下你的学习收获吧!
小学五年级上册数学教学设计 篇11
设计说明:
本节课通过学习分数的大小比较,既能使学生掌握分数大小比较的方法,又能使学生从中学习通分的相关知识。通分也是分数基本性质的应用,它是把几个分母不同的分数化成分母是指定数的同分母分数题目的进一步发展。学习通分的关键是确定公分母及找出原分数的分子、分母需要扩大的倍数。因此,在学习通分时,应先明确通分的思路,再准确地掌握通分的方法。
在教学过程中,引导学生说出各种不同的分数大小比较的方法,使学生充分体会比较策略的多样性。同时利用数形结合的方法,让学生掌握分数大小比较的方法,有效地培养学生的动手操作能力及数学思维,使学生体会到学习数学的乐趣。
课前准备:
教师准备:
PPT课件
教学过程:
创设情境,谈话激趣
引导学生观察教材情境图,明确学习任务。
课件出示学校的平面图,上面标出教学楼、操场和宿舍楼的面积分别占校园面积的,和,并出示教材83页第一个问题。
师:题中要求什么?(求操场和宿舍楼谁的占地面积大)
师:实际上就是求什么?(就是求和谁大)
师:同学们,这节课我们就来探究和谁大谁小,从而求出操场和宿舍楼谁的占地面积大。
设计意图:结合例题,开门见山,揭示课题,激发学生的探究欲望。
实践探究,学习分数大小比较的方法
1、观察和,找出这两个分数的特点。(这两个分数的分子和分母都不相同)
2、质疑:运用以前学习的分数大小比较的方法,能比较出这两个分数的大小吗?(小组讨论后汇报:运用分子相同或分母相同的分数大小比较的方法,都不能比较出这两个分数的大小)
3、探究和哪个分数大。
(1)学生先独立思考,然后在小组内交流、探究,教师巡视指导。
(2)整理各小组的比较方法。
方法一:画图比较法,如下图。
从图中可以看出>。
方法二:先化成分母相同的分数,再进行比较。
因为=,=,>,所以>。
方法三:先化成分子相同的分数,再进行比较。
因为=,>,所以>。
师:有的同学用画图比较法直观、形象地比较出两个异分母分数的大小;有的同学利用分数基本性质把两个异分母分数转化成分子或分母相同的分数,比较出了和的大小。你们都能充分利用已有知识经验解决问题,真棒!
(3)判断操场和宿舍楼谁的占地面积大。
师:通过上面的比较,说一说谁的占地面积大。
(操场的占地面积大)
设计意图:在课堂教学中,学生是学习的主体。为此,教师大胆放手让学生自己探究分母、分子均不相同的分数大小比较的方法,并给予充分的空间和时间让学生经历知识的形成过程,这样不仅可以让学生从中体验到成功的快乐,还能让学生理解和应用新知。
探究通分的意义和方法
1、明确通分的意义。
师:观察方法二,这两个分数是根据什么转化成了分母相同的分数?(分数的基本性质)
师:在利用分数基本性质转化的`过程中,分数的大小变不变?(不变)
师:把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。
2、明确通分的方法。
师:将和进行通分,是以什么作分母?(以和的分母的最小公倍数作分母)
师:试一试,能用7和6的公倍数作分母吗?(学生在练习本上尝试)
学生讨论后得出:可以用两个分数分母的公倍数作分母。
师:你喜欢哪一种通分的方法?为什么?(喜欢用两个分数分母的最小公倍数作分母这种方法,因为这种方法比较简便)
3、试一试。
师:你能用通分的方法比较宿舍楼和教学楼谁的占地面积大吗?
(学生先独立解决,然后全班交流,说一说通分的方法)
预设生1:通分时,可以用6和10的公倍数作分母。
生2:可以用6和10的最小公倍数30作分母,因为=,=,<,所以教学楼的占地面积大。
设计意图:通过实际演练、讨论,经历探究知识的过程,更好地理解和掌握新知。
拓展练习,巩固新知
1、把下面各组分数通分。
和和和
2、甲、乙二人安装同一种机床,甲安装3台用4时,乙安装5台用6时。谁安装得快?
3、在>>中,()里可以填哪些整数?
课堂总结
通过本节课的学习,你有哪些收获?
小学五年级上册数学教学设计 篇12
教学目标:
1、理解事件发生的可能性与不可能性及事件发生的可能性大小,并能对一些简单事件发生的可能性大小进行比较。
2、在游戏、试验、统计、分析、归纳总结中,培养实践能力和在实践中发现问题、解决问题、创造性运用知识的能力。
3、结合学习内容,进行思想教育,体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
在活动中发现、体验0、1、2、8、9、10和这6个和出现的可能性较小;3、4、5、6、7这5个和出现的可能性较大。
教学难点:
理解可能性大小与实践发生不确定性的关系。
教学准备:
课件、色子、统计表、
教学过程:
一、课前活动
课前观看百事可乐广告视频。
1、教练准备用什么决定哪个队先开球?
2、为什么用硬币开球?生答:用硬币比较公平(掷出硬币正反两面的可能性是一样的)
3、除了硬币,还有什么公平的方法进行选择?(抛硬币、猜拳、掷色子)
4、我们知道,类似的游戏方式有很多,那么今天我们就从小色子走进掷一掷的课堂。教师板书课题。掷一掷
二、设置问题,猜想的开始
1、我们玩一个掷色子的游戏,出示课件游戏规则:如果掷出4,则女生赢。如果不是4,则男生赢,大家觉得公平吗?为什么?(色子有6面,4只是其中一种情况,还有1、2、3、5、6占5种情况都是男生赢。)那怎么给规则才公平?
2、现在增加1个色子,我们来玩两个色子得游戏,如果两个色子,点数和可能是几?课件出示游戏规则,如果是2、3、4、10、11、12,则蓝队赢。如果点数和是5、6、7、8、9则红队赢。现在你认为哪个队赢得可能性大?
让同学举手表示自己愿意参加哪个队,并询问原因。
3、现在让我们来实际做一做这个游戏,首先让两个同学上来示范一下。
(两人各掷3次,让学生大声报出点数和和哪队赢)老师随机往1号记录单演示涂格子。
4、同学们,我们掷了六次,能判断哪队赢的可能性大吗?为什么?
(试验次数少,有偶然性。)
5、那么我们全班都来玩。课件出示活动要求及分工。四人轮流掷色子,每人掷5次,副组长负责报点数和,组长在1号记录单上记录。记完的同学把记录单贴到黑板上。
(1)操作实践,学生小组合作。
(2)汇报小组合作交流的结果,汇总全班统计结果到课件的柱形图中。
学生汇报结果,红队赢的次数多。
(3)观察柱形图你能发现什么?总体趋势是中间高两边低。
6、为了使我们的结论更有说服力,继续掷色子。请来我们的'神奇小助手,计算机。你想掷多少次?根据学生回答操作课件。
三、发现问题,猜想的深入。
1、实验结果红队获胜的可能性大。与我们猜想的结果不一样,为什么点数和少的红队反而赢了?点数和多的蓝队反而输了呢?结合刚才掷色子的过程思考,为什么掷出中间数字的次数比较多?(生以某一个点数和为例说明)掷出几的可能性?掷出几的可能性最小?为什么?
2、提示同学先思考,为什么掷出的点数和2和12最少。(因为2和12都只有一种情况才能掷出)
3、那掷出其它数都有哪种情况呢?请小组为单位讨论并写一写?完成2号记录单,读一读温馨提示。用自己喜欢的方式写理由。例如:算式、数字等等。列举点数和可能出现的情况。
提醒:点数和为6,不可能有7、8、9等数。
小组汇报展示。
四、解决问题,猜想的验证
1、出示课件,请同学回答掷两个色子,一共可以出现多少种情况。(36种)其中,红队赢的情况有多少种(24种),蓝队赢的可能有多少种(12种)
2、师:现在,大家知道为什么红队赢的可能性大了吗?(红队赢的情况多,可能性大)
五、一锤定音
1、刚才观察柱形图,掷出几的可能性》?现在我来掷两个色子,请大家猜一猜我掷出的点数和是多少?只有一次机会。掷出7的可能性大,就一定掷出7吗?
提问学生,这说明了什么?(说明掷色子有偶然性)
课件出示概率论是一门研究事情发生的可能性的学问,虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
六、全课总结
说一说你有什么收获?
七、拓展延伸
某商店举行一次抽奖活动
游戏规则:两个骰子同时掷出,每掷一次五角钱。得到的数字的和如果是下列几种情况那就可以得到相应的奖品。
1特等奖:奖品为漫画书一套,价值五十元
2或12一等奖:奖品为一本笔记本,价值五元
3或11二等奖:奖品为一支圆珠笔,价值一元
4或10三等奖:奖品为一支铅笔,价值两角
5或9鼓励奖:奖品为糖一颗,价值一角
对于这样的抽奖活动你想说什么?商家为什么这样设置奖项呢?你对这样的活动有什么看法?
