比的应用教学设计

知远网

2025-09-28教案

知远网整理的比的应用教学设计(精选14篇),希望能帮助到大家,请阅读参考。

比的应用教学设计 篇1

教学内容:

冀教版小学数学六年级上册第二单元《比的应用》。

教学目标:

1、知识方面:理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,能正确解答按比例分配应用题。

2、能力方面:培养学生探究知识的能力和良好的思维品质,以及解决简单实际问题的能力,培养学生合作学习及归纳、总结、概括的能力。

3、情感方面:创设民主和谐的学习氛围,在关注培养学生自主探索意识、灵活思维品质过程中形成积极的学习情感,让学生学会评价自我,欣赏他人。

教学重点:

掌握按比分配应用题的结构特点和解题思路。

教学难点:

正确分析,灵活解决按比分配的'实际问题。

教具准备:

课件

学习过程:

一、创设情境。

(1)3月12号是植树节学校把种植88棵小树苗的任务分给六年级的每位同学,怎样分配才合理?(平均分配)

(2)李明和黄华合办了股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

(在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。)

二、自主学习,合作探究。

1、出示题目:幼儿园大班30个人,小班20个人,把这些橘子分给大班和小班,怎样分比较合理?

请同学们想一想:你认为怎样分合理?说一说你的分法?

2、出示题目:这筐橘子按3:2该怎样分?

自学提示:

(1)可列表或画图。

(2)联系比与分数的关系,将本题转化成相关的分数应用题。

(3)你还有其它的什么想法,用你的方法试试吧!

3、小组合作。

4、各小组汇报自己的分法。

5、解题思路:

(1)明确分什么?有多少?怎样分?

(2)计算总份数。

(3)根据具体数量与对应分数的关系解题。

师:解决生活中的实际问题的时候,同学们要认真分析数量关系,可以选择多种方法解答。

三、达标检测。

1、填空。

(1)把60根小棒按2:3的比分成两堆,一堆有()根,另一堆有()根。

(2)把60根小棒按1:1的比分成两堆,一堆有()根,另一堆有()根。

2、实际应用。

(1)六年级三班要举行联欢会,班委决定要买12千克水果,据调查,爱吃苹果的同学和爱吃梨的同学的人数比是2:1,请你算一算,苹果和梨各买多少千克?

(2)用2份水泥、3份沙子和5份石子配制成一种混凝土。配制4吨这种混凝土,需要水泥、沙子、石子各多少吨?

3、拓展延伸。

把刚开始上课时老师留下的第二道题完成。

四、回顾整理,反思提升

学生说说自己这节课的收获。

五、课堂作业:

课后练一练的1题、2题、3题。

比的应用教学设计 篇2

设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。

教学内容:六年级上册比的应用

教学目标

1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。

2、能正确解答按比例分配问题。

3、培养解决问题的能力,促进探索精神的养成。

教学重点:掌握解答按比例分配应用题的步骤。

教学难点:掌握解题的关键。

教学过程:

一、创设情境,感受价值

1、师:同学们,大家平时放过东西吗?

2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)

注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?

3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。

注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。

二、探究教学

1、探究例题

呈现例题,根据学生的建议,共同完成例1

师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵? (2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?

师:请同学们独立思考,独立完成(教师巡视、指导)

(3)展示结果

根据学生的回答板书解题方法

第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)

第二种:2+3=5

60×3/5=36(棵) 60×2/5=24(棵)

注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。

2、揭示课题

师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。

3、思考:如何检验答案是否正确呢?

讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?

指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的'解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。

三、巩固练习教材做一做。

四、总结

通过这节课的学习,你有什么收获?

教学反思:

1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。

2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

比的应用教学设计 篇3

[教材简析]

比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

[教学目标]

知识与技能

1、理解按一定比来分配一个数的意义。

2掌握按比例分配应用题的结构特点及解题方法,。

过程与方法

1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。

2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。

情感态度与价值观

1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。

2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。

[教学重点]

掌握解答按比例分配应用题的步骤。

[教学难点]

掌握解题的关键。

[学习方法]

让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。

3、教学准备

学生准备小棒140根。

[教学时间]

一课时

[教学过程]

一、创设生活情景,谈话引入。

1、创设情景提出问题。

师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?

2、学生交流分配方案。

(1)平均分配,把橘子平均分给两个班

(2)按人数分配,人多的班分多点,人少的班分少点。

二、探讨解决问题的方法。

1、抓住契机,适时提问。

(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。

(2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?

2、合作交流,动手操作。

(1)用小棒进行实际的操作。

(2)分组进行操作,组长记录分配的过程。

(3)让学生说一说自己的分法。

3、提升认识,板书课题。

师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。

4、实际应用,解决问题。

(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?

(2)学生独立完成,小组交流方法。

(3)提问方法,学生板书。

方法一:3+2=5140÷5=28(个)

28×3=84(个)

28×2=56(个)

方法二:3+2=5140×3/5=84(个)

140×2/5=56(个)

小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。

三、实践运用,巩固练习。

师:刚才同学们的表现都不错,现在有许多生活中的`一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。

1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。

2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?

3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?

(1)引导学生选用喜欢的方法做题。

(2)讨论解决问题的方法。

四、联系生活,介绍比的应用的广泛性。

1、举例

师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?

2、数学书第56页练一练第2题。

3、数学故事:

一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?

孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。

五、回顾教学,总结方法。

1、引导学生总结比的应用的一些方法。

2、这节课你有什么收获?

六、作业。

我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。

板书设计

比的应用

方法一:3+2=5

方法二:3+2=5

140÷5=28(个)140×3/5=84(个)

28×3=84(个)140×2/5=56(个)

28×2=56(个)

答:大班分到84个,小班分到56个。

教学反思

一、充分挖掘教材,旧知迁移新知。

“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的'情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。

二、借助多媒体或教具,助学生理解新知识。

学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。

三、教师在小结升华时讲解。

学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。

比的应用教学设计 篇4

教学内容

百分数的应用(三),北师大版数学第十一册课本第28页教学内容,课本第29页“练一练”及“你知道吗”。

教学目标

1、知识与技能

利用百分数的意义列方程解决实际问题,提高运用数学解决实际问题的能力。

2、过程与方法

结合具体的情境,引导学生根据百分数的意义,通过类比的方法解决实际问题。

3、情感、态度与价值观

通过观察比较题目中的一些数据,让学生体会到我们生活水平的逐步提高,让学生感受到数学知识在生活中的运用价值,拓展学生的知识面。

重、难点与关键

1、重点:利用百分数列方程解决实际问题。

2、难点:引导学生根据百分数,通过类比法解决问题。

3、关键:体会百分数与现实生活的密切联系。

教学过程

一、复习导入

1、复习。

(1)解方程

30%x = 120 x + =240 x +120%x = 132

(2)列式解答

①一个数的是20,这个数是多少?

②苹果20千克,梨比苹果多20%,梨多少千克?

③一间米店上午卖出大米400千克,占米店全部大米的5%,米店原来有大米多少千克?

(学生独立解决问题后,组织全班进行交流,重点引导学生回顾解决问题的步骤和方法)

2、导入。

师:这节课,我们继续学习有关百分数的知识。(板书课题)

二、创设情境

1、出示统计表:

下表是笑笑的妈妈纪录的家庭消费的情况

年份

1985年

1995年

20xx年

食品支出总额占家

庭总支出的百分比

65%

58%

50%

其他支出总额占家

庭总支出的百分比

35%

42%

50%

提问:根据这张统计表,你能获得哪些信息?(指名回答,引导学生从统计表中获取尽可能多的信息。)

比较这个家庭支出情况的有关数据,你发现什么?(先让学生独立思考,并在小组内交流,然后全班交流;)

三、探索新知

1、自学课本第29页“你知道吗?”学生自学后,教师让学生谈自学后的体会和收获,通过交流,引导学生体会:我们的国家的经济不断发展,我们的生活水平越来越高。

2、出示例题:1985年食品支出比其他支出多出210元,你知道这个家庭的总支出是多少元吗?(先让学生独立解决这个问题,再组织学生交流算法。)

全班交流时,根据学生的回答,教师板书如下:

解:设这个家庭1985年的总支出是x元。

65%x—35%x=210

30%x=210

x=700

答:这个家庭1985年的总支出是700元。

师:还有其他方法吗?

先让学生独立尝试,再组织学生交流算法。通过交流,引导学生理解也可以用算术解法解决这个问题。

根据学生回答,教师板书如下:

210÷(65%—35%)

=210÷30

=700(元)(答略)

3、尝试练习。

指导学生完成课本第28页“试一试”中的.练习题。

(1)第一题。(先让学生独立解决问题,再组织集体纠正。)

(2)第二题。(先让学生说一说“九五折”的含义。接着让学生独立解决问题,再组织交流。)

四、巩固练习

指导学生完成课本第29页“练一练中的第1、2题。

第1题。鼓励学生独立分析题意,寻找等量关系,然后列方程解答。

第2题。用同样方法鼓励学生独立完成,再集体纠正。

五、课堂小结

师:通过本节课的学习,你又学会了什么?(利用百分数的意义列出方程解决实际问题)

六、布置作业

1、解方程:

50%x—30%x=48 40%x=24 x+130%x=460

2、应用题:

(1)小刚家九月份用水12吨,比八月份节约了25%,八月份用水多少吨?

(2)某商场某个月中下半月的营业额是360万元,比上半月增加二成五,上半月的营业额是多少万元?

(3)小兰看一本书,第一天看了全书总页数的25%,第二天看了全书总页数的20%,两天看了90页。这本书共多少页?

教后反思:

这一节校级公开教研课的成功之出在于:处理教材时目标明确,能让学生利用百分数的意义,列出方程解决实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。在教学过程中,利用教材呈现的家庭消费情况,创设情境,让学生从统计表中获得信息。通过比较,发现我们国家的经济不断发展,人民生活水平越来越高,让学生了解数学来源于生活,感受到数学知识在生活中的应用价值,拓展学生的知识面。引导学生分析,通过画线段图来解决问题。特别是在教学过程中出现学生先采用算术解时,能及时调整教学策略,引导学生用多种方法解决问题,通过画线段图找等量关系,然后列方程解答。培养学生良好的学习习惯和思维方法。整节课总体来讲比较成功。不足的是:方法比较单一,有一些知识点讲得不够透,学生还有困惑,教师话语过多,不够简洁,应掌握好适当的扶放。努力的方向:应加强对课标的研读,深入理解教材安排的特点,积极开发课程资源,设计学生喜欢的教学方案,激发学生的学习欲望,教给学习方法,养成良好习惯,提高学习效率。

比的应用教学设计 篇5

教学目标:

1、掌握工程问题的结构特征和解答方法,并能应用于解决实际问题,工程问题应用题教学设计。

2、培养学生的观察、分析及综合概括能力及抽象思维能力。

重点:工程问题的结构特征。

难点:数量之间的对应关系。

一、激趣引入

1、谈话。张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?猜一猜。

2、到底哪位同学猜得正确,通过今天这堂课的学习,我们就能解决这个问题。所以,今天我们继续学习应用题。(板书:应用题)

二、类比迁移

1、出示准备。

修建一条公路长300米,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?

(1)指名板演,集体练习

(2)反馈、交流。

2、把300米改为600米、900米、1200米、若干米,分组计算。

(1)通过刚才的计算,我们发现什么变了,什么没有变?为什么?

(2)再观察一下,以上算式都是根据哪个数量关系来进行计算的呢?

(3)如果总米数没有,但还是求两队合修需多少天完成,又该怎么样列式计算呢?

三、探索新知

1、出示例题:修建一条公路长,由甲队单独修建需要10天完成,由乙队单独修建需要15天完成。两队合修需要多少天完成?

(1)比较。

(2)思考:

A、这条公路的全长不知道怎么办?

B、甲队每天修了这条公路的几分之几?乙队呢?

C、(+)表示什么?

D、根据什么数量关系解答这类应用题的?

2、再比较:例题和准备题在解答方法上有什么相同点?有什么不同点?

3、归纳:象这类工作总量没有直接告诉我们,可用单位"1"表示,用表示工作交率,解答思路与工作问题一样,象这种分数应用题,教案《工程问题应用题教学设计》。我们把它叫做"工程问题"(完整板书)。

4、把工作总量看作"2、3"行不行?分组计算。发现计算结果是一样的。但为了计算简便,工程问题应用题中,我们常把工作总量看作单位"1"。

四、巩固性练习

第一层次:试一试。

一项工程,由甲工程队单独施工,需8天完成;由乙工程队单独施工,需12天完成。两队共同施工,需要多少天完成?

(1)指名板演,集体练习。

(2)据式说理。

(3)改变条件和问题。

两队合作4天后,完成这项工程的几分之几?

还剩下几分之几?

第二层次:

(1)车站有货物48吨,用甲车运6小时可以完成,用乙车运4小时可以完成。用两种车同时运多少小时可以运完?

下列算式正确的是。

48÷(48÷6+48÷4)

48÷(+)

1÷(+)

(2)只列式不计算

加工一批零件,甲单独加工8小时完成,乙单独加工10小时完成。

(1)甲单独加工,每小时完成总工作量的。

(2)乙单独加工,每小时完成总工作量的'。

(3)甲、乙合做,1小时完成了总工作量的。

(4)甲、乙合做,3小时完成了总工作量的。

(5)甲、乙合做3小时,还剩下总工作量的。

(6)这批零件,甲、乙合做小时完成。

(7)两人合打天才能完成这份稿件的。

第三层次:

工程问题不只限于上述三种量之间的关系,也适用于其他某些量之间的关系。

(1)一辆汽车从甲地开到乙地需要6小时,另一辆汽车从乙地开到甲地需要5小时。两车同时从两地相向工出,经过几小时两车相遇?

(2)张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?

五、课堂小结

1、这节课,我们主要学习了什么内容?

2、工程问题的特点是什么?

3、解这类题的关键是什么?

六、提高练习

(1)生产一批零件,甲单独做15天可以完成,由乙单独做12天可以完成,两单独做10天可以完成,如果三人合做,多少天可以完成?

(2)一项工作,甲乙两人合做12天可以完成,由甲单独做20天可以完成,由乙单独做,多少天可以完成?

比的应用教学设计(实用15篇)

作为一位杰出的教职工,就有可能用到教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的比的应用教学设计,仅供参考,希望能够帮助到大家。

比的应用教学设计 篇6

教学目标

1、理解以“和倍”问题为基础的分数应用题的解题思路、会列方程解答此类应用题。

2、培养学生的迁移类推能力。

3、培养学生运用所学的知识解决生活中的实际问题的能力。

教学重点

理解应用的数量关系,找到题目中的等量关系。

教学难点

找准题中的等量关系。

教学过程

一、复习。(用含有字母的式子表示)

1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

苹果树和梨树一共有()棵。

2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

二、生活引入

上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

1、老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了。

2、板书课题:分数除法应用题。

3、学生读题,理解题意弄清谁是单位”1“,画出线段图。

4、分层指导。

思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?

(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师,杨莹的岁数用含有的式子怎么表示?

5、学生练习,集体订正,说明思路。

三、尝试练习

(一)出示例3

例3、饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的、白兔和黑兔各有几只?

1、读题,理解题意弄清谁是单位”1“,画出线段图。

2、小组回答:

(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

(2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的.只数用含有的式子怎么表示?

3、学生练习。

4、学生打开书本对答。(65页)

解:设白兔的只数为只,黑兔的只数是?

白兔只数+黑兔只数=总只数

答:白兔有15只,黑兔有3只。

4、教师提问:这道题还可以怎样列式?

18÷(1+)什么意思?

(二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答。

1、商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

2、商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为,另一个数就是几分之几,根据已知条件列出方程解答。

四、巩固练习

(一)变式练习

小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

(二)对比练习

1、李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

2、李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

(三)选择练习

果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

解:设桃树有x棵。

A、B、

C、D、

五、质疑总结

1、用方程解这类题的关键是什么?

2、用算术方法解答时应注意什么?

六、板书设计

分数除法应用题

解:设老师的年龄是x岁。

......老师年龄

42-30=12......杨莹的年龄

答:老师30岁,杨莹12岁。

比的应用教学设计 篇7

教学具准备:

1、翻看户口簿上自己的身份证号码是多少?

2、了解父母的身份证号码并了解身份证号码是怎样组成的?

3、师准备一张身份证。

教学过程:一、情景引入:

同学们到银行开户储蓄过吗?(去过)刚开户时要用到什么证件?(身份证)同学们坐飞机出境旅游过吗?坐飞机出境旅游也要用到什么证件?(身份证)今天我们就来学习身份证号码是怎样组成的?

一、学习新知:

1、视频展示台上出示一张,让学生观察并互相说说你发现了什么?

身份证上有姓名、性别、出生年月、发放日期和有效期、编号。

2、师生共同学习身份证上的编号是怎样组成的?

(1)指名介绍身份证号码中自己知道的某些数字表示的意思

(2)你还知道其他的号码有什么意义吗?

(3)师根据学生的介绍补充和小结:

实际上,身份证号码是由18位数字组成:前6位为行政区划代号,第7至14位为出生日期码,第15至17位为顺序码,第18位为校验码。

(4)从身份证号码中你能获得哪些信息?

4、刚才我们学习了身份证号码是怎样编排的,你能试着给自己编一个身份证号码吗?再与户口簿上的身份证号码对照一下。

5、学习例3,我们来给学校的每个学生编一个学号。

①学生思考并讨论学号中要体现的内容:年级、班级、性别、入学年份等

②根据以上内容来设计编码的方法。

③分组活动,共同探讨如何编号。

④最后,以小组为单位来展示本组同学设计的学生学号的编排方法,老师注意引导学生说出每个数字在编码中的作用。

二、巩固练习:

1、完成P115的做一做。

2、介绍自己感兴趣的编码中的每个数字的意义。

三、全课小结:

同学们,今天我们学习了什么?你知道了什么?你还想告诉大家一些什么知识?

五、作业:到图书室去了解一下图书管理员是怎样给众多的图书编码的?

教学内容:人教版课标实验教科书P114~P115以及相应的练习。

教学目标:

1、通过日常生活中的`一些事例,使学生初步体会数字编码思想在解决实际问题中的应用。

2、通过观察、比较、猜测来探索数字编码的简单方法。

3、让学生学会运用数进行编码,初步培养学生的抽象、概括能力。

4、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

教学重难点:通过观察、比较、猜测来探索数字编码的简单方法。

比的应用教学设计 篇8

教学内容:课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的第1~4题。

教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。

教学重、难点:按比例分配的实际应用。

教学过程:

一、导入

1、情境导入

老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)

2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)

二、新授:

1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?

对照课本例2的解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。

师引导:

(1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)

(2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)

(3)你能求出两种作物各播种多少公顷吗?怎样求?

引导学生进行自己解题。

2、引导学生再次阅读例2的解题过程,再次质疑

3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?

4、教学例3。

(1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的`几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。

(5)学生试做“做一做”中的第2题。

先让学生说一说奶糖、水果糖、酥糖和占500千克什锦糖的几分之几?

三、巩固练习。

1.做一做第3题。

2.练习十三的第1、3题。

四、作业。练习十三第2、4题。

比的应用教学设计 篇9

【教学内容】

小学数学实验教材(北师大版)六年级上册第一单元P27-28内容。

【教学目标】

进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。

通过解决实际问题进一步体会百分数与现实生活的密切联系。

【教学重点】

根据百分数的意义列方程解决实际问题。

【教具准备】

多媒体课件。

【学具准备】

【教学设计】

教学过程

教学过程说明

导入

通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)

家庭消费

下表是笑笑的妈妈记录的家庭消费情况:

年份

1985年

1995年

20xx年

食品支出总额占家庭总支出的百分比

65%

58%

50%

其他支出总额占家庭总支出的百分比

35%

42%

50%

你能给大家说说表格所表示的意思吗?

根据表中数据,你有什么发现?

教师提出问题:

1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?

你准备怎样解答这个问题?(小组讨论)

※你觉得直接列式方便吗?为什么?

展示解答过程

解:设这个家庭1985年的总支出是X元。

65%X-35%X=210

30%X=210

X=700

6、如果20xx年食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元?

※学生独立解决

※教师评价

下表是笑笑的妈妈记录的家庭消费情况:

年份

1985年

1995年

20xx年

食品支出总额占家庭总支出的百分比

65%

58%

50%

其他支出总额占家庭总支出的百分比

35%

42%

50%

三、试一试

1、出示教科书P27试一试第2题

2、九五折是什么意思?

3、学生独立解答然后班内交流

解:设这本书的原价是X元。

X-95%X=6

5%X=6

X=120

四、练一练

教科书P28练一练第2题

“增产了两成”是什么意思?

展示解答过程:

解:设去年的产量是X吨。

X+20%X=36000

120%X=36000

X=30000

2、教科书P28练一练第4题

3、教科书P28练一练第5题

五、课堂总结

通过今天的学习你有什么收获?

课前布置学生了解有关生活中百分数的知识。

激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的'百分数,认识到数学应用的广泛性。

提出“各项支出与总支出的关系”,使学生从中了解百分与生活的关系。从数据的变化,让学生体会我们国家的经济不断发展,我们生活水平的不断提高。

学生己有了百分数的知识基础,对于解答这题让学生自己讨论,在讨论交流中,学生感受到百分数,体会百分数与现实生活的密切联系。

由于讨论的问题和数据都来自于学生,这样就使百分数更具有实际意义,学生的学习兴趣和积极性也会大大提高。

拓展学生的思维。综合应用所学的知识解决实际问题。

结合实际对学生进行思想道德教育,学会节俭。

比的应用教学设计 篇10

这学期暑假我参加了清丰县教委中心组织的《多媒体环境下的教学设计与资源应用》课程培训。古语有云“活到老,学到老”,在这个信息高速发展的时代,不能与时俱进,肯定会被淘汰,而这一至真名理,始终需要我们的贯彻实施,同时这也是一个提高自我修养的绝好机会,通过这次培训我学到了很多东西,大概有以下几点:

一.通过这次电脑课程的培训,我知道了教学资源的检索、收集、下载和加工处理的重要性,提高了我对电脑操作的熟练程度,对于相关的软件也可熟练操作,也有了一定的实践经验,对于以后的课件制作是一大助力,了解了多媒体环境下教学设计的特点和方法,也学会了教学资源与教学设计整合的方法,并亲身实践以加深印象。

二.随着时代的发展,信息的变更变得至关重要,有时候掌握信息就等于掌握了未来,而因特网上的大量信息就很好的帮助了我,它让我随时随地的.掌握信息的变化,以更好的掌握时代的发展,能更好的跟上时代的步伐,不至于被淘汰,不过因特网上的信息因为太过庞杂,所以无可避免的夹杂一些有害信息,所以做好信息的筛选尤为重要,这一点也是我们最应该教给学生的,以便他们取其精华,去其糟粕,更好的学习,同时通过这个的学习,也增加了我与学生交流的话题,更好的了解学生的变化,建立和谐的师生关系。

三.通过培训,我认识到了合作的重要性,与小组的几位老师合作的也很愉快,使我充分验证了“众人拾柴火焰高”这句名言,也使我交到了不少良师益友,这些将是我以后学习生活中的榜样和前进的动力。

总之,通过这次的学习培训,我是受益颇多,不仅加强了自己的专业技能,学到了很多多媒体应用技巧,也打开了一扇更为广阔空间的大门,相信未来会更光明。

比的应用教学设计 篇11

教学目的:

1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

2.培养学生分析、解决问题的能力,以及良好的思维品质。

教学过程:

一、复习

1.什么叫长方体、正方体的表面积?

如果告诉了长方体的长、宽、高,怎样求它的表面积?

如果要求正方体的表面积,需要知道什么?怎样求?

2.图中告诉了长方体的什么?

(1)要求前面或者后面的面积,需要用哪两个条件?怎样求?

用9厘米、3厘米这两个条件可以求出哪个面的面积,怎样求?如果要求左面或右面的面积,需要用哪两个条件,怎样求?

这个长方体的表面积怎样求?

(2)按要求列式,不计算。

3.(出示长方体教具)请同学生们看,这是什么体?它有几个面?

如果没有上面,(同时去掉上面)要求它的表面积,就是求几个面的总面积?是哪5个面呢?

如果没有上、下面,(再去掉下面)又是求几个面的总面积,哪几个面?

[说明:以上复习题的设计,突出了逻辑性和灵活性。为学生灵活运用表面积的计算方法,创造性地解决生活中的实际问题,埋下了伏笔。]

二、新课教学

1.揭示课题:长方体、正方体表面积的实际应用。

2.例3:粮店售米用的米箱(上面没有盖),长l.2米、宽0.6米、高0.8米,制作这样一个木箱至少要用木板多少平方米?

(1)读题,说出这道题的题意(或己知条件和问题)

(2)要求用木板多少平方米,就是求木箱的什么?这个木箱有几个面?少了哪一个面?

(3)怎样列式?

a.1.2×0.8×2+0.6×0.8×2+1.2×0.6

=1.92+0.96+0.72

=3.6(平方米)

答:至少要用木板3.6平方米。

b.谁还有不同的方法(并讲出列式思路)。

(1.2×0.8+0.6×0.8)×2+1.2×0.6

(l.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6

[说明:教师让学生审题时,强调题中的隐含条件"上面没有盖",抓住解答本题的关键,又从不同角度引导,加强学生逻辑思维的训练,培养思维的灵活性。]

3.小结:

通过例3的学习,我们知道在解答长方体、正方体表面积的问题时,首先要判断什么?然后就按照有几个面就直接求几个面的面积或先求出6个面的总面积再减去缺少面的面积的方法来解答。

4.如果原已知条件不变,再增加条件和问题,出示如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

(1)提问:求刷油漆的面积就是求几个面的面积,自你会解答吗?请独立完成。

(2)集体评讲。(师板书如下)

1.2×0.8×2+0.6×0.8×2=2.88(平方米)

(1.2×0.8+0.6×0.8)×2=2.88(平方米)

(1.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6×2=2.88(平方米)

(1.2+0.6)×2×0.8=2.88(平方米)

(3)利用教具演示,验证(1.2+0.6)×2×0.8是否正确:如果把它刷油漆的四个面展开,观察是什么形,要求长方形的面积需要知道什么,这个长方形的长是多少?长方形的宽是多少?面积是多少?

[说明:通过上题只改变一个问题,使学生灵活运用知识,变换思路,培养学生集中思维和随机应变的能力,发展思维的灵活性。当学生说出(1.2+0.6)×2×0.8时,教师给予表扬性的肯定,然后教师借助教具的演示,使学生明白刷油漆的四个面展开后与长方形的关系及计算的简洁性,利用了转化思想,培养了学生的思维独创性。]

5.看来,在实际生活中,有些物体不一定要求6个面的总面积。老师带来一幅图,请看,哪些物体是需要求6个面的总面积,哪些是求5个面的或4个面的总面积的?谁还能举出生活中的例子?

[说明:举例说明生活中的求六、五、四个面总面积的物体,不仅提高了学生学习的兴趣,开阔了数学视野,而且使学生感觉到生活中处处有数学,可以学以致用。]

三、巩固练习

1.只列式,不计算。

(1)农民伯伯要做一个不带盖的正方体水桶,底面是边长3分米的正方形,做这样一个水桶至少要用铁皮多少平方分米?

(2)工人叔叔要做一个长方体烟卤,长宽都是3分米,高10分米,求至少要用铁皮多少平方分米?

2.判断下列算式是否正确,并说明理由

一个火柴盒长5厘米、宽4厘米、高1.5厘米,做这样一个外盒至少要用硬纸多少平方厘米?

(1)5×4×2+4×1.5×2 ( )

(2)(4×1.5+5×1.5)×2+5×4 ( )

(3)5×4×2+5×1.5 ( )

(4)(5×4+5×1.5)×2 ( )

(5)(4×1.5)×2×5 ( )

(4+1.5)×2×1.5对不对呢?

请同学们像图一样放置火柴盒,用剪刀沿长剪开,看看是什么图形?要求长方形的面积需要知道什么?长是多少?宽是多少?(4+1.5)冬2×1.5求的`是什么?

[说明:老师在处理判断题时,不仅仅满足于学生说出正常的分析思路,而且紧跟一句"谁还有不同的理由也能说明这道题是错的",培养了学生的多向思维;"哪一种判断方法最快",又培养了学生思维的敏捷性和批判性。当学生的思维遇到障碍时,老师引导学生亲自动手操作去发现,相机点拨,教给了学生探索解决问题途径的策略。]

3.希望小学新盖了一间教室,长8米、宽6米、高4米,工人叔叔要粉刷教室屋顶和四壁。除去门窗和黑板的面积20平方米。

(1)粉刷的面积是多少平方米?

(2)如果每平方米用涂料0.25千克,需要用涂料多少千克?

想一想在实际粉刷过程中,工人叔叔准备35千克的涂料够用吗?为什么?

[说明:"在实际粉刷过程中,工人叔叔准备35千元的涂料,够用吗",看似一句无关紧要的问话,却把学生的思维引向更加严密和周全的角度,这是创造性思维不可缺少的重要品质。]

4.一个长方体的食品盒长6厘米、宽5厘米、高10厘米,在食品盒的四周贴上商标纸,宽度是1.5厘米,贴这样1个食品盒要用商标纸多少平方厘米?

读题后,让学生讲什么叫接头处。

独立思考,并把算式写在练习本上。

[说明:以变化激趣,在变中找不变,使学生养成多层次思考的习惯,培养思维的广阔性。]

四、全课小结

同学们,我们今天学习了什么?你有什么收获?

[说明:最后,教师没有总结本节课所学的知识,而是让学生谈自己的收获。学生不但总结了本节课的知识而且从中明白了许多道理,这一设计打破了原来的教学模式,加深了学生对知识的理解和掌握,诱发了创造性思维。]

[说明:这节课重点突出、逻辑严密、灵活多样,充分调动了学生思维的积极性,在学习的过程中,不时有创造性的思维火花产生。这样设计一是通过一题多解培养了学生探索精神,发展了他们思维的独特性;二是通过简缩思维,培养了学生思维的敏捷性;二是通过联想,培养思维的变通性。]

比的应用教学设计 篇12

【教材分析】

《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。

教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

【学生分析】

学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

【教学目标】

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

【教具准备】

课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

课上准备:有关课件、黄、蓝色颜料、量杯等。

【教学重点】理解按比分配的.实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。

【教学设计】

一、情境导入

情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)

看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)

现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)

【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)

【策略说明:根据武秀华老师的建议“尽量简约,尽量直奔主题,不要做过多的渲染”,开门见山,直奔主题。】

二、实验操作

1、动手操作,调配绿色

师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)

要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。

(学生动手操作,老师进行指导。)

配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。

【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

2、观察发现,得出结论

(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)

师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。

学生调配的绿色可能会出现如下情况:

①所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。

②有两组或两组以上的数据完全相同,则这几组配出来的绿色完全一样。这种情况也分为两种,一种是每组所取的黄色与蓝色同样多,如20ml的黄色和20ml的蓝色,即黄色与蓝色的比为1:1,还有一种是每组取得黄色是相同的,蓝色也是相同的,如每组都取20ml和黄色和30ml和蓝色。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

③有两组或两组以上的数据不同,但配出来的绿色完全一样,即每组所取黄色与蓝色的比相同。教师可以引导学生思考:为什么这几组能配出来相同的绿色呢?

(2)得出结论。师:用什么办法使各组能配出非常接近甚至是一样的绿色呢?

根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是1:3,就可以调配出完全一样的绿色来。

(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。

师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。

【策略说明:这一过程,必须结合课堂上出现的情况进行教学,学生调配出来的绿色不可能是完全一样的,这一矛盾会极大的刺激学生各种感官,引出学生的探究欲望,并得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论。学习的目的性加强了,孩子的学习兴趣被激发出来,由被动接受知识到主动去探究知识,对按比分配的实际意义有了深切的感悟。】

3、再次调配黄色与蓝色的比为3:2的绿色。

(1)动手操作。师:我们需要调配出这种绿色(拿出事先调好的绿色),黄与蓝的比是3:2(板书),从3:2中你能得到什么数学信息?

学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。

【策略说明:主要目的复习旧知,沟通比与分数的关系,为学习新知进行铺垫。】

师:现在我们再来配一次绿色,所需要的黄色与蓝色的比为3:2,怎么配?

(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。

【策略说明:在量取的过程中,学生将体会到黄色占了3份,蓝色占了2份,这为后面解决问题奠定了基础;在观察记录的过程中,学生会发现不管黄色与蓝色的量是多少,黄色与蓝色的体积比都是3:2,不仅可以巩固比的化简内容,还会使学生体会到黄色颜料扩大到原来的几倍,蓝色颜料也要扩大为原来的几倍,为学生今后学习正比例积累了经验。】

三、动笔计算

1、出示问题:我配的绿色是120ml,黄色与蓝色的体积比为3:2,算一算我用的黄、蓝色各是多少ml?请一学生重复问题,教师在黑板上出示习题:用黄色和蓝色颜料调配出120ml的绿色,黄色与蓝色的体积比是3:2,黄色与蓝色各需多少ml?

2、学生独立试做,并交流不同的算法。学生可能出现的算法:

方法1:3+2=5120×3/5=72ml120×2/5=48ml

师:2/5和3/5各表示什么?说给同桌听一听。

方法2:3+2=5120÷5×3=72ml120÷5×2=48ml

师:谁能说说他是怎么想的?

方法3:解:设一份量为xml。

3x+2x=120

5x=120

x=24

3x=24×3=72

2x=24×2=48

方法4:3+2=5120÷5/2=48ml120÷5/3=72ml

3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)

4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。

【策略说明:我认为,通过计算解决按比分配的问题是学生应该掌握的,这一环节的设置主要是要让学生在解决问题的过程中体会同一问题可以从不同角度去思考,得到不同的解决策略,这有利于学生思维的广度发展。其次,强化了用分数乘除法解题,因为用分数的方法有利于加强知识间的联系,使孩子的思维不仅仅局限于整数乘除法范畴,又上升了一个新的高度。再次书中的习题都是给出总量求部分量的题,而最后一题是已知部分量根据比求另一个部分量,因为这种问题在实际生活中很常见,虽然有一定难度,但由于数量简单,因此学生并不难解决】

三、小结

像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)

【策略说明:此环节第一个目的是让学生进一步体会按比分配在生活中的实际意义,另一个目的是还可以利用学生搜集的资料,改编成练习题,使学真实地感到数学与生活的联系。同时,学生搜集到的资料能够被老师所用,对学生来说也会感到很自豪,对学生的激励作用不言而喻。教师必须提前掌握学生搜集的资料,也可以为学生提供一些资料。】

四、巩固应用

1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。

师:一顿饭一个孩子大约需要100g菜,这100g菜中各类食物应该是多少克呢?你能用分数的方法解决这个问题吗?(做完同学在小组长的带领下,组内互相检查,并交流各自的做法。)教师再次提问:“你认为这道题最关键的环节是什么?”

2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)

老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。

咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。

(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)

你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)

【策略说明:巩固应用部分的两个练习的设计,充分体现了“学生活中的数学、学有用的数学”这一理念。生活中应用按比分配的例子很多,孩子搜集到的有关资料都是可利用的资源,直接用孩子的资料编题,寻找解决问题的策略,可以让孩子进一步感受到这样的知识在生活中应用十分广泛,体会到学习数学的价值;其次,这些内容都是学生身边的事,和他们的生活息息相关,同时又是学生感兴趣的,学生在学习时不仅不会感到枯燥,同时他们用今天学过的知识解决了身边的数学问题,会有一种成就感与满足感,这样“身临其境”地学数学,学生不会有一种突冗的陌生感,反之具备了一种似曾相识的接纳心理。】

四、总结。

1、刚才我们根据2:13这个比解决了几个问题?这两个问题有什么不同?不管是给出部分量,根据比求总量,还是给出总量,根据比求部分量,都属于比的应用的问题。解决这类问题可以采取什么策略?

2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。

比的应用教学设计 篇13

教学目的

1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

2、使学生加强了解列一元一次方程解应用题的方法步骤。

教学分析

重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

难点:寻找相遇问题中的相等关系。

突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。

教学过程

一、复习

1、列方程解应用题的一般步骤是什么?

2、路程、速度、时间的关系是什么?

3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

二、新授

1、引入

列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。

例(课本P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:

慢车行程+快车行程=两站路程

设两车行了x小时相遇,则两车的.行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

(2)再分析快车先开了30分两车相向而行的情形。

同样画出图形,并按课本讲解,(见教材P217~218)

由学生完成求解过程,并作出答案。

解:略

说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

(2)不是同时出发的,要注意时间的关系。

三、练习

P220练习:1,2。

四、小结

1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

2、相向而行的相遇问题中,要注意时间的关系。

五、作业

1、P222 4.4A:13,14,15。

2、基础训练:同步练习3。

比的应用教学设计 篇14

教学内容:

北师大版小学数学教材六年级上册第55—56页。

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、进一步体会比的意义,感受比在生活中的广泛应用。

3、提高解决问题的能力。

教学重点:

理解按一定比例来分配一个数量的意义。

教学难点:

根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分的量。

教学准备:

PPT

三角形学具

练习题

教学过程:

一、复习引入:

师:同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“六年级一班的男生人数与女生人数之比是3:4”,(PPT)从这个比中,你能推断出什么信息呢?

生1:女生人数与男生人数之比是4:3、

生2:全班的人数是7份,男生占其中的3份,女生占其中的4份。

生3:男生人数是女生人数的3/4。

生4:女生人数是男生人数的4/3、

生5:男生人数是全班人数的3/7。

生6:女生人数是全班人数的4/7。

生7:男生人数比女生人数少1/4。

生8:女生人数比男生人数多1/3、

师:看来,同学们对“比”的知识掌握得相当不错。

二、探究新知:

1、创设情境:

师:最近,笑笑遇到了一个问题。(PPT)谁来说说是什么问题?

生:她要把一筐橘子分给幼儿园的大班和小班,可是不知道怎么分合理。

师:你们能帮助她吗?怎么分合理?谁来说说你的想法?

生1:按班级来分,每个班分这筐橘子的一半。

师:每个班分这筐橘子的一半,这是我们以前所学习过的哪种分法?

生:平均分。

师:还有谁想发表自己的意见?

生2:按大班和小班的人数比来分。

师:按人数比来分是按几比几分?

生:按3:2分。(板书:3:2)

师:那你们知道“平均分”是按几比几来分吗?

生:按1:1分。

师:我们以前所提到的“平均分”,其实就是按照1:1的比进行分配,但是在一些特殊的情况下按照“平均分”并不合理。这时候我们就要考虑一些特定的因素,然后按照一定的比来进行分配。(PPT:按3:2分合理)

2、揭示课题:

师:这节课,我们就来学习按一定的比进行分配的实际问题。(板书:比的应用)

3、分一分。

(1)出示题目:这筐橘子按3:2应该怎样分?(PPT)

①小组合作(用三角形代替橘子,实际操作)。

师:请同学们以小组为单位,拿出你们桌上的纸袋,用里面的三角形代替橘子,来实际操作一下。请大家一边分,一边在本子上记录下你们分配的过程。最后看看大班和小班各能分到多少个橘子。

②小组汇报。(投影学生的分配记录)

师:分好了吗?哪个小组愿意来说说你们分配的过程?

生1:我们是这样分的:先给大班3个,小班2个;然后再给大班3个,小班2个;第三次还是给大班3个,小班2个,就这样,我们一共分了8次,分完了。我们由此知道这堆三角形有40个,最后大班分到了24个,小班分到16个。

师:分了8次分完了,看来你们做事比较有耐心。事实上很多科研成果也是通过科学家们的无数次实验得来的,所以耐心完成一件工作是值得我们学习的。

生2:我们前两次分的方法和他们一样,第三次分的时候我们发现还剩下很多,我们就给大班分了6个,小班分4个,这样又分了2次就分完了。这堆三角形有40个,最后大班分到24个,小班分到16个。

师:分的结果都一样,但看来你们分的次数要比他们少一些,分得快一些,看来你们也动了脑筋。

生3:因为要按3:2来分,而三角形有一大堆,所以我们就想给大班分30个,小班分20个,后来发现三角形不够,就换成给大班15个,小班10个;剩下的大班给9个,小班给6个,一下子就分完了。

师:你们虽然开始不够,但你们的想法很好,而且实际上你们也一下子就分完了,能干。

生4:列算式解。

师:利用份数来解决这个问题,你们的见解很独到。

③发现规律。

师:同学们,在刚刚分三角形的过程中,你们有什么发现?(PPT:表格)谁来说一说?

生1:我觉得不管怎样分,我们都要按照3:2的比来分,也就是我们每次分的三角形的个数都必须是3:2、

生2:我发现6:4,30:20,15:10,9:6结果都是3:2、

生3:我觉得按3:2的比来分和以前我们学过平均分是不一样的。平均分两个人分得的个数相同,而按3:2的比分来分的话,两个人分得的个数不同。

(2)出示题目:如果有140个橘子,按照3:2又应该怎样分?(PPT)

①独立思考,合作交流。

师:如果现在有140个橘子,按照3:2分给大班和小班,又该怎么分呢?每个班能分到多少个?请同学们思考一下,自己在本子上写一写,算一算。写完之后,可以在小组内交流交流。②汇报展示。(抽生板演列式的两种方法)

师:还有不同的方法吗?(投影其他方法)

师:这是谁做的?你是怎么想的?

方法一:表格

方法二:画图。

方法三:列式。

A:3+2=5140×3/5=84(个)140×2/5=56(个)

答:大班分84个,小班分56个,比较合理。

师:为什么要用“3+2”?“3/5”在这里表示什么?

生:用“3+2”算出橘子的总份数,3/5表示大班能分到橘子总数的3/5。

B:3+2=5140÷5=28(个)28×3=84(个)28×2=56(个)

答:大班分84个,小班分56个,比较合理。

师:为什么要“÷5”?

生:“÷5”是把总数平均分成5份,先求出1份是多少,再给大班分3份,小班分2份。

③比较不同的方法。

师:还有其他的做法吗?刚刚同学们想的这些方法都可以。在这么多的方法中,你比较喜欢哪一种呢?

师:列式计算的`A方法,是先求出总份数,然后找到各部分的数量占总量的几分之几,最后按照“求一个数的几分之几是多少”的方法,求出各部分的数量;而列式计算的B方法,是先求出总份数,然后算出一份的数量,最后根据各部分所占的份数来求出各部分的数量。

4。小结。

师:我个人觉得,同学们的这些方法各有千秋,都很不错,建议大家都掌握。那么在解决实际问题的时候,关键还是要认真分析数量关系,弄清各个数量之间的份数。

三、巩固新知。

1、填一填。

师:在我们的生活中,还有许许多多按照一定的比来进行分配的问题,下面我们就一起来看一看。(PPT)

师:(5题)甲班能得到18本。怎么得到的?(2题)按1:1来分,也就是平均分。

2、试一试。

师:试一试你能试着独立完成吗?做在课堂作业本上。(投影学生作业)

师:写完了吗?我们来看看这位同学做的。对吗?

生:回答。

四、知识拓展:

1、数学故事:阿凡提分马。

师:紧张的学习之后,我们一起来看一个小故事。(PPT)

师:听了这个故事,你想说什么?

师:其实,这个故事的问题根本,其实是在于原先商人的遗嘱中,1/2,1/4和1/6相加的和不为1、有兴趣的同学,我们可以下来以后再讨论。

2、闯关活动。

师:老师这里还有几个问题,想请同学们思考一下。

五、课堂小结。

师:通过今天的学习,同学们有什么收获呢?

大家都在看