知远网整理的六年级数学教学设计(精选14篇),希望能帮助到大家,请阅读参考。
六年级数学教学设计 篇1
课题:按比例分配
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重点、难点:理解按比例分配实际问题的意义,掌握解题的关键。
对策:
引导学生分析明晰题意。
教学预案:
一、 基本训练:
1、根据信息你想到了什么?
六2班男生与女生的比是4:5
(1) 男生是4份,女生是5份,一共是9份;
(2) 男生相当于女生的4/5,女生相当于男生的5/4
(3) 男生占全班人数的4/9,女生占全班人数的5/9
2、根据已知条件回答问题:(第76页上第6题)
二、自主探究:
1、 出示例题5题目和方格图,让学生独立完成,先算一算,再涂一涂。
2、 组织交流:你是怎样解决这个问题的?你是怎样想的?
生1:根据红色与黄色方格数的比是3:2,可以想到:把30个方格平均分成5份,3份涂红色,黄色涂2份。
列成算式是:
30(3+2)=305=6(格) 每一份有几格
因为红色有这样的3份,所以红色:63=18(格)
因为黄色用这样的2份,所以黄色:62=12(格)
教师追问:怎样验证这个答案是正确的?
生2:根据红色与黄色方格数的比是3:2,可以想到:红色方格占总格数的3/5,黄色方格占总格数的2/5
列成算式:
红色:303/(3+2)=303/5=18(格)
黄色:302/(3+2)=302/5=12(格)
3、你是用哪种方法解决的?这两种方法你都理解吗?和你的同桌再说说解题思路。
三、理解体会:
1、出示第75页上的试一试:
(1) 齐读要求,提问:现在将这些方格按怎样的比来分配?说说1:2:3是什么意思?
(2) 独立完成,组织交流。
2、你觉得今天的问题已知什么?(已知总数和分配的比,将总数按一定比分割成几部分)要求的是什么?(将求按这样分配后的各部分的结果分别是多少?)
像这样,将总数按一定的比进行分割成几部分,我们称之为按比例分配问题。(出示课题:按比例分配问题。)
3、在解决时我们关键要理解是按怎样的比来分配。解答时可以怎样想?(转化成整数问题,先求出一份是多少?再求出这样的几份是多少?)还可以怎样想?(先转化成要求的量分别是总数的几比几,再按分数乘法问题进行计算)
四、巩固提高
1、练一练第1题:学生独立完成,指名板演,组织交流。
2、练一练第2题:提问:在这里将180块巧克力怎么分配?你从那句话中看出来的?帮助学生理解把180按35:31:24进行分配。
3、练习十四第2题:读题理解要求,引导学生看图估计出已用去的时间与剩余时间的比,并说出是怎样想的。(把图中的白色部分平均分成两份,可以看出已用去的时间与剩下时间的比大约是1:2。)那么这题实质是求什么?(将90分钟时间按1:2进行分配,求比赛剩下的时间是多少分?)
4、练习十四第4题:
先让学生独立思考一会儿,再组织交流:这题符合今天的特征吗?那要分配的总数是什么?(引导学生注意隐含条件:三角形的内角和是180度)现在你会解决吗?
5、补充:
出示一条线段,要求按1:5将线段分成两部分。
学生独立操作完成,组织交流。
五、全课总结:通过今天的学习,你有什么收获?
转化解答按比例分配问题的策略。
按比例分配是把一个数量按照一定的比进行分配。解决一些常见的、较简单的按比例分配问题,能在实际应用中加强比的概念。
按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。兔子卡通把比看作份数,小鸟卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(305=6)刚好涂完。所以红色方格一共有3053=18(格),黄色方格一共有3052=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的2/5,所以两种颜色的格数分别用303/5和302/5计算。
教学例题时要沟通两种解法的联系,要提倡小鸟卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题,引导学生用分数乘法来解决问题。
试一试里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。
练一练第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。教师要重点帮助学生理解把180块巧克力按班级人数的比分给三个班就是把180按35:31:24进行分配。这道题还是解答练习十四第2、8题的平台。
课后反思:
本课时的教学内容是引导学生应用比的意义和基本性质解答有关按比例分配的实际问题。由于在学习比的意义时学生已能根据两个数量间的比用分数来表述两者的关系,所以在教学例题5时,我给学生充分独立思考和解答的'时间,让学生自主进行探索。在交流解法时,很多学生思维活跃,发言积极,想出了很多种解法。这时我再及时引导学生将这些方法进行总结,并突出了用分数乘法来解题的这种方法。在新知的学习中,我还请学生思考如何进行检验,学生们联系题中的信息想到了可以将求出的两个数量组成比进行化简,再将这两个数量的和求出来,与已知信息进行比较进行检验。
整节数学课上,鼓励学生独立思考,主动探索,充分发挥学生学习主动性,课堂气氛活跃、和谐,提高了课堂教学效率的有效性。
课前思考:
按比例分配是一种分配思想,在生活生产中是很常见的。已学过的平均分配其实是按比例分配的一种特例。教学中要通过解决实际生活中的问题,让学生了解在生产生活中要把一个量按照一定的比例来分配,从而感悟按比例存在的价值。
学生在平时有一定的体验,所以在新知形成过程中,首先让学生根据原有的知识尝试解决问题,变被动接受学习为主动研究性学习。其次,鼓励解决问题策略的多样化,并充分展示学生的思考过程。在解决问题的过程中使学生体会到同一问题可以从不同角度去思考,得到不同解决问题的方法,这有利于学生多向思维的发展。
课后反思:
在练习十四第4题后,进行相应的练习后,出示一道练习题:一个三角形的三个内角度数的比是2∶3∶4,这个三角形是什么三角形?
生1:是锐角三角形,因为通过计算,我知道三个内角分别是40,60,80所以是锐角三角形。
师:你讲得非常好。
生2:不要把三个角都求出来,只要求一个最大的角就行了:1804/9=80,所以是锐角三角形。
师:你分析问题的方式很独特,分析得很有道理。
生3:其实一个角也不用求,就知道它是锐角三角形,因为三个角加起来是9份,而最大的角只占4份,没有达到9份的一半,也就是它的度数没有达到180的一半,所以是锐角三角形。
说句实在话,当时我都有点听蒙了。
师:哪个同学能把的想法重说一遍?
生4:
师:那如果三个内角的度数比是2∶3∶5呢?或者是2∶3∶7呢?又各是什么三角形呢?
反思中的反思:
学生是可畏的,更是可敬的。在练习阶段,学生能运用所学的知识和原有的经验解决问题,在宽松、和谐、民主的氛围中,学生思维是如此的活跃,方法是如此的灵活,体现了思维的价值,很好地诠释了尝试从不同角度寻求解决问题的方法,并能有效地解决问题的新课程精神。
课后反思:
这课内容按照知识点来划分属于按比例分配内容,解决这类问题的策略有两个:一是将比转化成份数来理解,先求出每一份是多少;二是将比转化成分数,然后按照分数应用题来解答。这两种方法共同的数学思想方法是转化。
在课堂教学中,学生能结合具体图例,自己想到这两种解答方法,在师生的进一步对话中,体会到用这两种方法解答时,都得渗透对应思想。
六年级数学教学设计 篇2
一、教学目标
通过学生的自主探索,理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。让学生积极主动地探索,培养学生获取知识、解决问题的能力。增强学生研究探时的意识,追求创新的精神:
二、教学资源
1.实物投影仪—台。
2.每小组《验证表》一张。验证表举例结论
3.比,除法,分数关系表:
比 前项相当于 后项相当于 比值相当于除法分数
4.卡片若干张。
(1)商不变的规律;(2)分数的基本性质;
(3)比的基本性质。
三、教学实施方案
教学内容:苏教版义教课标教科书数学六年级(上册)70—71页。教学形式:小组合作,自主探究。
教学流程:创没情境——验证猜想——展示交流——意义构建——巩固拓展。
评价方法:目标评价、师生评价、组际交流评价。
教学重点:理解、掌握比的基本性质。
教学难点:理解比的基本性质中“0除外”的道理。
教学准备:实物投影仪、验证表,卡片等。
四、教学过程
1.创设情境,引发猜想。
目标:
(1)复习旧知,为学生发现问题、产生猜想奠定基础。
(2)启发学生大胆猜测,提出自己的假设。
过程:
(1)复习比和除法、分数的关系,通过填写比和除法、分数的关系表,让学生发现比、除法、分数有很多相似之处?
(2)复习商不变的规律和分数的基本性质。
通过复习,引导学生联想:在除法中有商不变的规律,在分数中有分数的基本性质,那么比有没有类似的基本性质:
提出猜想:
(1)学生讨论比有没有类似的基本性质。让学生提出自己的见解,如:比和分数、除法有很多相似之处;一个比就可以写成分数的形式,看成一个分数,就可以遵循分数的基本性质等。最后得出比的基本性质。
(2)猜想比的基本性质的内容。引导学生根据商不变的规律和分数的基本性质的内容,猜测比的前项和后项同时乘或除以相同的数,比值不变。
2.小组合作,验证猜想。
目标:
(1)引导学生对验证猜想提出各自的想法与途径?
(2)组织实践活动,揭示知识本质,让学生自己获取知识,培养学生主动参与意识。
(3)营造协作学习氛围,组织讨论研究、合作探究,培养学生协作学习意识。
过程:
(1)小组讨论:这个猜想成不成立?是否具有普遍性?用什么方法来验证?
(2)小组代表发言,说出本组思路。
A组:我们想用一个比,用它的前项和后项同时乘或除以相同的数,得到新比,看比值变不变。
B组:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。
C组:我们想把不同的比的前项和后项同时乘或除以相同的数,看它们的比值变不变。
通过学生发言,让学生互相启发,产生灵感,对验证猜想的方法进行比较,使自己的实践活动更加具有科学性,更严谨。
小组合作,试着验证:
每个小组根据自己的想法,用一个比或多个比进行验证,对验证结果进行初步总结。填写《验证表》。
3.展示交流,感受过程。
目标:
(1)理清知识脉络,构建良好的认知结构,培养学生获取知识、解决问题的能力。
(2)让学生感受到探究过程,使学生学到科学的研究方法、
(3)培养学生的`条理性和语言表达能力。
过程:
(1)用实物投影展示各个小组的《验证表》。
(2)各小组代表发言,本组所得的结论。
(3)老师引导学生比较各组的结论。
(4)引导学生讨沦比的基本性质是否具有普遍性,有没有比的前项和后项同时乘或除以相同的数,比值变了的。如比的前项和后项同时乘0,比值会怎样。
4.意义建构,体验成功。
目标:
(1)通过整理归纳,提高学生的综合概括能力,提高学生的数学素质。
(2)让学生体验成功的快乐,提高学生学习数学的兴趣,增强信心。过程:
(1)引导学生讨论哪个组的结论比较全面,怎样说更严谨。
(2)集体归纳,板书。
(3)体验成功:我们发现的这个数学规律就叫比的基本性质,许多科学家都是这样提出猜想、实践验证,发现了许多大自然的奥秘,还有许多奥秘需要我们去发现、创造。
5.巩固拓展,灵活运用。
目标:
(1)利用不同形式的练习使学生熟练应用比的基本性质、
(2)培养学生积极探究,勇于创新的精神。
过程:
(1)(出示)把下面各比化成最简单的整数比。(第71页练一练2)边练习边讨论:怎样运用比的基本性质化简比,怎样化简最快最好。
(2)总结方法:联系旧知,灵活运用。
(3)灵活运用,抢答比赛。
五、教学反思
1.创设情境,让学生产生探究欲望。
苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。所以,应该在课堂教学中创设情境,把问题隐藏在情境之中,形成悬念,引起学生迫不及待地探索和研究。这样不仅能激发学生学习数学的兴趣,同时还能给学生提供自主探索的机会,让学生在自主探索中建构数学知识。如《比的基本性质》一课,传统的教学是:出示一组分数3/4、6/8、9/12,让学生发现3/4:6/8:9/12,接着把分数转化成比3:4=6:8=9:12,归纳出比的基本性质,接着是一层层的巩固练习。这个过程是老师讲,学生听,被动地接受。不说让学生感兴趣,就是对其内容,学生也是一知半解。
六年级数学教学设计 篇3
教学目标
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
教学重点
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的解。
教学难点
利用比例的基本性质来解比例。
教学过程
一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?(板书:a:b=d:c a/b=d/c)
二、导入新知
同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。
三、探索新知
1、出示埃菲尔铁挂图
这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的`高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为X米”,把这个X代入这个数学模式中就组成了一个比例式(板书:X:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着X:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)
(12)、为什么可以写成这样的等式呢?10X=320x1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)
(17)、解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设X——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)
现在同学们会用解比例的方法来解决问题了吗?
那就做做下面这道题:育新小区1号楼的实际高度为35米,它的高度与模型高度的比是500:1。模型的高度是多少厘米?
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是1。5/2。5=6/X这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、12/24=3/X
3、巩固练习
4、课堂小结。
(1)、这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)
(2)、现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)
5、拓展延伸
老师给你们出一道思考题:在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
六年级数学教学设计 篇4
教学目标
1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点
1教学重点
会利用圆和其他已学的相关知识解决实际问题。
2教学难点
圆与其他图形计算公式的混合使用。
教学工具
PPT卡片
教学过程
1复习巩固上节知识,导入新课
2新知探究
2.1圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2.2圆与正方形
一、问题引入
师:同学们知道苏州的'园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5.3随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1.今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2.在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7板书
例2解答步骤
六年级数学教学设计 篇5
【教学目标】
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
【重点难点】
负数的意义和数轴的意义及画法。
【教学指导】
1.通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2.把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,
而是描述性的定
义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3.培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
【课时安排】
建议共分3课时:
负数的初步认识2课时 在数轴上表示正数、0和负数 1课时
【知识结构】
第1课时 负数的初步认识(1)
【教学内容】
负数的初步认识
(1)(教材第2页例1)。
【教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
【重点难点】
体会负数的重要性。
【教学准备】
多媒体课件。
【情景导入】
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的初步认识(1)
【新课讲授】
教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3
)我们来看一下课本上的图,你知道北京的气温吗?最高气
温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的`温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
【课堂作业】
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第1课时 负数的初步认识(1)
0℃
-3℃
3℃(+3℃)
通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。
第2课时 负数的初步认识(2)
【教学内容】
负数的初步认识
(2)(教材第3页例2)。
【教学目标】
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
【重点难点】
体会引入负数的必要性,初步理解负数的含义。
【情景导入】
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?
组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。
引出课题并板书:负数的初步认识(2)
六年级数学教学设计 篇6
一、教学目标
通过学生的自主探索,理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。让学生积极主动地探索,培养学生获取知识、解决问题的能力。增强学生研究探时的意识,追求创新的精神。
二、教学资源
1.实物投影仪—台。
2.每小组《验证表》一张。验证表举例结论
3.卡片若干张。
(1)商不变的规律;
(2)分数的基本性质;
(3)比的基本性质。
三、教学实施方案
教学内容:苏教版义教课标教科书数学六年级(上册)70—71页。教学形式:小组合作,自主探究。
教学流程:创没情境——验证猜想——展示交流——意义构建——巩固拓展。
评价方法:目标评价、师生评价、组际交流评价。
教学重点:理解、掌握比的基本性质。
教学难点:理解比的基本性质中“0除外”的道理。
教学准备:实物投影仪、验证表,卡片等。
四、教学过程
1.创设情境,引发猜想。
目标:
(1)复习旧知,为学生发现问题、产生猜想奠定基础。
(2)启发学生大胆猜测,提出自己的假设。
过程:
(1)复习比和除法、分数的关系,通过填写比和除法、分数的关系表,让学生发现比、除法、分数有很多相似之处?
(2)复习商不变的规律和分数的基本性质。
通过复习,引导学生联想:在除法中有商不变的'规律,在分数中有分数的基本性质,那么比有没有类似的基本性质:
提出猜想:
(1)学生讨论比有没有类似的基本性质。让学生提出自己的见解,如:比和分数、除法有很多相似之处;一个比就可以写成分数的形式,看成一个分数,就可以遵循分数的基本性质等。最后得出比的基本性质。
(2)猜想比的基本性质的内容。引导学生根据商不变的规律和分数的基本性质的内容,猜测比的前项和后项同时乘或除以相同的数,比值不变。
2.小组合作,验证猜想。
目标:
(1)引导学生对验证猜想提出各自的想法与途径?
(2)组织实践活动,揭示知识本质,让学生自己获取知识,培养学生主动参与意识。
(3)营造协作学习氛围,组织讨论研究、合作探究,培养学生协作学习意识。
过程:
(1)小组讨论:这个猜想成不成立?是否具有普遍性?用什么方法来验证?
(2)小组代表发言,说出本组思路。
A组:我们想用一个比,用它的前项和后项同时乘或除以相同的数,得到新比,看比值变不变。
B组:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。
C组:我们想把不同的比的前项和后项同时乘或除以相同的数,看它们的比值变不变。
通过学生发言,让学生互相启发,产生灵感,对验证猜想的方法进行比较,使自己的实践活动更加具有科学性,更严谨。
小组合作,试着验证:
每个小组根据自己的想法,用一个比或多个比进行验证,对验证结果进行初步总结。填写《验证表》。
3.展示交流,感受过程。
目标:
(1)理清知识脉络,构建良好的认知结构,培养学生获取知识、解决问题的能力。
(2)让学生感受到探究过程,使学生学到科学的研究方法、
(3)培养学生的条理性和语言表达能力。
过程:
(1)用实物投影展示各个小组的《验证表》。
(2)各小组代表发言,本组所得的结论。
(3)老师引导学生比较各组的结论。
(4)引导学生讨沦比的基本性质是否具有普遍性,有没有比的前项和后项同时乘或除以相同的数,比值变了的。如比的前项和后项同时乘0,比值会怎样。
4.意义建构,体验成功。
目标:
(1)通过整理归纳,提高学生的综合概括能力,提高学生的数学素质。
(2)让学生体验成功的快乐,提高学生学习数学的兴趣,增强信心。
过程:
(1)引导学生讨论哪个组的结论比较全面,怎样说更严谨。
(2)集体归纳,板书。
(3)体验成功:我们发现的这个数学规律就叫比的基本性质,许多科学家都是这样提出猜想、实践验证,发现了许多大自然的奥秘,还有许多奥秘需要我们去发现、创造。
5.巩固拓展,灵活运用。
目标:
(1)利用不同形式的练习使学生熟练应用比的基本性质、
(2)培养学生积极探究,勇于创新的精神。
过程:
(1)(出示)把下面各比化成最简单的整数比。(第71页练一练2)边练习边讨论:怎样运用比的基本性质化简比,怎样化简最快最好。
(2)总结方法:联系旧知,灵活运用。
(3)灵活运用,抢答比赛。
六年级数学优秀教学设计
作为一名人民教师,有必要进行细致的教学设计准备工作,借助教学设计可以更好地组织教学活动。一份好的教学设计是什么样子的呢?下面是小编整理的六年级数学优秀教学设计,仅供参考,欢迎大家阅读。
六年级数学教学设计 篇7
教学目标:
1、通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
2、通过图形的放缩,结合具体情境,感受图形的相似。
教学重点:
体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
教学难点:
体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
教学过程:
呈现情境图
讨论谁画得像呢?
引导学生分析这三名学生是如何画的。
1、笑笑:图中的长与实际的长的比量多少?图中的宽与实际的宽的比是多少?
笑笑是按相同的'比来画。
2、淘气:图中的长与宽的比是多少?淘气也是按相同的比来画。
小结
3、他们都是按相同的比来画,所以都画得像。
4、为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像,有的不像呢?
5、将较大的长方形画成较小的长方形,首先可能量出原来的长和宽缩+相同的倍数,才能画得像。
画一画探究活动
P28引导学生把原来的长和宽按3:2扩大。
小组交流后,独立操作,教师指导
六年级数学教学设计 篇8
教学内容:
义务教育课程标准北京实验版教科书六年级上册《存款方案》
教学目标:
1、了解储蓄的有关知识,能综合应用相关知识合理存款。
2、经历调查、解决问题的过程,体验合作探究的学习方法。
3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。
教学重点:
了解各种存款方式的利率和相关规定,设计合理的存款方案。
教学难点:
能综合应用条件灵活解决问题。
综合实践《合理存款》
一、确定问题
我们班的同学候可鑫春节得到了两万元压岁钱,妈妈建议他到银行存款。候可鑫想要存三年怎样存款收益最大?
问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)
二、收集信息
课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的'利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。
设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。
三、方案设计
根据学生调查的信息设计存款方案。
学生以小组合作学习的方式共同设计方案,填写下表。
定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
六年级数学教学设计 篇9
教学内容:
《观察的范围》北师大版小学数学六年级上册第六单元第二课时第80--81页。
教材分析:
《观察的范围》是北师大版六年级上册第六单元第二课时的内容,属于空间与图形领域。本课从学生熟悉而感兴趣的生活背景出发,通过猴子看桃、行驶的汽车看到的大楼范围、路灯下的影子等情境,让学生在观察、操作、模拟等探索活动中体会到将眼睛、视线与观察范围抽象为点、线、区域这一变化过程。让学生利用所学知识解释生活中的一些现象,发展学生的空间观念。
学情分析:
这一内容学生在四年级下册第四单元《观察物体》中已经初步接触。学生能辨认从高处、远处不同观察点拍摄到的图片及其先后顺序;通过实际观察,使学生体会到同一景物在不同的位置,看到的画面不同;能辨认从不同的位置拍摄到的图片及其先后顺序。
教学目标:
知识与技能:
(1)给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程。
(2)感受观察范围随观察点、观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。
过程与方法:从熟悉的、有趣的生活背景中通过观察、操作、想象等活动,发展学生的空间观念。
情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。
教学重点:
经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。
教学难点:
运用所学知识解释日常生活中的一些现象。
教具准备:
多媒体课件、尺子
教学过程:
一:视频导入,揭示课题。
1、播放麦当劳广告。
学生谈谈自己的想法。
2、看来观察的范围是会变化的.,这节课我们就来研究《观察的范围》。(板书课题)
二:自主探究,发现规律。
1、创设情境,引入问题。
(课件出示)
师:小猴在墙外能看见地上的桃子吗?怎么办?
小猴爬上A点,看到墙内地上最近的点是哪里?
同学们,你们能帮它想个好办法吗?
2、自主操作,初步探究。
(1)画一画,找一找。
(2)汇报,说说你是怎么找到A点的。
(3)演示,注意眼睛、墙的右上角。
(4)说一说:小猴在A点看到的范围。
(5)明确:根据学生的回答,明确视线、观察点、阻碍点等概念并板书,得出确定观察范围的方法。
板书:观察点,障碍点,视线,观察的范围。
3、自主操作,深入探究。
小猴爬到B点、C点,看到墙内最近的点是哪里?它能看到墙内哪些地方呢?
学生在书上试一试,画一画,再汇报交流。
4、交流讨论
比较三次的结果,有什么发现?
小结:爬得越高,看到的范围越大。说明观察点越高,观察的范围越大,观察点越低,观察的范围越小。
板书:高、低,大、小。
5、联系古诗说一说
这好像和我们学过的一首古诗有关系。
联系古诗,学生背诵,从数学角度谈谈自己的理解。
三、应用知识,解决问题。
1、变化的楼房(课件出示)。
客车在平坦的大路上行驶,前方有两座建筑物。
(1)客车行驶到位置1时,司机能够看到建筑物B的哪一部分?
(2)到达位置2时能看见建筑物B吗?穿过建筑物A呢?
(3)司机的观察范围是如何变化的?
(4)你有什么发现?
障碍点不动时,观察点远,观察的范围大;观察点近,观察的范围小。
2、画影子。试一试1(课件出示)
老师和学生共同研究影子的形成,并让学生画出路灯下几个杆子的影子。
从中你发现了什么?
同样高的杆子离路灯越近,它的影子就越短
观察点不动,障碍点越远,观察的范围越大;障碍点越近,观察的范围越小。
小结:观察点与障碍点的相对位置发生变化,观察的范围也会变化。板书:位置
3、猫捉老鼠。一天,一只猫追一只老鼠,迎面遇到了一堵残墙,这只聪明的小老鼠就躲在这堵残墙的后面。
(1)请你在图2中画出小老鼠可以活动的区域。
(2)如果你是这只猫,想看到更大的范围,你想怎么办?
预设:
a、有障碍物的情况下,猫向后退;
b、可以绕过障碍物或跳到墙上。
4、拓展思维:解释日食现象,月食现象。
生活中,还有许多与观察范围有关的现象。看日食图片
1、日食。
你们明白日食是怎么形成的了吗?
2、月食。
月食现象又是怎么回事呢?
请你用数学知识解释。
四、全课总结。
这节课你们学到了哪些知识?说一说你的收获。
我们是用哪些方法得到的呢?
五、课后作业。
完成实践活动。
板书设计:
观察的范围
视线
观察点
六年级数学教学设计 篇10
设计说明
本节课学习的主要内容是让学生经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,这一内容的学习,既能发展学生的空间观念,又能让学生用它来解释日常生活中的一些现象。
1.重视学生的实践操作。
动手实践是学生获取数学知识的一种手段,它能促进学生将抽象的知识具体化。在本节课的教学设计中,通过让学生动手画一画,使学生感知观察的范围随观察点、观察角度的变化而变化。
2.重视数学在生活中的应用,加深对知识的理解。
通过汽车由远及近行驶时司机所看到的建筑物的变化、路灯下的影子、小老鼠的安全活动范围等引发学生讨论。学生通过验证,明确了“观察的范围”在生活中的广泛应用,懂得了用数学知识可以解释生活中的一些现象,感受到了数学与生活的密切联系,同时也体现了数学的地位和应用价值。
课前准备
教师准备PPT课件
教学过程
创设情境,揭示问题
师:说一说,你在不同楼层的窗口看到的景物有什么不同?
预设生:楼层越高,看到的景物越多。
师:谁知道这是什么情况?
预设生:楼层高,看到的'范围变大了。
师:也就是观察的范围变大了。我们在不同的位置观察到的范围是怎样变化的呢?好,这节课我们就来学习观察的范围。(板书课题)
课件出示:桃树下落了一地桃子,一只小猴在墙外的树上向墙内张望。
师:看,小猴爬到了这个位置(A处),它能看到地上全部的桃子吗?猜一猜小猴能看到多少个桃子?[课件出示情境图(如下图)]
学生猜测各异。
师:看来,光靠眼睛看是不准确的,你们能不能想出办法,准确找到小猴看到多少个桃子呢?说说你的想法。
设计意图:在熟悉的环境作用下,学生更容易将自己的情感投入进去,所以情境引入教学就是为了能充分利用学生这一特点,最大限度地发挥情感的纽带作用和驱动作用,提高学生学习数学的兴趣,让学习数学成为他们自愿进行的、快乐的事情。
探究新知,建构模型
1.独立思考。
师:光靠眼睛看是不准确的,同学们可以先自己想一想,画一画。
2.合作交流。
(1)小组交流:和小组同学交流一下,看看有什么好方法。
(2)全班交流:哪位同学能把你们小组的方法和大家分享一下?
学生汇报:
①在A点时,我们把小猴的眼睛看作“观察点”。(板书:观察点)
②阻碍小猴观察视线的是墙,我们把阻碍视线的这个墙的顶点叫“阻碍点”。
(板书:阻碍点)
③将“观察点”和“阻碍点”进行连线,这条线和地面的交点,就是小猴能看到的离墙最近的点。这条线实际就是小猴的视线。
A′点右面的部分是小猴在A处时能看到的范围,A′点和墙之间的部分是小猴在A处时看不到的范围,也就是观察的盲区(如上图)。
(3)师提问:小猴想看到更多桃子,该怎么办?
生:根据我们在不同楼层看到的景物,我觉得小猴爬得越高,看到的范围越大,看到的桃子就越多。
(4)师追问:如果小猴继续往上爬,爬到B点、C点,你能找到墙内离墙最近的点吗?(课件呈现)
学生独立思考,画一画。
(5)反馈:结合学生的想法,观察课件动画,帮助理解。
3.建立模型。
(1)师生小结:先看观察点,再找阻碍点,连接这两点,延长到地面的交点,确定观察的范围。
师:我们把三次观察的结果放在一起,你发现了什么?
预设生:小猴爬得越高,看到的桃子越多,说明小猴观察到的范围就越大。
师:可见,观察点的位置越高,观察到的范围越大。(板书:观察点的位置越高,观察到的范围越大)
(2)联系古诗:你能从数学的角度来探究“欲穷千里目,更上一层楼”的道理吗?(说明了“站得高才能看得远”的道理)
北师大,小学数学,教学
六年级数学教学设计 篇11
教学内容:
《观察的范围》北师大版小学数学六年级上册第六单元第二课时第80--81页。
教材分析:
《观察的范围》是北师大版六年级上册第六单元第二课时的内容,属于空间与图形领域。本课从学生熟悉而感兴趣的生活背景出发,通过猴子看桃、行驶的汽车看到的大楼范围、路灯下的影子等情境,让学生在观察、操作、模拟等探索活动中体会到将眼睛、视线与观察范围抽象为点、线、区域这一变化过程。让学生利用所学知识解释生活中的一些现象,发展学生的空间观念。
学情分析:
这一内容学生在四年级下册第四单元《观察物体》中已经初步接触。学生能辨认从高处、远处不同观察点拍摄到的图片及其先后顺序;通过实际观察,使学生体会到同一景物在不同的位置,看到的画面不同;能辨认从不同的位置拍摄到的图片及其先后顺序。
教学目标:
知识与技能:
(1)给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的'过程。
(2)感受观察范围随观察点、观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。
过程与方法:从熟悉的、有趣的生活背景中通过观察、操作、想象等活动,发展学生的空间观念。
情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。
教学重点:
经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。
教学难点:
运用所学知识解释日常生活中的一些现象。
教具准备:
多媒体课件、尺子
教学过程:
一:视频导入,揭示课题。
1、播放麦当劳广告。
学生谈谈自己的想法。
2、看来观察的范围是会变化的,这节课我们就来研究《观察的范围》。(板书课题)
二:自主探究,发现规律。
1、创设情境,引入问题。
(课件出示)
师:小猴在墙外能看见地上的桃子吗?怎么办?
小猴爬上A点,看到墙内地上最近的点是哪里?
同学们,你们能帮它想个好办法吗?
2、自主操作,初步探究。
(1)画一画,找一找。
(2)汇报,说说你是怎么找到A点的。
(3)演示,注意眼睛、墙的右上角。
(4)说一说:小猴在A点看到的范围。
(5)明确:根据学生的回答,明确视线、观察点、阻碍点等概念并板书,得出确定观察范围的方法。
板书:观察点,障碍点,视线,观察的范围。
3、自主操作,深入探究。
小猴爬到B点、C点,看到墙内最近的点是哪里?它能看到墙内哪些地方呢?
学生在书上试一试,画一画,再汇报交流。
4、交流讨论
比较三次的结果,有什么发现?
小结:爬得越高,看到的范围越大。说明观察点越高,观察的范围越大,观察点越低,观察的范围越小。
板书:高、低,大、小。
5、联系古诗说一说
这好像和我们学过的一首古诗有关系。
联系古诗,学生背诵,从数学角度谈谈自己的理解。
三、应用知识,解决问题。
1、变化的楼房(课件出示)。
客车在平坦的大路上行驶,前方有两座建筑物。
(1)客车行驶到位置1时,司机能够看到建筑物B的哪一部分?
(2)到达位置2时能看见建筑物B吗?穿过建筑物A呢?
(3)司机的观察范围是如何变化的?
(4)你有什么发现?
障碍点不动时,观察点远,观察的范围大;观察点近,观察的范围小。
2、画影子。试一试1(课件出示)
老师和学生共同研究影子的形成,并让学生画出路灯下几个杆子的影子。
从中你发现了什么?
同样高的杆子离路灯越近,它的影子就越短
观察点不动,障碍点越远,观察的范围越大;障碍点越近,观察的范围越小。
小结:观察点与障碍点的相对位置发生变化,观察的范围也会变化。板书:位置
3、猫捉老鼠。一天,一只猫追一只老鼠,迎面遇到了一堵残墙,这只聪明的小老鼠就躲在这堵残墙的后面。
(1)请你在图2中画出小老鼠可以活动的区域。
(2)如果你是这只猫,想看到更大的范围,你想怎么办?
预设:
a、有障碍物的情况下,猫向后退;
b、可以绕过障碍物或跳到墙上。
4、拓展思维:解释日食现象,月食现象。
生活中,还有许多与观察范围有关的现象。看日食图片
1、日食。
你们明白日食是怎么形成的了吗?
2、月食。
月食现象又是怎么回事呢?
请你用数学知识解释。
四、全课总结。
这节课你们学到了哪些知识?说一说你的收获。
我们是用哪些方法得到的呢?
五、课后作业。
完成实践活动。
板书设计:
观察的范围
视线
观察点
六年级数学教学设计 篇12
教学目标
1.依据小数、分数和百分数的意义,引导学生开展自主探索,理解和掌握将分数、小数化成百分数的方法。
2.会解决求一个数是另一个数的百分之几的问题。在求命中率的基础上,理解更多生活中的百分率的实际含义,感受百分率在生活中应用的广泛性。
3.进一步明确百分率与分数的联系和区别,培养学生比较分析、归纳概括的思维能力。
重点:
掌握小数、分数化成百分数的方法。
难点:
理解生活中百分率的实际含义。
教学过程
课件出示教材第84页主题图。
师:王涛和李强是各自篮球队的主要得分手。在一场比赛后,他们之间有这样一段对话,从图中你能获得哪些信息?
生:王涛是5投3中,李强是6投4中。
师:根据这两条信息,老师想知道谁的投篮更准,该怎么比较呢?学生计算,指名回答。
生1:3÷5=,4÷6≈,因为<,所以李强的投篮更准。
生2:3÷5=,4÷6=,因为<,所以李强的投篮更准。
教师:这两种算法有什么相同的地方?(算式相同)都是求什么?(命中率,即投中的次数占投篮总次数的几分之几)有什么不同呢?(一个是用小数表示结果,一个是用分数表示结果。)
1.揭示命中率。
师:这种计算的方法,与篮球比赛技术统计中的投篮命中率类似。请从百分数的意义出发进行思考,什么叫“投篮命中率”?(投篮命中率表示投中次数占投篮总次数的'百分之几。)
师:该如何计算呢?(投篮命中率=。)
师:这个题目的问题是“他们两人的命中率分别是多少?谁的命中率高?”。
2.小数、分数化成百分数。
师:投篮命中率是一个什么数?(百分数)你能把刚才的两种运算结果转化成百分数吗?(学生练习,指名回答。)
生1:3÷5===60%。
师:你是怎么做的?(把小数化成分母是100的分数,再化成百分数。)
生2:3÷5====60%。
师:4÷6除不尽,怎么办?(除不尽时,通常保留三位小数。)
生:4÷6≈==%或4÷6=≈=%。
师:你能解释这里的“≈”和“=”符号的用法吗?(4÷6除不尽,保留三位小数约等于。然后把这个小数转化为分母是1000的分数。)
师:这样我们已经分别计算出了两个人的命中率,谁更高些?(李强。)
3.引导归纳,得出方法。
课件出示=%。
师:你能理解这样的表示方法吗?(把小数点向右移动两位,再加上百分号。)
师:把小数点向右移动两位意味着什么?(把这个数扩大了100倍。)
师:加上百分号意味着什么?(把这个数缩小了100倍。)师:我们一起来归纳将小数、分数化成百分数的方法。
引导式总结:把小数、分数化成百分数,可以化成分母是100的分数,(不能转化的保留三位小数)再化成百分数;
也可以先将分数化成小数,(除不尽的保留三位小数)再将小数点向右移动两位,加上百分号。
师:刚才我们计算的投篮命中率,表示投中次数是投篮总次数的百分之几。可以表示成投篮命中率=×100%的形式。为什么要“×100%”呢?预设:因为求的是百分率,要用百分数的形式表示。在后面添上“×100%”确保结果是百分数的形式。
师:在实际生活中,像上面这样常用的百分率还有许多。如学生的出勤率、绿豆的发芽率、产品的合格率、小麦的出粉率、树木的成活率等。你能表示出求这些百分率的式子吗?(学生练习,指名回答。)
小结:百分率表示一个数是另一个数的百分之几,它在我们生活中的应用非常广泛。
1.生物小组进行玉米种子发芽试验,每次试验结果如下:
试验次数试验种子数发芽种子数/粒发芽率1 300 285 2 300 282 2 300 294 4 300 291 ?师:从结果中我们可以直接看出哪一次实验的发芽率最高?哪一次最低?(让学生感受百分率的实际作用。)
2.把下面的小数和分数改写成百分数。0.3.你能联系实际说一说哪些百分率不可能达到100%,哪些可能达到100%,哪些可能超过100%吗?通过这节课的学习,说说你有什么收获?还有什么疑问?教学反思根据学生已有的知识,放手让学生自主探究小数、分数化成百分数的方法。在整个教学活动中,利用教师的合理揭示、适时点拨、引导归纳,使学生的探究活动呈现出较强的层次性。这样的过程既符合学生的思维特征,又有利于知识的理解和掌握。通过分析各种百分率所表示的意义,不仅使学生体会到这一知识在生活中的广泛应用,也对求百分率的方法有了更为深刻的理解。
六年级数学教学设计 篇13
一、教学内容
教材第25页 例5、例6
二、学习目标
1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。
2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。
3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。
三、教学重难点
1、重点:理解、掌握圆柱的体积公式的推导过程。
2、难点:圆柱体积公式的推导过程。
四、教学准备
多媒体课件
五、教学过程
创设情境、生成问题
师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)
生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算
师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。
板书:圆柱的体积(课件)
探索交流、解决问题
1、猜想
师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?
(生自由猜想,并讨论交流)师适当板书记录
刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下
(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)
师:第一组图片中的两个圆柱有什么特征?
生:底面一样,但是高度却不一样,体积也不一样
师:第二组图片中的两个圆柱有什么特征?
生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样
师:那么通过刚才两个同学的回答,你能得出什么结论呢?
小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小
师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?
生猜想......
师:我们的猜想对不对,还是要用实验去证明
2、推导圆柱体积计算公式
师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的'想法
生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积
师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸
(课件出示作业纸)对应和公式推导
选取小组的作业纸进行展示,有其他同学进行评定
课件演示结果
小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。
另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。
巩固应用、内化提高
2、
3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
回顾整理、反思提升
今天这节课你有什么新的收获说出来和大家一起分享吧!
六年级数学教学设计 篇14
教学内容:
义务教育课程标准北京实验版教科书六年级上册《存款方案》
教学目标:
1、了解储蓄的有关知识,能综合应用相关知识合理存款、
2、经历调查、解决问题的过程,体验合作探究的学习方法、
3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识、
教学重点:
了解各种存款方式的利率和相关规定,设计合理的存款方案、
教学难点:
能综合应用条件灵活解决问题、
综合实践《合理存款》
一、确定问题
我们班的同学候可鑫春节得到了两万元压岁钱,妈妈建议他到银行存款、候可鑫想要存三年怎样存款收益最大?
问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大、明确本活动中存款的本金、可存期限以及这笔存款的用途、明确需要收集与该问题相关的信息、(通过对问题的`简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)
二、收集信息
课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录、
设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出、因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系、有了这样一个过程使这一实践活动更具有现实意义和实效性、
三、方案设计
根据学生调查的信息设计存款方案、
学生以小组合作学习的方式共同设计方案,填写下表、
定期储蓄存款的方案可填在第第一张表格中、其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中、每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息、