圆的面积教学设计

知远网

2025-09-23教案

知远网整理的圆的面积教学设计(精选15篇),希望能帮助到大家,请阅读参考。

圆的面积教学设计 篇1

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:

推导出圆的面积公式及其应用。

教学难点:

圆与转化后的图形的联系。

教具、学具:

剪刀、图片,圆片4等份……64等份的拼图对比挂图。

教学过程:

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的.?(小黑板出示推导图形及公式)

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、转化后的图形与原来的图形面积相等吗?(板书:等积)

6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

圆的面积教学设计 篇2

教学目标:

1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:能正确、熟练地进行圆周长和面积的计算。

教学难点:从探究活动过程中去发现圆与正方形之间的关系。

教学准备:课件,学具。

教学过程:

一、复习旧知,梳理体系

直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

小组合作,让同学们把所学的知识整理一下,然后进行汇报。

汇报交流,课件出示相关内容。

(1)圆的认识:

圆心O:决定圆的位置;

直径d:决定圆的大小;

半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

圆是轴对称图形,有无数条对称轴。

(2)圆的周长:

围成圆的曲线的长度叫圆的周长。

圆周率:周长与直径的比,是个无限不循环小数。

圆周长的计算:。

(3)圆的面积:

由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

圆面积计算:。

圆环的面积:。

【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

二、基本练习,整合知识

教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

1.说说下面各题的最简整数比:

(1)一个圆的半径和直径的比是多少?(1:2)

(2)一个圆的周长和直径的比是多少?(:1)

(3)两个圆的半径分别是2cm和3cm,,它们的直径比是多少?(2:3)

周长的比是多少?(2:3)

面积的比是多少?(4:9)

【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

2.一个公园是圆形布局,半径长1km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41km。(课件出示题目情境)

(1)这个公园的围墙有多长?

教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1km,就能求出圆的周长是6.28km。)

(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2km。)

(3)如果公园里有一个半径为0.2km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

三、探究学习,培养能力

1.用三张同样大小的正方白铁皮(边长是1.8m)分别按下面三种方式剪出不同规格的`圆片。(课件出示问题情境)

(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

(2)剪完圆后,哪张白铁皮剩下的废料多些?

教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

(3)根据以上的计算,你发现了什么?

【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

四、回顾总结,交流收获

教师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

圆的面积教学设计 篇3

教学内容: 圆的面积 教学目标:

1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

2、理解圆的面积公式的推导过程,感受转化的数学思想。

3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

教学重难点:

重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:

一、谈话引入

明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)

导入课题:圆的面积

二、引导探究

1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?

(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?

(2)猜测圆的面积与半径有什么关系?

正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……

2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。

A、长方形、正方形,直接用面积单位去量,找规律得到的;

B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。

(2)统一认识,寻求转化的方法

A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;

B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。

(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形

同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的`。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。

长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)

长方形的面积 = 长 × 宽

圆的面积 = 圆周长一半( r)×半径(r)

S = π r2 B、拼成近似的三角形

三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2

B、圆的面积与什么有关?回到课始的猜测。

三、总结

本节课你有什么收获?

四、实践

1、已知r=4cm,求S。

2、已知d=8cm,求S。

板书设计:

圆的面积

圆所占平面的大小叫圆的面积。

长方形的面积 = 长 × 宽

圆的面积 = πr × r = πr2

《 圆的面积》教学反思

济渎路 翟彩艳

圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

一、感受圆的周长与面积的不同

本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

二、学具演示,激发探究

通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

三、分层练习,体验运用价值

结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地

参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教学设计 篇4

教学内容分析:

圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

学生情况分析:

小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,六年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以教学时应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

【教学目标】:

1.认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2.过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3.情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

【教学重点】:掌握圆的面积的`计算公式,能够正确地计算圆的面积。

【教学难点】:理解圆的面积计算公式的推导。

【教学准备】:相应;圆的面积演示教具

【教学过程】

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的范围是一个什么图形吗?

生:是一个圆形。

师:那么,要想知道马儿吃草范围的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、探究合作,推导圆面积公式

1.渗透“转化”的数学思想和方法。

师:关于圆的面积你想了解什么?

(什么是圆的面积?圆的面积怎样计算呢?计算公式又是什么?计算公式怎样推导?……)

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2.演示揭疑。

师:(边说明边演示)把这个圆平均分成4、8、16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑的演示,生动形象地展示了化曲为直的剪拼过程。]

3.学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?

(再次出示牛吃草图)

师:这匹马最多能吃多大面积的草,现在会求了吗?

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.教学例1。

如果我们知道一个圆形草坪的直径是20,每平方米草皮8元,铺满草坪需要多少钱?

要求铺满草坪需要多少钱,要先求什么呢?(先要求出圆形草坪的面积是多少平方米。)

我们该怎样求它的面积呢?请大家动笔算一算这个圆形草坪的面积吧!

师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

(出示第三题)

3.小刚量得一棵树干的周长是125.6c。这棵树干的横截面的面积是多少?

分析题意后学生独立完成(组织交流,评价反馈)

同学们真棒,解决完上面的三个问题后敢不敢来挑战下面的问题?

4.已知半圆中三角形ABC的高是5厘米,面积是30平方厘米,半圆的直径是多少?求阴影部分面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

四、全课小结、回顾反思

师:你们对于圆面积的疑问现在解开了吗?通过这节课的学习,你有什么收获?

知道哪些条件就可求圆的面积?

(知道半径、直径或是周长)

知道半径:S=πr2

知道直径:S=π(d÷2)2

知道周长:S=π(C÷π÷2)2

师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

五、课后延伸

圆除了转化为长方形,还能转化为什么图形呢?

板书设计:

长方形的面积 = 长 × 宽

圆的面积 =圆周长的一半 × 半径

S = πr × r

= πr2

圆的面积教学设计 篇5

教学目标:

1. 知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。

3. 情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。

教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。

教学难点:理解圆的面积公式的推导过程。

教学准备:课件、圆形白纸、剪刀。

教学过程

一、创设情景,引入新课

1、出示主题情景图:

①从图中你获得哪些数学信息?

②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?

2、说一说:什么叫圆的面积?

3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)

【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。

二、合作交流,探索新知

1、回顾旧知:

回顾以前学过的平面图形面积公式是如何推导出来的?

指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。

【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。

2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?

3、合作探究:

(1)猜想

(2)动手操作,验证猜想。

(3)汇报交流,展示成果(分层展示学生研究成果)。

【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的.空间观念。

4、借助网络画板制作的动态课件展示圆面积的推导过程。

展示不同的等份数拼成不同的平行四边形,感受极限的思想。

【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。

5、推导圆面积公式。

①比较转化后的图形与圆,你发现了什么?

②全班交流,根据学生叙述板书:

长方形面积= 长 × 宽

圆的面积 =圆周长的一半 × 半径=Лr × r=Лr

6、小结:圆的面积计算公式: S =Лr

【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。

7、知识应用、内化提高

(1)、 求下列圆的面积。(只列式不计算)

r=3cm

(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?

(1) 认真读题,理解题意。

(2) 你认为怎样解决这个问题?

(3) 学生尝试独立计算。

(4) 汇报解答过程及结果,集体评价。

【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。

三、联系生活、拓展延伸

1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?

2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?

3、求下列圆的周长和面积。

r=2cm

4、求半圆的面积。

r=4cm

【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。

5、回顾整理,全课总结

今天我们学到了哪些新知识?你有哪些收获?

【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。

圆的面积教学设计 篇6

教学内容:人教版《义务教育课程标准实验教科书·数学》六年级上册67—69页。 教学目标:

知识目标:理解圆面积的含义,让学生经历和体验圆的面积公式推导过程,通过操作、观察、、引导学生推导并掌握圆面积的计算公式,解答一些简单的实际问题。

能力目标:培养学生观察、分析、类比、推理和概括的能力,发展学生的空间观念,并渗透极限、转化,化曲为直等数学思想方法。

情感目标:通过小组合作交流,培养学生的合作精神和创新意识,动手实践和数学交流的能力,体验数学探究的乐趣和成功。

教学重点:掌握并理解圆面积的计算公式。

教学难点:引导学生用多种方法推导概括圆面积公式。

教学准备:圆纸片、剪刀、胶棒,实物投影 , 多媒体课件。

教学过程:

一、创设情境,引出问题

课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)

二、回顾旧知,孕优新知

在研究圆面积前我们先来做个思维训练,回顾以前学过的关于圆的知识。请同学们拿出圆纸片,找到你了解的知识,并用字母表示它们的名称。(课件演示)

以前我们推导平面图形面积公式时都用到一种数学方法---转化法,就是让新知识转化为旧知识,利用已有的知识来研究新知识。

三、研究新知,加深理解

1、课本上就用这种转化法来推导圆面积公式的。大家仔细阅读一下课文,看看你们小组能学到什么,还有什么问题需要大家一起来帮你解决呢?(强调分成偶数等份)

出示自学提纲:

(1)什么叫圆的面积?

(2)书上是怎样推导圆面积的?

(3)为什么是近似的平行四边形?

2、 小组合作学习:同学们已经有了自己的研究方法,可以利用一些学具开始探究。可以独立研究,也可以和有相同想法的同学自由合作。研究的过程可能会有困难,老师相信你们,一定不怕困难勇于探索,遇到问题也可以向老师寻求帮助。

出示小组合作学习提纲:(指生读)

(1)你摆的是什么图形?

(2)你摆的图形的面积与圆的面积有什么关系?

(3)所摆图形的各部分相当于圆的什么?

(4)你是如何推导出圆的面积的?圆的面积公式是什么?

(5)你能不能转化成其它图形推导圆面积公式?

(你想把圆转化成什么图形)

3、哪个小组愿意把你们的研究成果给大家展示一下?

请大家关注同学们的发言,从中你一定会受到启发或发现问题。

小组汇报:①分成4份。②分成8份③分成16份(学生叙述拼的过程,教师板书推导公式)

4、我们回忆一下圆的面积公式是怎样推导出来的? (指生叙述)

如果给你一个圆,你能求出它的面积吗?(举起一个圆)谁能求出这个圆的面积?那如果给你具体数据,你们想要什么具体数呀?都要几个?(你的贪心还不小呢!幸好没要面积,那样就不用计算了。如果让你随便挑,你要哪个数据?)能说说要半径的理由吗?(你还真会找捷径)那如果老师只给你周长怎么办啊?(根据周长公式求半径)看来,求圆面积的关键条件是什么?(半径)那我们再来读一遍公式好吗?

好,同学们还记得课前那头正在吃草的小牛吗?让我们一起来算一算它最多能吃多少草好吗?(课件演示)

(2)如果给出直径你会算吗?出示例1。(指生读题)

四、巩固深化,实际应用

(1)不错,那老师要看看谁的反映最灵活计算能力最强(口答:给半径、直径求面积)。

(2)非常好,谁来给大家读读这道题(应用题:给周长求面积)

(3)拿出课前折叠的圆形纸片,自己动手测量所需的数据后计算圆的面积。互相说说计算圆面积的依据是什么?

(4)智力冲浪:假如这块地真的送给你,你打算怎样为自己设计一个美丽的家园?

五、发散思维,拓展知识

小组合作学习中还有一个问题是吧?好,哪个小组拼出了和大家不同的图形?(可以拼出近似三角形、平行四边形、梯形。将学生的研究结论贴在黑板上)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨好吗?

六、总结反思,课外延伸

好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?

圆面积教学反思:

圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的.经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的

自主探究创造条件。

1. 让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

2.引导学生主动探究。学生以小组为单位,通过合作拼摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。

3. 数学源于生活,服务于生活。我利用一张丢失了圆形井盖的图片引入,创设情景,让学生从中发现问题;当推导出圆面积的公式后,我又引导学生利用自己推导出的公式解决刚才的问题。在整个教学过程中,始终以这个情景组织教学。让学生知道数学来源于生活,服务于生活,数学就在我们的身边。整个学习过程不仅是一个主动学习的过程,更是一个“猜想——验证”的过程,一个发现学习、创造学习的过程。学生在观察、猜测、操作、验证、归纳的过程中理解了一个数学问题是怎样提出的,一个结论是怎样猜测和探索的,学生学会的不仅仅是一个数学公式,更重要的是学生学会了合作、交流,学会了像科学家一样进行思考、研究,学生的探索、创新精神得到了落实

圆的面积教学设计 篇7

教学目标

1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。

2、能够利用公式进行简单的面积计算。

3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

教学重难点

教学重点:源面积计算公式的退到。

教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。

教学过程

一、情景导入

1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?

所有的草坪铺满将是一个什么形状?

那么求这个圆形草坪的占地面积就是求什么了?

引导学生说出求这个圆形草坪的占地面积就是求圆的面积

这节课我们就来研究圆的面积。

板书:圆的面积

师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?

二、导入新课

1、师生总结板书?圆的面积与什么有关?

?圆的面积怎么求?

?圆的面积有没有计算公式?

2、师:看着老师手中两个不同大小的圆,是什么决定着他们的大小,那么可想而知,圆的面积大小与什么有关系?

引导学生猜想说出圆的面积与半径有关

板书:圆的面积与半径r有关

师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的

师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。

板书:拼切——转化——化未知为已知

师:那么你们可以把这种转化的'思想运用于求圆的面积上吗?

生:可以(不可以)

师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。

师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。

首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。

(平行四边形)

第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?

师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。

板书:近似

三、推导圆的公式

师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?

拼成的近似长方形的长和宽与圆的周长、半径有什么关系?

你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径

所以圆的面积=R×RS=R

这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。

练习题

1、求出下列圆的面积:

2、圆形草坪的直径是20米,它的面积是多少平方米?

3、练习十

六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

四、总结

通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?

圆的面积教学设计 篇8

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:

推导出圆的面积公式及其应用。

教学难点:

圆与转化后的图形的`联系。

教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图

教学过程:

一、以新引旧、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。

5、转化后的图形与原来的图形面积相等吗?

6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容

圆的面积教学设计 篇9

教学目标:

1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

教学重难点:

圆面积公式的推导。

教学关键:

弄清圆与转化后的近似图形之间的关系。

教具:

多媒体计算机。

学具:

每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

教学过程:

一、复习旧知、设疑导入

同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

二、动手操作、探索新知

1、通过度量,猜想圆面积的大小。

用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

初步猜想:圆的面积相当于r2的3倍多一些。

3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。

2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

3、学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的'正确。说明在求圆的面积时,都要知道半径。

三、看书质疑、自学例3,注意书写格式和运算顺序

四、运用新知,解决问题

1、一个圆的半径是5厘米,它的面积是多少平方厘米?

2、看图计算圆的面积。

3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

(1)可测圆的半径,根据S=πr2求出面积。

(2)可测圆的直径,根据S=π(d/2)2求出面积。

(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

五、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

六、布置作业

七、板书设计

圆的面积

长方形的面积=长×宽圆的面积=周长的一半×半径

S=πr×r;S=πr2

圆的面积教学设计 篇10

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

3.探究联系。

师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

师:谁来告诉大家,它们的面积有没有改变?

师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

4.推导公式。

师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

师:好,谁能首先告诉老师,这个长方形的宽是多少?

师:现在我们已经知道了这个长方形的长和宽(如图十三),它的`面积应该是多少?那圆的面积呢?

二、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

2.完成做一做。

师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

3.教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

三、课堂小结

师:同学们,通过这节课的学习,你有什么收获?

四、课堂作业。

圆的面积教学设计 篇11

一、教学内容

北京市义务教育课程改革实验数学教材第11册二、教学目标:

1、知识与技能:

使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。

2、过程与方法:

引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。

3、情感态度价值观:

培养学生认真观察、深入思考,积极合作的良好品质。

三、教学重点:

通过合作探究活动,推导出圆面积公式。

四、教学难点:

理解转化后的图形各部分与圆各部分的关系。

五、教具学具准备:

圆形纸片多媒体

六、教学过程:

(一)情境导入

出示:圆桌照片

师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?

生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?

师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?

怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。

【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的学习任务】

(二)合作探究

1、复习转化方法:

师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)

师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)

师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?

师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:

1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。

2、小组合作探究,师巡视,指导。

【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。

教师让学生带着3个问题进行自主探究的活动】

3、汇报展示

预设:

学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。

学生方法2:将圆等分成若干份,拼成一个梯形或三角形。

学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)

板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。

【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】

4、课件演示,体验极限、化曲为直等数学思想。

5、资料介绍,感受数学文化,师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)

生:一人板书,其他学生本上练习。集体订正。

6、知识性小结:

师:如果我们想计算圆的.面积,必须知道什么条件?

生:半径。

师:还可以知道什么,也能求出圆的面积?

生:圆的直径或圆的周长?

师:怎么求?

【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。

教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】

(三)解决问题:

1、口算下面各圆的面积。

2、填写下表。

半径直径周长面积

2厘米

6厘米

6。28厘米

3、某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?

(四)全课总结

板书设计:圆的面积

转化平行四边形面积=底×高

联系圆的面积=×r=×r

=πr×r=πr2

公式S=πr2

圆的面积教学设计 篇12

学情分析:

《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。此时这个阶段的小学生的认知特点是复杂的。竞争意识增强,敬佩优秀同学;接触自然、了解社会;加强预习,学会总结。认知也有所发展,在注意力方面,学生的有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都较低年级学生有不同程度的发展。在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,但具体形象记忆的作用仍非常明显。在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维活动仍然具有很大成分的具体形象色彩。在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。初入六年级的小学生是小学学习的最高、最后阶段。随着对小学教育的不断适应,这一时期的学生无论是在生理,还是心理上都比初入学时的儿童稳定,并在此基础上不断发展。刚入六年级的小学生的心理健康教育和学习目标归纳起来为:增强学习技能训练,培养良好的'智力品质;引导学生树立学习苦乐观,激发学习的兴趣、求知欲望和勤奋学习的精神;培养正确的竞争意识;鼓励参与社会实践活动,提高做事情的坚持性;建立进取的人生态度,促进自我意识发展。

教学目标:

1.了解圆的面积的含义,经历圆面积计算公式的推导过程【转换思想】,掌握圆面积的计算公式

2.理解圆的面积的意义,掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养观察,操作,分析,概括的能力以及逻辑思维能力。

3.培养认真观察,深入思考的良好思维品质,锻炼自己面对困难勇于克服,锲而不舍的精神。

教学重难点:

1,能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单的实际的问题

2,圆面积的计算以及公式的推导

案例描述:

一、带入情境,引出问题

1,出示课本中的草坪喷水插图,并提出问题,你能从中发现什么数学知识

2,并进一步提出这个圆的面积是指这个图形的哪个部分

3,最后开题~~~今天这节课我们就来学习圆的面积{板书;圆的面积}

二、引入数学历史,增强学生浓厚的学习兴趣

圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

三、引入旧课,导入新课

【引入】小学生们,前面我们学习过了正方形,长方形,甚至梯形面积等平面图形的面积的计算方法,那我们是不是可以通过动手把圆先切割再拼接成一个我们学过的图形。那么圆的面积不就是我们之前学过的图形的面积嘛。那我们准备工具看一下怎么样才能将圆拼接成一个我们所了解的图形。

1,课件展示:请看大屏幕,分成16份的圆,把它们可以拼接近似成平行四边形,分成32等份,也可以拼成近似为平行四边形,而64等份呢,竟然可以近似为长方形,那你可以发现什么?【分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形】

2,思考提问并总结圆面积计算公式的语言描述

长方形的长相当于圆周长的一半,而长方形的宽相当于圆的半径

3,提出圆面积的计算公式的问题,提问总结s=πr2

4,利用公式,导入数学历史的有关文化,丰富学生的学习过程!!!!!!

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。

四,熟记公式,并投入实践应用之中

1,口答,根据半径计算出圆的面积

R=1,R=2,R=3

2,练一练

r=8,s=;c=31,4,s=

r=4,s=;d=16,s=

3,那现在请大家回到本节课开始的时候,用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田

4,第18页第2题

让学生独立解答,集体修正的时候要求学生说出每一步计算过程和依据

5,第18页第2题

让学生理解题意之后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是一米的圆,让学生看看,并试着站一站

6,课下思考

用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?

五,学生自我评价

【小结】通过本节课的学习,你有什么收获和感悟?

本节课,让我们通过计算,分析结果,总结圆面积的计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

六,【作业】随堂练习课后作业

圆的面积教学设计 篇13

设计说明

本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:

1.注重联系生活实际,开展探究性的数学活动。

学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。

2.在教学中渗透数学思想,完成新知构建。

在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。

课前准备

教师准备PPT课件圆的面积演示教具大小不同的两张圆形纸片

学生准备剪刀小正方形透明塑料片圆形学具

教学过程

⊙复习铺垫,导入新课

1.回忆圆的周长的.计算方法。

(1)已知直径怎样求圆的周长?

(2)已知半径怎样求半圆的周长?

2.建立圆的面积的概念。

(1)感知圆的面积的大小。

师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?

师明确:圆的面积有大有小。

师:谁能说一说什么叫做圆的面积呢?

师指出:圆所占平面的大小叫做圆的面积。

(2)区别圆的面积和周长。

指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?

学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。

设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。

⊙动手操作,探究新知

1.通过度量,猜想圆的面积的大小。

用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。

师:由此看出,要求圆的精确面积是无法通过度量得出的。

2.回忆多边形面积公式的推导过程。

想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?

(课件演示平行四边形的面积推导过程)

过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?

3.动手操作。

(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。

课件演示剪拼的过程:

(2)讨论:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)

④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?

(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)

(3)观察、汇报拼成的长方形与圆的关系。

①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)

圆的半径=长方形的宽

圆的周长的一半=长方形的长

②拼成的长方形的面积与圆的面积有什么关系?

(引导学生理解:形状不同,面积相等)

(4)推导圆的面积计算公式。(引导学生结合图形理解)

因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。

因为C=2πr,所以S圆=πr×r,S圆=πr2。

圆的面积教学设计 篇14

教学目标:

1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2、能够利用公式进行简单的面积计算。

3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

教学重难点:渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

教学过程

一、尝试转化,推导公式

1、确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2、尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?

引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

3、探究联系。

师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

预设:

分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

师:谁来告诉大家,它们的面积有没有改变?

师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

4、推导公式。

师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

预设:

根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的`半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

预设:

教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

预设:

老师根据学生的回答进行相关的板书。

师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

二、运用公式,解决问题

1、教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2、完成做一做。

师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

订正。

3、教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

预设:

教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

交流,订正。

三、课堂作业。

教材第70页第2、3、4题。

四、课堂小结

师:同学们,通过这节课的学习,你有什么收获?

课后作业:完成数练第31页。

(荐)圆的面积教学设计4篇

作为一名教师,总不可避免地需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。一份好的教学设计是什么样子的呢?以下是小编收集整理的圆的面积教学设计,欢迎大家分享。

圆的面积教学设计 篇15

教材分析

教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

学情分析:

1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

教学目标

1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2.能正确运用圆的面积公式计算圆的'面积,并能运用圆面积的知识解决一些简单的实际问题。

3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学重点和难点

教学重点: 圆的面积公式的推导及应用公式计算

教学难点:探究圆的面积公式的推导过程

大家都在看