知远网整理的初中数学优秀教案(精选14篇),希望能帮助到大家,请阅读参考。
初中数学优秀教案 篇1
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的'定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。
解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;
xy5:系数是 ,次数是6; :系数是― ,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化简的结果是:3ab2,求值的结果是 。
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。
解:此多项式为3x3―5x2y―2y3;值为― 。
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
初中数学优秀教案
作为一位杰出的老师,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?下面是小编整理的初中数学优秀教案,仅供参考,大家一起来看看吧。
初中数学优秀教案 篇2
一、教材、学情分析
“扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。
学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。
二、教学目标
知识与技能目标:
1、通过实际问题认识扇形统计图的含义和特点;
2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。
过程与方法目标:
1、在收集数据的过程当中,学会合作学习,并了解收集数据的方法步骤;
2、在从扇形统计图中获取信息的过程当中,学会相互交流、相互评价;
3、在决策和形成猜想中的过程当中,感受收集和利用数据是非常重要的。
情感与态度目标:
1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;
2、在问题解决的过程当中,品尝发现带来的欢乐,树立学好数学的自信心。
三、教学重点和难点
重点:在合作讨论的过程当中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。
难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。
四、教学和活动过程
(一)教学准备阶段
1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);
2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。
(二)教学流程
1、引入 前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)
射击 4 12。5%
球类 8 25%
水上项目 8 25%
力量型项目 9 28。125%
田径 2 6。25%
体操 1 3。125%
从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)
引入设计说明:
1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。
今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。
2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。
用圆和扇形分别表示关于总体和各个组成部分数据的`统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。
第一问、第二问学生回答;
第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分,这个直角就是圆心角。
这样学生更直观、清楚地理解了圆心角的概念。
还有奔驰汽车的标志,把圆分成相等的三部分,圆心角为120。
总结:圆心角的度数为所占的比例乘以360。
请一个学生回答第三问。
3、做一做,P152,第(2)小题后面部分,老师分析。
4、合作活动,师生互动(主要让学生学会画扇形统计图)
提出问题—→调查情况—→收集数据—→整理数据—→画图
问题:同学们从家里到学校交通情况。
学生举手,一个学生点数,另一个学生记录,得出有关数据。
①步行 20人 40% 144 不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。
②骑自行车 15人 30% 108
③坐公交 10人 20% 72
④其他 5人 10% 36
画图步骤:1、画一个圆;
2、按各组成部分所占的比例算出各个扇形的圆心角度数;
3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。
注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。
学生再看例题:气象资料统计图,计算圆心角度数需用计算器。
5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。
6、作业 1)P153 ①②③④,思考题⑤
2)收集扇形统计图,渠道来自报纸、杂志、上网查询。
3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。
五、教学设计说明
新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。
初中数学优秀教案 篇3
教学目标
1. 使学生掌握不等式的三条基本性质;
2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.
教学重点和难点
重点:不等式的三条基本性质的运用.
难点:不等式的基本性质3的运用.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1. 什么叫不等式?说出不等式的三条基本性质.
2. 当x取下列数值时,不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列数量关系:
(1) x的3倍大于x的2倍与5的差; (3)y的与x的的'差小于2;
(2) y的一半与4的和是负数; (4)5与a的4倍的差不是正数.
4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:
(1)m>n,两边都减去3; (2)m>n,两边同乘以3;
(3)m>n,两边同乘以-3; (4)m>n,两边同乘以-3;
(5)m>n,两边同乘以 .
(以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。
二、讲授新课
例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.
(1)若a–3<9,则a_____12; (2)若-a<10,则a_____–10;
(3)若a>–1,则a_____–4; (4)若-a>,则a_____0.
答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3.
(3)a>-4,根据不等式基本性质2. (4)a<0,根据不等式基本性质3.
(在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=
例2 已知,用a<0,“<”或“>”号填空:
(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。
答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1.
(3)因为3a,根据不等式基本性质2. (4)->0,根据不等式基本性质3.
(5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.
(6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。
(7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.
又已知,-1<0,所以a-1<0.
(8)因为。a<0,所以a≠0,所以|a|>0.
(本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)
例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)
(1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为a<b,所以<>'
(5)因为>-1,所以a>4; (6)因为-1>-2,所以-a-1>-a-2;
(7)因为3>2,所以3a>2a.
答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2. (4)不对,根据不等式基本性质3,应改为>; (5)因为>-1,所以a>4
答:(1)正确,根据不等式基本性质3。 (2)正确,根据不等式基本性质1。
(3)正确,根据不等式基本性质2。 (4)不对,根据不等式基本性质3,应改为。
(5)不对,根据不等式基本性质5,应改为a<4。
(6)正确,根据不等式基本性质1。 (7)不对,应分情况逐一讨论。
当a>0时,3a>2a。(不等式基本性质2)
当a=0时,3a<2a。
当a<0时,3a<2a。(不等式基本性质3)
(当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)
三、课堂练习(投影)
1。按照下列条件,写出仍能成立的不等式:
(1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;
(3)由7>5,两边都乘以不为零的-a。
2?用“>”或“<”号填空:
(1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;
(3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;
(5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。
四、师生共同小结
在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。
五、作业
1。根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)x>-x+6;
(3)3x>7; (4)-x<-3。
2。设a<b,用“>”或“>”号连接下列各题中的两个代数式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4); (5); (6)-b,-a。
3。用“>”号或“<”号填空:
(1)若a-b<0,则a_____b; (2)若b<0,则a+b_____a;
(3)若a=0,则a+b_____b; (4)若<0,则ab_____;
(5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。
课堂教学设计说明
由于本节课的教学目标是使学生进一步掌握不等式基本性质,尤其是基本性质3。故在设计教学过程时,注意在教师的主导作用下让学生以练为主,从而使学生在初步掌握不等式的三条基本性质的基础上,通过口答,笔做,讨论等不同的方式的练习,提高学生将不等式正确、灵活进行变形的能力。
初中数学优秀教案 篇4
一、教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计
1、创设情境,提出问题
2、实验操作,模型构建
3、回归生活,应用新知
4、知识拓展,巩固深化
5。感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20__年国际数学的`一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建
1、等腰直角三角形(数格子)
2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。
四、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题
2、12、搜集有关勾股定理证明的资料。
六、板书设计:探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
七、设计说明:
1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。
2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。
初中数学优秀教案
作为一位兢兢业业的人民教师,就有可能用到教案,借助教案可以让教学工作更科学化。那么优秀的教案是什么样的呢?以下是小编整理的初中数学优秀教案,仅供参考,希望能够帮助到大家。
初中数学优秀教案 篇5
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的'定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。
解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;
xy5:系数是 ,次数是6; :系数是― ,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化简的结果是:3ab2,求值的结果是 。
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。
解:此多项式为3x3―5x2y―2y3;值为― 。
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
初中数学优秀教案 篇6
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的.推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1:菱形的四条边都相等;
性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2四边都相等的四边形是菱形.
五、例习题分析
例1(教材P109的例3)略
例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
证明:∵四边形ABCD是平行四边形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.
又EF⊥AC,
∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
初中数学优秀教案 篇7
教学目标
知识
技能 1.通过观察实验,使学生了解圆心角的概念.
2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.
过程
方法 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.
情感
态度 激发学生观察、探究、发现数学问题的兴趣和欲望.
教学重点
在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.
教学难点
探索定理和推导及其应用.
教学过程设计
教学程序及教学内容 师生行为 设计意图
一、导语这节课我们继续研究圆的性质,请同学们完成下题.
1.已知△OAB,如图所示,作出绕O点旋转30、45、60的图形.
2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?
二、探究新知
(一)、圆心角定义
在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.
(二)、圆心角、弧、弦之间的关系定理
1.按下列要求作图并回答问题:
如图所示的⊙O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到A‵OB‵的位置,你能发现哪些等量关系?为什么?
得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.
2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?
综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?
4.定理拓展:
○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?
○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上得到
在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.
综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.
(三)、定理应用
1.课本例1
2.如图,在⊙O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF.
(1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?
三、课堂训练
完成课本83页练习
补充:如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,APM=CPM.
(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
四、小结归纳
1.圆心角概念.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量都分别相等,及它们的应用.
五、作业设计
作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫
学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30,就是旋转角是30
学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,
学生按照要求作图,并观察图形,结合圆的'旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.
学生思考,类比同圆中得到的结论进行探究,猜想,并验证
学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.
教师引导学生类比定理独立用类似的方法进行探究,得到推论
学生审题,理清题中的数量关系,由本节课知识思考解决方法.
教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.
让学生尝试归纳,总结,发言,体会,反思,教师点评汇总
通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础
通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.
为继续探究其推论奠定基础.
感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.
给出一般叙述,以其更好的应用.
培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.
运用所学知识进行应用,巩固知识,形成做题技巧
让学生通过练习进一步理解,培养学生的应用意识和能力
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
板 书 设 计
课题
圆心角、弧、弦之间的关系定理 关系定理应用
1. 2. 归纳
教 学 反 思
初中数学优秀教案 篇8
教学目标:
1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。
2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。
3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。
教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。
教学难点:探索相似多边形的定义过程。
教学过程:
(一)创设情景,导入新课。(3分钟)
由于学生已经学习了形状相同的图形,在这里我向学生展示一组图片(课件),引导学生从中找出形状相同的图形。学生回答后,利用课件演示抽象出多边形。
大多数学生可能会指出黑板边框的内外边缘所围成的矩形的形状也相同。我紧接着创设悬念:这两个矩形的形状相同吗?
利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。此时的学生肯定倍感疑惑,急切想探个究竟。教师顺势导入新课:
那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形。
(二)自主学习,合作探究。(15分钟)
1、动手实验,初步感知定义。
课前发给每个小组一套相似多边形的图片(其中包括两个相似三角形、一个等边三角形、两个相似四边形),组织学生按形状相同给多边形找朋友。然后引导学生以小组为单位从中选择一组多边形探究解决下面问题。
(1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。
(2)在这两个多边形中,相等的内角的两边是否成比例?
(设计意图:引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励。)
对相等内角的两边是否对应成比例这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点。
利用多媒体演示形状相同的六边形的对应角相等,然后让学生观察计算得到,相等的内角的两边成比例。然后给出对应角、对应边的概念,引导学生明确对应角、对应边的含义。
2、特例探究,进一步体验定义。 (课件出示问题)
例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?
(1)三角形ABC与正三角形DEF;
(2)正方形ABCD与正方形EFGH.
(设计意图:引导学生通过自主探究解决这个问题后进行适当引申,使学生认识到:边数相同的正多边形都相似。)
3、归纳总结,形成概念。
教师设问:回忆一下我们刚才探究过的每一组多边形,你能发现它们的共同特点吗?(课件出示四组图形)
(设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书。随即给出相似多边形的表示方法和相似比的概念,接下来引导学生回忆表示全等三角形时应注意的问题,也就是要把表示对应顶点的字母写在对应的位置上,然后引导学生用类比的方法得到:在记两个多边形相似时也要把表示对应顶点的字母写在对应的位置上,说明相似比与两个多边形叙述的顺序有关。)
4、深化理解。
(1)满足什么条件的两个多边形相似?
(2)如果两个多边形相似,那么它们的对应角和对应边有什么关系?
(设计意图:使学生认识到:相似多边形的定义既是最基本最重要的判定方法,也是最本质最重要的特征。)
(三)辨析研讨,知识深化。(14分钟)
1、议一议:
(1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。 (课件出示图形)
(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
(3)如果两个菱形相似,那么他们需要满足什么条件?
(设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,各角分别对应相等、各边分别对应成比例这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)
2、做一做。
设问:学到这儿,你认为黑板边框内外边缘所成的这两个矩形相似吗?请你计算说明。课件出示问题:
一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)
(设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的.拓展和延伸。)
拓展一:如果将黑板的上边框去掉,其他条件不变。
那么边框内外边缘所成的矩形相似吗?为什么?
拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,
边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?
(设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)
(四)学以致用,巩固提高。(6分钟)
慧眼识金!
1、判断下列各题是否正确:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)对应边成比例的两个多边形相似 问题解决!
2、下图中两面国旗相似,则它们对应边的比为 。
3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?
(课件出示图形)
(设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题。这是一组基础题,意在巩固相似多边形的定义以及相似比的计算。)
(五)课堂小结,知识升华。(2分钟)
师生共同完成。
(设计意图:教师首先肯定学生在课堂中大胆的猜想和思维的积极性,然后引导学生从几方面进行反思:我学会了什么,我最感兴趣的是,我发现了什么,我能解决,我获得的数学方法是帮助学生构成新的知识网络,形成技能。)
(六)布置作业:
1、 P113 习题第3题
2、画一画:在方格纸中画出两个相似多边形。
3、探究题:小林在一块长为6m,宽为4m一边靠墙的矩形的小花园周围,栽种了一种蝴蝶花装饰,这种蝴蝶花的边框宽为20cm,边框内外边缘所围成的两个矩形相似吗?第1、2题作为必做题;第3题作为选做题,是对课堂上做一做的再次拓展和延伸:当矩形的长与宽的比不再是2:1时,边框内外边缘所围成的两个矩形还相似吗?
板书设 4、相似多边形
定义: 各角对应相等,
各边对应成比例
表示方法:∽
相似比:
初中数学优秀教案 篇9
教学设计思想:本节安排1课时讲授;影子是生活中常见的现象,教学中引用太阳光照射下的影子种种生活中的实例,目的是让学生体会影子在生活中的存在,激发学习的兴趣。课前布置作业让学生观察不同时刻物体影子的变化,亲自感受变化的情况,再通过教师讲授逐步加深对投影相关概念的理解,并掌握其应用。
教学目标:
1.知识与技能
经历实践、探索的过程,知道平行投影、正投影的含义;
能够确定物体在太阳光下的影子的特征;
知道在不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
2.过程与方法
通过观察、想象、实践形成一定的空间想象能力,发展空间观念;
探索不同时刻不同物体的影子的变化规律:影子长的比等于物体高度的比。
3.情感、态度与价值观
通过理论研究自然现象,引发对大自然和社会生活探索的欲望,提高学习兴趣,增进数学的应用意识。
教学重点:理解平行投影的含义。
教学难点:通过对平行投影的认识进行物体与投影之间的相互转化。
教学方法:启发式。
教学安排:1课时。
教学媒体:幻灯片。
教学过程:
课前准备:让学生在课前观察物体在阳光下的影子,自己总结出一些结论。
一、创设情景
问题1:
师:请看这幅图片,哪位同学知道这是什么?(提出问题,激发学生的兴趣)
教师陈述:日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成。
当太阳光照在日晷上时,晷针的影子就会投向晷面。随着时间的推移,晷针的影子在晷面上慢慢地移动。以此来显示时刻。(看下图)
设疑激趣:利用古代显示时刻的物体来引起学生的兴趣。
二、引出课题
问题2:
师:太阳光可看成平行的直线,在阳光下,我们经常看见物体的影子,那同学们你们知道影子的长短和方向在一天中是怎样变化的吗?
下面我们来看几副图片:(幻灯显示)
(1) (2) (3)
上面的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,请根据树的影子,判断拍摄的先后顺序,并说明理由。
生:通过这几天观察,如果上午观察物体的影子,都是逐渐变短的一个过程,所以拍摄的先后顺序是:(3)→(2)→(1)。
师:这位同学回答的很正确;但是哪位同学能解释一下呢?
生:上午太阳从东方地平线上升起,逐渐升高,这里我们把太阳光线看成平行的直线,根据以前我们学过的几何知识,通过画图,显而易见影子随着太阳的升高逐渐变短的。
师:回答的很好;根据上面的总结,我们观看下面的图片,观察有什么变化?
在我国北方地区,人们居住的房屋窗户大多是朝南的,中午某时刻室内的窗影在一年四季里会有什么变化呢?
学生相互讨论,交流。
生:夏天的时候影子是最短的,冬天是最长的,春秋次之。
活动:学生有丰富的关于影子的生活经验,让他们结合经验想象自己的影子从早到晚是如何变化的(包括大小和方向)?并叫三个学生代表太阳、物体、影子,模拟太阳东升西落。得出结论:大——小——大;西——北偏西——正北——北偏东——东。
教师总结:物体在光线的照射下,会在地面或墙面上留下它的影子,这种现象就是投影(projection)。
太阳的光线可看做平行线的,像这样的光线照射在物体上,所形成的投影叫做平行投影。光线是投影线,地面或墙面是投影面。
如上图,用一束平行光线竖直照射水平放置的三角尺上,投影线、三角尺在水平面上的投影是平行投影。在这种平行投影中,光线是竖直照射在水平面上的。像这种平行投影又叫做正投影。
现在大家对投影有了一定的了解,再看下面这个图形,思考问题:[
如图,正方体正面(R面)在V面上的正投影 。
1.R面的正投影是什么图形?与R面相对的面的在正投影是什么图形?
2.Q面的正投影是什么图形?与Q面相对的面的正投影是什么图形?
3.P面及与它相对的面的正投影分别是什么图形?
学生相应回答上面的问题。
师:我们学习了投影的相关概念,也观看了许多投影的图片,那同学们思考这样的问题:
(1)一个物体的'正投影是立体图形还是平面图形?
(2)点、线段和多边形的正投影可能分别是什么图形?
第一问显而易见,教师可以找中下等学生回答。
第二问教师可以通过课件演示,学生观看,回答问题。(参看课件:点、线、面的投影)
师生互动:
例:旗杆直立在A处,它的平行投影如图所示。
(1)请画出小明站在B处时的投影(用线段表示)。并说明你这样画的理由。
(2)如果小明站在C处,请画出他的投影(用线段表示),并比较小明站在B、C两处投影的长短。
(3)旗杆的高度与它投影长的比和小明的身高与他投影长的比有什么关系?为什么?
学生在教师的引导下,自主完成这道例题,教师再进行讲解。
教师总结:一般地,两个直立于地面的物体在阳光下的投影,或平行或在同一条直线上,两个物体、他们的平行投影及过物体顶端的投影线,分别组成直角三角形,这两个三角形相似。
三、练习
1.大致说出我国北方的确一天中(早晨、中午、傍晚),人在阳光下的投影的方向和长短。
2.下图是一棵大树在阳光下的投影,请画出另一棵树的投影(用线段表示)。
3.结合地理知识,谈谈在我国哪些地区会有太阳直射现象。这时人的投影是什么样的?
四、课堂总结
板书设计:
平行投影
一、导入 平行投影
问题1: 正投影
二、新授 例:
问题2:
三、练习
投影:
四、总结
初中数学优秀教案 篇10
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的`态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
初中数学优秀教案 篇11
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。
解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;
xy5:系数是 ,次数是6; :系数是― ,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通过此题强调:(1)去括号(包括去多重括号)的`问题;(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化简的结果是:3ab2,求值的结果是 。
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。
解:此多项式为3x3―5x2y―2y3;值为― 。
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
初中数学优秀教案 篇12
学习目标:
1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾
1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。
2、样本1、2、3、0、1的平均数与中位数之和等于___.
3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是.
4、数据1,6,3,9,8的极差是
5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。
二、专题练习
1、方程思想:
例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.
点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:
2、分类讨论法:
例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;
点拨:做题过程中要注意满足的条件。
同类题连接:数据-1 , 3 , 0 , x的极差是5 ,则x =_____.
3、平均数、中位数、众数在实际问题中的应用
例:某班50人右眼视力检查结果如下表所示:
视力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人数2 2 2 3 3 4 5 6 7 11 5
求该班学生右眼视力的平均数、众数与中位数.发表一下自己的`看法。
4、方差在实际问题中的应用
例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:
甲:5 8 8 9 10
乙:9 6 10 5 10
(1)分别计算每人的平均成绩;
(2)求出每组数据的方差;
(3)谁的射击成绩比较稳定?
三、知识点回顾
1、平均数:
练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
2、中位数和众数
练习:1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25 B.23、24 C.25、25 D.23、25
3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分50 60 70 80 90 100 110 120
人数2 3 6 14 15 5 4 1
分别求出这些学生成绩的众数、中位数和平均数.
3.极差和方差
练习:1.一组数据X 、X …X的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
2.如果样本方差,
那么这个样本的平均数为.样本容量为.
四、自主探究
1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.
则:101、102、103、104、105、的平均数是,方差是。
2、4、6、8、10、的平均数是,方差是。
你会发现什么规律?
2、应用上面的规律填空:
若n个数据x1x2……xn的平均数为m,方差为w。
(1)n个新数据x1+100,x2+100, …… xn+100的平均数是,方差为。
(2)n个新数据5x1,5x2, ……5xn的平均数,方差为。
五、学后反思:
xxx
初中数学优秀教案 篇13
教学目的
1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的'一一对应,渗透数形结合的思想。
教学分析
重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程
一、复习
1、什么叫有理数?
2、有理数可以如何分类?
(按定义分与按大小分。)
二、新授
1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:
5、实数的绝对值:
6、实数的运算
讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判断题:
(1)任何实数的偶次幂是正实数。()
(2)在实数范围内,若| x|=|y|则x=y。()
(3)0是最小的实数。()
(4)0是绝对值最小的实数。()
解:略
三、练习
P148练习:3、4、5、6。
四、小结
1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业
1、P150习题A:3。
2、基础训练:同步练习1。
初中数学优秀教案 篇14
学习目标:
1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾
1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为xxxxxxxx。
2、样本1、2、3、0、1的平均数与中位数之和等于xxx.
3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是.
4、数据1,6,3,9,8的极差是
5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。
二、专题练习
1、方程思想:
例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的`得分是xxxxxxxxxxxxx.
点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:
2、分类讨论法:
例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是xxxxxxxxxxx;
点拨:做题过程中要注意满足的条件。
同类题连接:数据-1 , 3 , 0 , x的极差是5 ,则x =xxxxx.
3、平均数、中位数、众数在实际问题中的应用
例:某班50人右眼视力检查结果如下表所示:
视力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人数2 2 2 3 3 4 5 6 7 11 5
求该班学生右眼视力的平均数、众数与中位数.发表一下自己的看法。
4、方差在实际问题中的应用
例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:
甲:5 8 8 9 10
乙:9 6 10 5 10
(1)分别计算每人的平均成绩;
(2)求出每组数据的方差;
(3)谁的射击成绩比较稳定?
三、知识点回顾
1、平均数:
练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
2、中位数和众数
练习:
1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25 B.23、24 C.25、25 D.23、25
3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分50 60 70 80 90 100 110 120
人数2 3 6 14 15 5 4 1
分别求出这些学生成绩的众数、中位数和平均数
3.极差和方差
练习:
1.一组数据X 、X …X的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
2.如果样本方差,
那么这个样本的平均数为.样本容量为.
四、自主探究
1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.
则:101、102、103、104、105、的平均数是,方差是。
2、4、6、8、10、的平均数是,方差是。
你会发现什么规律?
2、应用上面的规律填空:
若n个数据x1x2……xn的平均数为m,方差为w。
(1)n个新数据x1+100,x2+100, …… xn+100的平均数是,方差为。
(2)n个新数据5x1,5x2, ……5xn的平均数,方差为。
五、学后反思:
xxx