圆的面积教学反思

知远网

2025-10-13教案

知远网整理的圆的面积教学反思(精选14篇),希望能帮助到大家,请阅读参考。

圆的面积教学反思 篇1

“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我异常注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:

一、以旧引新,渗透“转化”思想

在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。

二、大胆猜测,激发探究

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

三、动手剪拼,体验“化曲为直”

学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越

接近图形平行四边形或长方形。再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。

四、演示操作,感受知识的构成

经过观察,比较、分析,发现圆的面积、周长、半径和拼成的'近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的构成。

五、分层练习,体验运用价值

结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,注重每个练习的指导侧重点。

但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。

圆的面积教学反思(通用5篇)

身为一名刚到岗的人民教师,教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,那么应当如何写教学反思呢?以下是小编收集整理的圆的面积教学反思(精选5篇),欢迎阅读,希望大家能够喜欢。

圆的面积教学反思 篇2

“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力, 把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:

1、教学中我鼓励学生大胆猜测圆的面积

发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。

2、体现学生的主体性:

在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题 解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的.明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。

3、渗透了学习评价:

在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如??”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”??学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心.

4、不足之处:

我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。

圆的面积教学反思 篇3

圆是小学阶段最后一个平面图形,学生从学习长方形的认识,到学习圆的认识,从直线到曲线的学习,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了迁移转化思想。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。所以在这节课中,我是这样设计教案:

一、复习铺垫,导入新课

在教学伊始,先引导学生回忆以前学过哪些平面图形的面积,平行四边形和三角形的`面积公式是怎样推导出来的,在复习的同时渗透“转化”推导方法,圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导出来呢?引出新课的学习《圆的面积》。

二、指导操作,推导圆的面积计算公式

首先理解圆的面积的意义:引导学生回忆面积指的是什么?长方形的面积指的是什么?圆的面积指的又是什么?学生通过回忆面积的意义,能够进一步加深对圆的面积的理解,也为接下来的动手实践“圆的面积”做铺垫。接下来指导操作,推导圆的面积计算公式:怎样求圆的面积?学生先独立思考,在学生已有自己的想法的基础上,让学生在小组内讨论自己的想法,在交流中探讨出求圆的面积的方法,利用转化法如何把圆转化成我们以前学过的平面图形,接下来让学生拿出学具自己动手实践,然后给学生留出充分的时间来思考,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识,接下来再让学生动手实践改进自己的不足,同时尝试着推导出圆的面积公式,为了加深对圆面积公式的理解,多让学生上台展示自己的推导过程,这样不仅加深对知识的理解,也能够锻炼孩子们的语言表达能力,最后在师生共同推导出圆的面积公式。

三、巩固练习,拓展应用

在巩固练习中我本着基础、综合、拓展三个层次,首先题型是基础性的面向全体学生,来巩固刚刚学习的新知识,在全体同学掌握的基础上,进行综合和拓展,这样既能面向全体学生,也能够照顾到学习优秀的学生,练习效果不错。

不足之处:

1、课堂纪律有点乱,在探究环节学生讨论的有点激烈,直接导致了课堂纪律乱

2、课堂时间没有把握好,下课铃声响起,最后几个练习题还没有处理完

3、教师提的问题有时有点大,让学生不知如何回答

在接下来的教学中,要改正自己的不足之处,提高自身的业务素质,再努力!

圆的面积教学反思 篇4

学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。

总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,。

概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。

第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。

学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的`求出圆环的面积。

但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

圆的面积教学反思 篇5

本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。

一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学

如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。

二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识

例如通过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的长方形、平行四边形时,课件提供的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅概括归纳出面积计算方法,感悟到转化的思想在几何学习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。

教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的'面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。

圆的面积教学反思 篇6

圆的面积是人教版六年级数学教学的重要内容,在学习圆的周长时,学生已经有了“化曲为直”的初步思想与体验。虽然学生对极限思想理解不够具体。但不管曲线化直线是否够直,其实并不影响近似长方形的长与圆周长的关系。理解了这点,学生通过“剪拼议”在老师引导和学生引导下,能够接受长方形长等于圆周长一半,宽等于圆的半径,长方形面积等于长乘宽,所以,圆的面积等于π乘半径的平方。

虽然解决了教学重难点,完成了教学目标。但从一个例题,学生仅仅了解了转化思想。但远远达不到对转化思想的理解运用。如何利用好课本知识,学习致用。在备课时,我刻意增加了把圆拼成近似三角形,近似梯形,课堂上,在把圆拼成近似长方形,推导出圆面积公式,完成教学任务后,我提出既然可以运用转化思想,化曲为直。把没学过的知识点转化成学过的知识点,利用已有知识解决。那么我们能不能转化成其他已学过的'图形呢?学生气氛活跃,经过拼图,很快拼成了近似三角形,近似梯形。但剪拼以后,应该怎么办?学生普遍陷入困惑,没有思路。这时,我注意开始启发学生。我们转化图形以后,怎样建立新旧图形之间的联系,需要从基本条件开始,那么,需要怎么找新旧图形之间的联系,从哪些条件着手。学生受到启发,很快从底,高,与三角形的联系推导出了圆面积公式。不仅如此,学生还趁热打铁,从长度,长,宽,高,周长,到面积推导出了各个量之间的联系。学生兴奋地说,知道了以后转化图形以后,怎么找条件之间的联系了,也知道找的顺序,从长度到面积,从面积到体积。新旧图形之间的联系应该是方方面面的,

一节课,用心探究,用心准备,不但能解决知识目标,更能拓展学生能力。从鱼到渔,条条大路通罗马,全面提高学生数学素养与探究能力。

圆的面积教学反思 篇7

在课堂教学中培养学生的创新技能必须依靠微妙的熏陶方法,让学生在不断学习的过程中感受到创新思维的技能。以下是我对本课教学的思考:

i、以旧促新

知道圆的面积后,自然会想到如何计算圆的面积?公式是什么?如何求和推导圆的面积公式?这些都是摆在学生面前的一系列实际问题。在这个时候,学生们可能会不知所措或做出惊人的发现。在任何情况下,鼓励学生大胆猜测、想象并说出他们预设的计划?如何计算圆的面积?在课堂上,根据学生反应的随机处理,估计大多数学生不会得到分数。即使他们理解,他们也可以让每个人体验发现公式的方法。此时,由于学生年龄较小,无法与以前的平面图形建立联系,需要老师的指导。他们以前学过什么平面图形?让学生快速回忆,调动原有的知识储备,为新知识的“再创造”做好准备。

II、根据发现更改图形

,将圆分成几个相等的部分,分组合作,用手放好,并将圆转换为学习的平面图形。为了研究学生的实际情况,计算机首先演示了2个、4个和8个相等的圆,这些圆分别组装成一个近似的平行四边形,以便学生观察它越来越像什么形状?你为什么说“喜欢”平行四边形?让学生表达自己的观点,充分肯定自己的观察结果。如果8个相等的部分有点像,那么16个相等的部分呢?计算机继续演示一个圆的16个相等部分,并将它们进行比较。哪个更像平行四边形?学生们会发现16个相等的部分比8个相等的部分更相似!因为它的底波波动相对较小且接近直线,所以引导学生闭上眼睛。如果它被分成32个相等的部分,会发生什么?64等分&Hellip&Hellip让学生展开想象的翅膀,使等分越多,就越像和接近平行四边形,最后它会变成一个长方形。完成另一个重要数学思想的渗透极限思想。

III、公式推导

学生可以计算矩形的'面积:S=AB引导学生观察矩形和圆的长度和宽度之间的关系:找到长度=&PIR,宽度=R,矩形的面积=圆的面积,从而推导出s=AB=&pir2

IV、注重合作

注重小组学习,促进合作交流。实践证明,小组讨论有利于调动全体学生的积极性,有利于师生之间和学生之间的信息交流,有利于不同思维的碰撞。循环推导过程的创新更适合采用合作探究的学习方法。在本课程的教学中,教师从学生手中的材料入手,让学生摇摆,结合自己的创新说点什么,通过小组合作开展探究活动,不仅鼓励学生自主尝试,同时也重视学生之间的合作与互助,为学生提供多方位交流的机会,提高学生的合作学习意识。学生在学习中相互交流,提高了观察、分析和解决问题的能力。

v、培养创新

将传统的知识转移过程转变为“问题解决”序列的探究过程。在教学过程中,创设一些学生需要开辟新途径解决的问题情境,有利于提高学生的创新能力。

VI、 演练设计

对于巩固演练,遵循由浅到深、由易到难、循序渐进的原则。使学生在理解概念的基础上正确掌握公式,并能运用所学知识解决实际问题。

VII、存在的问题

在教学过程中,由于教学量的增加,学生也应该花更多的时间思考和推导圆的面积公式。详细设计应仔细安排。这是教学需要改进的地方,也是今后努力的方向。

圆的面积教学反思 篇8

圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

一、动手操作,推导圆的面积公式

学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。

二、多媒体辅助教学,教学内容立体呈现

通过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。

三、分层练习,体验运用价值

结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的`实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学

圆的面积教学反思 篇9

学以致用,数学学习更是如此,把所学的知识运用到实际生活中,是数学学习的最终目的。本节课中,我注重紧密联系学生的实际经验,创设了让学生观察生活环境中的情境,向学生展示了生活中的圆形,从中提出数学问题,并加以解决,从而顺利地引出新课,最后又让学生计算出最大面积。通过联系实际,计算面积,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。

但是,这节课还存在许多不足之处,需要在以后的教学中改进。

一、时间安排不恰当

如:复习设计方式不够合理,教师的演示过程加上学生的叙述占用了练习的宝贵时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

二、课堂评价需改进

在课堂评价方面还需加以改进。评价对培养学生的.情感和态度有着十分重要的作用。师生共同全方位参与的课堂才会产生心理共鸣,充满激情,充满活力。因为学生很在乎别人,尤其是同伴对自己的肯定。本节课中我感觉在这方面稍微欠缺了一点点。

三、设计练习应有层次

练习时,我只设计了基础题和提高题。基础练习巩固计算公式的运用,强调规范的书写格式;提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。但是我觉得应再设计综合题,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点,这样更能提高学生的数学学习能力。

圆的面积教学反思 篇10

我执教的内容是“圆的认识”,以前虽然学生在生活中接触过圆,但对于建立正确的圆的概念以及掌握圆的特点和性质还是比较困难的,小学数学概念的教学过程,是一个复杂的思维过程,又是一个发展学生思维能力的过程。学生正处在逻辑抽象思维形成的阶段上,要使他们全面、正确的理解数学概念,就应该灵活采取各种教学方法,培养学生的思维能力。下面,我就说一说这节课的具体方法:

数学来自现实生活,学生生活周围处处有数学,结合生活实际引入概念是一个有效的`途径。因此,我从生活中引入圆,通过看一看、想一想,抽象出圆的表象,培养了学生的抽象思维能力。

在本节课中,我给学生提供自主探索的机会,引导学生开展合作型的探究性活动,让学生在观察、实验、讨论、交流、合作学习中,理解新知识。例如,在教学中,同学们用各种学具创造圆的过程,培养了学生的发散性思维能力。

学生学习数学的过程就是自己“做”数学的过程,因此,要将学生形成数学概念的过程转变为在操作中思考和分析的过程。例如,在教学中,学生通过画一画、量一量、折一折、观察等一系列活动中,动手操作,积极思考,主动探索,经历了知识形成的过程,培养了学生综合性思维能力。

总之,这节课,我通过多种方法培养学生各种思维能力,但也存在着不足,比如,在课堂上还不够放手,如果能够给孩子更充足的时间去创造、探索、交流、合作、发现,可能孩子们的收获会更多。

圆的面积教学反思 篇11

《圆的面积》中的圆是小学阶段最终认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的本事。

课刚开始,我与学生们一齐复习了前面学习的圆的周长公式,为下头计算圆的面积公式做好了铺垫。先让学生各自述说自我对于圆的面积的一些认识,再提出一个难题:你能想办法求出圆的面积么?应对这一问题,大部分学生一筹莫展。个别同学经过预习,对本课所采用的方法有了必须的了解,表达了利用剪一剪和拼一拼的方法进行研究的想法。在这时,提出以前有没有这样剪一剪拼一拼的方法?学生回忆起以前学平行四边形面积时也是沿平行四边形的高剪下一三角形,再经过平移补到缺口的方法将平行四边形转化为长方形。从中得出了转化是一种很巧妙的方法,能够在动手操作的过程中用到。然后同学们小组合作,动手操作,孩子们经过操作后,发现将圆等份后能够将圆转化成一个近似的平行四边形。如果将圆等分的等份越多,那转化的图形就越接近的平行四边形。能够根据长方形或平行四边形的面积计算公式推导出圆的面积计算公式。根据学生的回答,利用课件的`演示,直观的向他们展示了转化过程以及利用极限的方法变成。

长方形后其长、宽与圆的周长、半径之间的关系。最终在学生们大胆猜测,积极求证之下推导出了圆的面积计算公式。经过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。

为了本节课的教学,自我经过了较长时间的精心准备,所以,从整个教学设计来看还做得较为可行,重点把握的比较准确。可是在具体实施教学时还是存在着几点不足:

1、课堂语言评价存在着较大的不足。平时比较不怎样注意这方面的培养,导致课堂气氛没有很好的被调动起来。所以,期望能经过平时课堂教学的磨练逐步改善这个缺点。

2、圆的面积公式推导及实践操作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还可是深入。如果当时在引导上能及时研究到这一点,并给予更具技巧性的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。

这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,期望能在今后的教学中取长补短,积累经验,取得更大的提高。

圆的面积教学反思 篇12

《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生用学过的方法来实现转化和推导。在教学本课时,我注意了这样几点:

1、密切联系学生的生活实际。剪纸是学生所熟悉的,借助这一操作,让学生初步地感知到圆和直线型图形之间的转化,所以在后面估计圆的面积大小时,学生就很自然地想到了两种估计的方法。其次,借助教材中生活场景,使学生理解了推导圆面积公式的`必要性,激发了学生的求知欲望,调动了学生解决问题的积极性,使全体学生积极参与到数学学习活动中。

2、引导学生观察发现新旧知识的联系,理解发现“化曲为直”。当学生第一次面对求圆这种曲线图形的面积时,老师不是提供现成的转化方法,而是让学生去思考,为什么数圆的面积比数正方形的面积要难,究竟难在什么地方?有什么办法可以解决?这些问题需要学生主动去回顾圆的特征、主动探究学习方法。

3、充分发挥多媒体课件、及圆面积演示器的作用。在教学中,教师通过计算机演示很好地诠释了化曲为直中“无限接近“的极限思想;在推导圆的面积公式时,充分运用圆面积演示器,先展示四种转化的情况,然后分小组进行观察,比较转化前后图形间的联系,最后发现无论转化后的图形是长方形还是平行四边形,无论是否很接近长方形或平行四边形,最后推导出来的面积计算公式是一样的,也有力地说明圆的面积计算公式的正确性。

几何图形课的教学,就是要充分利用已有知识,学会迁移。要充分发挥直观教学的作用,帮助学生由感性向理性、由具体向抽象转化的思维过程。更要发挥现代化教学手段,使学生能在较短的时间内接触较多的信息,完成知识的建构。

圆的面积教学反思 篇13

《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

一.明确概念:

圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生务必明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。透过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

二.以旧促新

明确了概念,认识圆的面积之后,自然是想到该如何计算图的'面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是透过长方形推导的,三角形面积公式是透过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是透过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

三.转变图形

根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。思考学生的实际状况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。

四.公式推导

平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前。”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,透过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维潜力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

圆的面积教学反思 篇14

圆的面积是学生在初步认识了圆,学习了圆的周长,以及在认识了几种平面图形面积的基础上进行教学的。圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

一、情境的引入,激发兴趣。

课的开始,我运用两只羊争吵的情境(一只在长方形羊圈里,另一只系在木桩上),比较长方形和圆的面积,既复习了长方形的面积,也激发了学生探究圆的面积的兴趣。

二、探究的方法,孰优孰劣。

在探究圆的面积的这一-环节,教材上,先用数方格的方法得出圆的面积是多少,并让学生填好表格,以期发现圆的面积与半径的关系。这部分内容的教学旨在激活学生己有的经验,数出圆的面积,教材表格中却给出了正方形的面积,以及圆的面积大约是正方形面积的几倍。我认为这有些强拉着学生走,并不真正出于学生内在的探究需求。因此,在课的开始,我把这部分内容暂且放着。

在五年级上册,学生们已经学过用数方格的方法来探究像手掌、树叶等曲线图形的面积;还探索过平行四边形、三角形、梯形的面积。根据这些已有的经验,学生自己可以提出探究圆的面积的两种方法。在发现用数方格的方法的局限性后,重点研究如何用转化的方法探究圆的面积。

三、探究的过程,自主操作。

这部分内容的教学,考虑到了学生的现实认知水平,先让学生在自主探索、实践操作、合作交流中找到转化的方法,在此基础上,借助课件,使学生合乎情理地认识到:平均分的份数越多,就越接近长方形,有机渗透了极限的思想,体会了“化圆为方、化曲为直”的转化过程。接着让学生根据提示探索圆的面积的计算公式。

这节课也存在以下不足:

一、转化结果单一

课堂上学生将圆转化为已经学过的平面图形结果单一,只出现了平行四边形。虽然在课的最后以课件的形式出示了三角形和梯形,但这并不能代替学生自己的发现和思考。我想原因有三个:一是我在课上提示了剪,强调了拼,禁锢了学生的思维,使学生想不到直间转化成求多个三角形面积和的方法;而怎么剪对学生来说就是有难度的.;二是拼成梯形和三角形是有一定的条件的,要平均分成一定的份数才有可能拼成,三是课上留给学生的时间有限,学生在这么短的时间里完成剪、拼不同的图形是很难的,而留给学生更多的时间又是不现实的。

二、缺少思维的碰撞

我觉得操作探究部分,我有点操之过急。尤其是推导圆的面积公式部分,更多的是通过自己的课件操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,多进行生生、师生之间的有效交流,让使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。

我个人认为这一章是整册书教学的难点,学生在作业和考试当中反应出了如下一些问题:

1、搞不清楚一个圆中直径和半径的关系,主要体现在看到圆的半径或者直径,不能很快求出该圆的直径或者半径。此外,看到圆的直径或者半径,不能很好的算出圆的周长、面积。

2、知道一个圆的周长,不能很好的求出圆的直径或者半径。对计算一个小数除以3。14,感觉有点束手无策的味道。

3、不能清楚的求出圆的周长或者面积,往往答非所问,要求面积,他要去算周长,要求周长,他又算成了面积。单位也往往把面积单位和长度单位搞混淆,这也算是部分学生出错的原因。

4、对于学生来说,最难的是组合图形面积、周长、阴影部分的。相关计算,还有半圆有关的计算都是学生在计算中经常忽略的问题,总是按一个圆的来计算。计算当中,很多学生对半径的平方也是常常出错,对一个数和3。14的乘积,总是会把小数点搞错。

大家都在看