《植树问题》教学设计

知远网

2025-09-23教案

知远网整理的《植树问题》教学设计(精选14篇),希望能帮助到大家,请阅读参考。

《植树问题》教学设计 篇1

知识目标:

通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

能力目标:

让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

情感目标:

通过小组合作、交流,培养学生的协作精神。

教(学)具准备:

长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

教学过程:

一、复习铺垫

同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?

指名回答,引导学生说出棵数与段数的关系:

两端都种只种一端两端都不种

棵数=段数+1棵数=段数棵数=段数—1

请你把这个规律跟同桌说一遍;教师在黑板上贴示。

二、引入新课:

前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花

这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的.规律

1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?

2)、学生以小组为单位操作;

3)、交流:你们小组种了几棵,把圆分成了几段?

4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)

2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

1)、出示长方形空地题目

我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?

2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);

教师巡视指导;

3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

得出:种植路线是长方形的,种植棵数与种植段数是相等的。

4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

5)、展示不同的解决问题的方法,集体讨论判断正误

3、研究在其他封闭图形上种树:

A、你还想在什么封闭路线上种树?(指名回答)

B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

C、小组交流。

4、得出规律:在封闭路线上植树:棵数=段数(板书)

5、联系:它和非封闭路线上的哪种情况相同?

(告诉学生事物就是这样相互联系的!

6、质疑问难:大家还有什么疑问吗?

如果在不规则的封闭路线上植树,棵数和段数是否相同?

三、尝试练习:

练习第121页的做一做上的习题

学生尝试练习,交流,指名板书解题方法。

四、课堂小结。

这节课你最大的收获是什么?

第三课时课题:围棋中的数学问题

教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

教学目标:

1、借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

3、让学生感受数学在日常生活中的广泛应用。

教学重点:从封闭曲线(方阵)中探讨植树问题。

教学难点:用数学的方法解决实际生活中的简单问题。

情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。

课前准备:课桌围成回字形。

教学过程:

一、情境导入(课件出示)

猜谜:十九乘十九,

黑白两对手,

有眼看不见,

无眼难活久。(打一棋类名称)

[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

二、探索新知

1、教学每边摆放3粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

(4)汇报交流(着重请学生说出方法。)

可能会出现以下方法:

32+2=824=8

33-1=834-4=8直接点数。

教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)

2、教学每边摆放4粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。

[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

(4)汇报交流(着重请学生说出方法)

教师随学生回答,用课件出示摆放方法。

(5)你们最喜欢哪种方法?为什么?

3、教学每边摆放5粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

(4)你们最喜欢哪种方法?和同桌说一说。

[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]

三、总结规律

(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

(2)总结规律::教师随着学生的回答板书:

间隔数边数=最外层的总数

(3)学生根据规律,独立完成例3。

三、运用规律

1、如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

2、做第121页第三题

《植树问题》教学设计 篇2

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:

课件、表格、尺子等。

教学过程:

一、教学“间隔”

1.教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

2.引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究 找出规律

1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

预设:学生可能大多数对得到20棵。

师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

长(米)

每两棵树之

间的距离

(每段长)

间隔数

(段 数)

20

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

师:对得到的这个规律有没有不同意见?

三、巩固练习

师:现在我们用得到的.这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

A2. 如果是每隔10米栽一棵呢?(口答)

B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

人教版《植树问题》教学设计

作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的人教版《植树问题》教学设计,仅供参考,希望能够帮助到大家。

《植树问题》教学设计 篇3

教学内容:

人教版四年级下册第八单元数学广角的所有例题,以及相关习题。

教材分析:

现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法,和策略。

本节课是把所有类型的植树问题归纳在一起,通过观察比较,得出公式,最后能够运用所学知识解决所有和植树问题相关的实际问题。

教学目标:

1、通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

2、理解并掌握“植树问题”几种类型的.特征,以及解题方法。

3、感受数学在日常生活中的广泛应用。

教学重、难点:

重点:掌握“植树问题”几种类型的特征。

难点:解决所有和植树问题相关的实际问题。

教学方法:

巩固练习法。

教具准备:

多媒体课件。

教学过程:

一、创设情境,导入新课。

1、直接揭示课题:今天我们来复习第八单元数学广角的植树问题。板书课题

2、出示复习目标:

(1)、理解并掌握“植树问题”几种类型的特征,以及解题方法。

(2)、感受数学在日常生活中的广泛应用。

3、常见类型:

(1)、两端都栽的植树问题;

(2)、两端都不栽的植树问题;

(3)、一端栽、一端不栽的植树问题;

(4)、封闭图形的植树问题。

二、探索解决问题的方法

1、出示例题:

例题:在全长20米的小路上植树,每隔5米栽一棵,你能想出几种植树方案?

2、学生自主尝试,教师巡视指导。

3、小组合作交流。

4、全班交流。

特点棵树间隔数棵树与间隔数的关系

方案1两端都栽54棵树=间隔数+1

方案2两端都不栽34棵树=间隔数-1

方案3一端栽,一端不栽44棵树=间隔数

方案4封闭图形44棵树=间隔数

5、总结学习方法:

植树问题有高招,做题之前先分类。

两端都栽,棵树=间隔数+1;

两端都不栽,棵树=间隔数-1;

一端栽,一端不栽,棵树=间隔数;

封闭图形,棵树=间隔数。

三、巩固提高、发展创新。

1、在一条长400米的道路一旁安装路灯,每隔50米安装一座(两端都要安装),一共可以安装多少座路灯?

2、两座楼房之间相距56米,每隔4米栽雪松一棵,一行能栽多少棵?

3、学校要在80米的跑道一旁插彩旗,每隔5米插一面。如果一端不插,一共需要多少面彩旗?

4、一个圆形池塘,它的周长是200米,每隔10米栽一棵柳树,需要树苗多少棵?

以上四道题为基础巩固题,下面两道为拔高题。

5、一根木料锯成4段要12分钟,锯成10段要几分钟?

6、祁老师要上楼去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道祁老师去几楼的教室吗?

四、全课小结。

你在这一节课里学习了什么知识?

师:其实数学就在我们身边,只要我们善于观察,勤于动脑,你就会发现生活中有很多有趣的数学问题。

《植树问题》教学设计15篇

作为一位兢兢业业的人民教师,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。我们应该怎么写教学设计呢?以下是小编整理的《植树问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《植树问题》教学设计 篇4

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,透过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

2、透过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的潜力;

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、透过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:理解“间距数+1=棵数,棵数-1=间距数”

教学准备:课件

教学过程:

一、创设原型

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着搞笑的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、根据生活实景信息回答问题。

(1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

(2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

(3)河边的护栏有5根铁链,需要几根柱子?(6根)

4、引入课题

师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

二、构建模型

1、用图象语言描述“植树棵数与间隔数”之间的关系。

师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

2、构建植树问题的数学模型

(1)我们一齐来看一下这几位同学画的图,你能说说你是怎样画的吗?

(2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是阿,用线段图的方法最简便,因此它也是我们最常用的。)

(3)透过画图,我们发现这条路的两端都栽了树,这就是我们这天研究的植树问题的一种类型。(板书:两端都栽)

(4)在线段图上,我们用点表示栽的树,几个点就是几棵树,透过画图,我们明白6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

植树棵数间隔数67

(板书:棵数-1=间隔数间隔数+1=棵数)

师:这天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

三、利用模型解决问题

1、教学例1

师:此刻老师要考考你们了,谁敢理解检查?既然大家都想来,那么我们一齐来。

课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

(1)谁能大声清楚朗读这个题目?

(2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

(3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

(3)这题也能够用画线段图的方法来解答,你能试着画线段图吗?

(4)展示学生线段图,你能说说你是怎样画的吗?

(5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你能够了解些什么信息?谁也明白了也想来说给大家听一听的?

(6)线段图里其实就反映着题目的.意思,你能看着线段图用算式来解答吗?学生独立列算式。

(7)汇报:说说你的想法。

①出示学生各种答案,板书在黑板上。

②对于这几种方法,你们有什么看法吗?(生:我认为……)

③擦去错误答案,留下正确答案:100÷5=10(个)10+1=11(棵)

④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

2、试一试

师:如果老师把题目改一改,看看谁还会?

课件出示:“六一”儿童节快到了,校园决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

(1)生轻轻读题,说说从这个题目中你了解了些什么信息?

(2)和刚才这题比较,你想说什么?

(3)学生独立列式并汇报。

3、巩固新知

师:恭喜大家,顺利透过检查!你们还想理解新一轮的挑战吗?

课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

(1)生独立阅题,说说这个题目中又有哪些数学信息呢?

(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们就应先算什么?

(4)学生独立解答并汇报:

(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

设计理念及思路:教学方法

《植树问题》教学设计 篇5

教材分析:

“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。

教学目标:

1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2、掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教学重难点:

掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教具学具:

绳子、挂图、泡沫、小树、题卡

教学过程:

一、创设情境,导入新课

1、小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

2、导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

二、新课探究:

1、出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

2、分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:

(1)计算一共需要准备多少棵树苗

(2)思考棵数与间隔数的关系。

点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

3、汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1

(2)只种一端:棵数=间隔数

(3)两端都不种:棵数=间隔数-1

点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

三、课堂练习:

1、做一做:

(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

四、全课小结:

这节课我们学习了什么资料?你还有什么疑问?(植树问题的`三种状况)

五、板书设计:

植树问题

两端都种:棵数=间隔数+1

只种一端:棵数=间隔数

两端都不种:棵数=间隔数-1

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)

只种一端:50÷5=10(棵)

两端都不种:50÷5-1=9(棵)

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

教学后记:

本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

三、充分体现学生的主体作用及教师的主导作用:

本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教学设计 篇6

教学目标:

1.使孩子透过生活中的事例,初步体会解决植树问题的方法。

2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。

3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:多媒体课件。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

透过这节课的学习,我们要解决哪些问题呢?

1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2.能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让孩子回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。

②透过上面的分析,你能找出什么规律?和同桌或小组内说说。

③此刻你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2.孩子自学探讨。(师巡视)

3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的`关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。

2.122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?

2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

孩子完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。

教学方法设计理念及思路:

《植树问题》教学设计 篇7

教学目标:

1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

3、感悟建构数学模型是解决实际问题的重要方法之一。

教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

教学过程:

1、猜

T:这节课我们就一起研究植树问题。请大家看屏幕:这里有一条线段,我们把它看成一条路,这条路长20米。如果要在这条路上种树,请同学们想一想,你还需要了解什么信息?

S:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)

T:同学们考虑问题还很全面,确实我们需要知道一个最起码的条件,就是树和树之间的间隔是多少米。如果告诉你们每隔5米种一棵,请同学们想一想在这条路的一边种树,可以种几棵?

S:可以种5棵,4棵,3棵。

2、画

T:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

S独立画图,教师巡视指导。

T:画好了的请举手。我们找同学说说你是怎样画的。

顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的`种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)

3、找规律

T:仔细观察这三种植树情况,虽然他们种的棵数不同,但是他们有一个相同的地方,你发现了吗?

S:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)

T:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

T:怎么求这个段数,能用式子表示一下吗?

S:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)

T:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

S:汇报T强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)

4、列算式

T:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

S:独立列算式汇报说理由。

T:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

5、解决问题

T:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

(1、同学们要在全长100米的小路一边植树,每隔5米栽一棵(两端要载)。一共需要多少棵树苗? 2、大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要载多少棵树?

3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)

S列式解答全班交流

6、拓展延伸

T:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

S:剪绳子,锯木头,摆花

T:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)

7、总结

T:这节课学得怎么样?

【精华】《植树问题》教学设计15篇

作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。如何把教学设计做到重点突出呢?以下是小编收集整理的《植树问题》教学设计,仅供参考,大家一起来看看吧。

《植树问题》教学设计 篇8

【教学背景】“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

【教学内容】数学广角(一):两端都栽、只栽一端、两端都不栽的植树问题,教材第117至119页例1、例2及相应的“做一做”。

【教学目标】

知识与技能:通过观察、操作及交流活动,探索并认识不封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。培养学生观察能力、操作能力以及与他人合作的能力。

过程与方法:主要让学生通过观察、操作、交流等活动探索新知。

情感、态度与价值观:在解决问题的过程中,感受数学与现实生活的密切联系。

【教学重、难点】引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

【教学准备】课件、

一、创设情境,揭示课题。

1、教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

学生看完视频和照片说一说有什么感受?

治理沙尘暴最有效的办法是植树造林。你们看,我们学校的学生家长和老师,都积极投身到植树造林的活动中。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题。这节课我们就来研究——植树中的数学问题。(板书课题:植树中的数学问题)

【设计意图:通过播放沙尘暴视频及照片,让学生深刻体验到数学问题来源于生活,激发学生的学习兴趣,及时渗透环保教育】

二、引导探究,发现规律。

(出示情境)为了绿化校园,学校要在一条全长20米的小路一边种树。每隔5米植一棵。想一想,要植多少棵树?(学生自由读题)

(1)理解什么是每隔5米植一棵?下一棵怎么栽?

(2)介绍什么是一个间隔?学生指一指每一个间隔。

(3)教师出示学具分析题,学生可以借助学具摆一摆再列算式算一算。(学生小组合作动手操作)

【设计意图:把课本中的例1在100米长的路上种树,改为在20米长的路上种树。这样降低了探究的难度,便于学生观察、思考。同时通过情境图和开放性的提问,为下一环节的探究作好准备。】

①组织反馈交流

师:你给大家介绍一下你是怎么想的?(学生可能只出现只植两端)教师及时引导在我们实际植树活动中会遇到什么情况?

可能会遇到建筑物,遇到建筑物怎么了?植不了树了,可能会在哪些地方遇到建筑物?看来不仅有这一种植法,还有其他可能,请同学们再动手摆一摆算一算。(学生继续操作)

②学生汇报其他两种植法。

学生说一说自己的方法,在哪里遇到建筑物,植了几棵树?

③比较三种植法有什么不同?(强调在20米的小路一边间隔是5米植树只有这三种情况)并板书:两端都植、只植一段、两端都不植。

【设计意图:本环节先通过想象提问,为学生如何去探究起到提示作用。接着采取较开放的形式,自主确定每棵之间长度,通过对每一种方案动手摆一摆,列式计算,初步感知每种方案的计算方法。再接着让学生观察每一种方案,使学生从中得出,虽然确定的每棵之间长度不同,而计算方法是相同的。最后教师又让学生想象、观察,针对实际背景的不同,应选择相应的种树方案。整个环节在教师的积极引领下,充分突出了学生的主动参与,使学生经历了在操作中思考,在观察中比较,在交流中评价概括。】

(4)理解三种不同的植法中为什么都有20÷5=4这个算式?(学生说一说并上来指一指4在哪里?)

20÷5=4原来都是在算有几个间隔数。强调虽然植法不同但他们的间隔数却都相等,都有这样的4个间隔。

【设计意图:学生通过数形结合理解在植树问题中,求出间隔数非常关键。】

(5)理解4个间隔加1为什么等于5棵树?介绍一一对应的数学思想。

学生先想一想,再一起来看一看。

重点强调:1棵树对于1个间隔,1棵树对于1个间隔,4棵树就对应了4个间隔,最后1棵树没有对应的间隔就多了1棵树,所以是4棵树加1棵树等于5棵树。

找一学生再来说一说,同桌两人说一说。

(6)学生独立尝试借助一一对应的数学思想解决另外两种植法。

【设计意图:让学生体会一一对应的思想,并深入去理解其他两种植法中也蕴含的一一对应思想,把一一对应的'思想与植树规律结合在一起,得出的规律就有水到渠成的效果很好地突破难点。】

小结:刚才我们在理解这几个算式时用到了一个重要的数学思想,叫做一一对应,一一对应的数学思想可以使复杂的数学问题变得非常简单。

(7)寻找三种不同的植法棵数与间隔数之间的关系。

观察这三种不同的植法,植的棵树和间隔数之间有这样的关系?你可以看图来想一想也可以借助算式来思考。同桌两人商量商量。

学生汇报,教师板书。

小结:通过刚才的学习我们知道了有这三种不同的植法,但他们的间隔数都相等,看来在植树问题中求出间隔数非常重要,我们还知道了他们棵数与间隔数之间的关系,分别是两端都植是棵树等于间隔数加1,只植一端是棵树等于间隔数,两端都不植是棵树等于间隔数减1。你们学会了吗?老师来考考你。

【设计意图:新知结束后带着学生一起回顾所学的知识,如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。】

精讲精练:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都要栽)。一共要栽多少棵?学生独立完成。

《植树问题》教学设计 篇9

教材分析:本册“数学广角——植树问题”包含三个问题(两端都栽、只栽一端、两端都不栽),主要渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。教材第106页例1通过学生熟悉的植树情境,引导学生借助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,再运用模型解决实际问题。让学生经历分析、思考、解决问题的全过程。

教学内容:人教版义务教育教科书五年级上册第七单元数学广角——植树问题例1及相关练习。

教学目标:

1、通过生活中的事例。重点理解植树问题中“两端都栽”情况,理解与掌握间隔数与棵数之间的关系及其变化规律。

2、通过具体问题的解决过程,经历观察、猜测、验证、推理与交流等一系列的数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合、一一对应的数学思想方法,积累基本的数学活动经验。

3、能运用规律或策略解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。

教学重点:引导学生经历规律的获得过程,建立数学模型,并用所学的方法解决一些简单的问题。

教学难点:理解间隔数与棵数之间的关系。

教学准备:多媒体课件,小树和小路模型

教学过程:

一、谈话引入

1、师:你们知道3月12日是什么节日吗?(植树节)植树有什么好处呢?

2、揭题课题:今天我们就来研究有关植树的问题。(板书课题:植树问题)

二、探究新知

1、提出问题,猜想规律。

出示情境图:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?

引导学生理解题意。

学生尝试解答:你认为一共需要多少棵树?你是怎样想的?

提出质疑:对吗?我们需要检验一下。

引导学生提出研究设想。

看来这个问题值得我们研究,可100m有点长,研究起来不方便,怎样才能使我们的研究方便呢?(对,我们可以先研究20m的小路一边栽树情况)

2、动手操作,探究规律。

(1)研究在20m的小路上栽树的'问题。

学生利用手中的学具摆一摆,或者画一画线段图,看看每个5m栽一棵,一共要栽几棵。

(2)研究30m、35m、40m……小路上的植树情况,完成手中的表格。

3、讨论交流,总结规律。

仔细观察表格,你发现间隔数和棵数之间有什么关系?

先同桌交流,再全班交流。(棵数=间隔数+1)

4、解决问题,运用规律。

(1)解决课本第106页例1,“在100m的小路一边植树,每隔5m栽一棵。一共需要栽多少棵树?

(2)思考:如果是“两边都植树”,那一共需要多少棵树呢?

三、深化提高

智力大闯关

第一关:

1、学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵(两端要栽)。一共要栽多少棵树苗?

2、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一盏。一共要安装多少盏灯?

第二关:

1、园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

2、1路公共汽车从新城到老城设有10个站台,每相邻两个站台之间的距离为1千米。1路公共汽车的行驶路线全长多少千米?

第三关:

1、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

2、一条路原有木电线杆46根,每两根之间相隔12米。现在要全部换成水泥电线杆,如果每两根电线杆之间间隔20米,需要多少根水泥电杆?

四、回顾总结

通过今天的学习,你有什么收获?还有哪些问题?你是用什么方法来获取这些知识的?

五、拓展延伸

假如只栽一端,或者两端都不栽,棵数与间隔数又有什么样的关系?想研究吗?那么请同学们用今天学到的方法课后研究研究,好吗?

六、板书设计植树问题

(线路一侧,两端都栽)

间隔数=总长÷间距

棵数=间隔数+1

《植树问题》教学设计 篇10

第二课时教学内容:

教科书第120页的内容

知识目标:

通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

能力目标:

让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

情感目标:

通过小组合作、交流,培养学生的协作精神。

教(学)具准备:

长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

教学过程:

一、复习铺垫

同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?

指名回答,引导学生说出棵数与段数的关系:

两端都种只种一端两端都不种

棵数=段数+1棵数=段数棵数=段数-1

请你把这个规律跟同桌说一遍;教师在黑板上贴示。

二、引入新课:

前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花

这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律

1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?

2)、学生以小组为单位操作;

3)、交流:你们小组种了几棵,把圆分成了几段?

4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)

2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

1)、出示长方形空地题目

我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?

2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);

教师巡视指导;

3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

得出:种植路线是长方形的,种植棵数与种植段数是相等的。

4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

5)、展示不同的'解决问题的方法,集体讨论判断正误

3、研究在其他封闭图形上种树:

A、你还想在什么封闭路线上种树?(指名回答)

B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

C、小组交流。

4、得出规律:在封闭路线上植树:棵数=段数(板书)

5、联系:它和非封闭路线上的哪种情况相同?

(告诉学生事物就是这样相互联系的!

6、质疑问难:大家还有什么疑问吗?

如果在不规则的封闭路线上植树,棵数和段数是否相同?

三、尝试练习:

练习第121页的做一做上的习题

学生尝试练习,交流,指名板书解题方法。

四、课堂小结。

这节课你最大的收获是什么?

第三课时课题:围棋中的数学问题

教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

教学目标:

1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

3.让学生感受数学在日常生活中的广泛应用。

教学重点:从封闭曲线(方阵)中探讨植树问题。

教学难点:用数学的方法解决实际生活中的简单问题。

情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。

课前准备:课桌围成回字形。

教学过程:

一、情境导入(课件出示)

猜谜:十九乘十九,

黑白两对手,

有眼看不见,

无眼难活久。(打一棋类名称)

[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

二、探索新知

1.教学每边摆放3粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

(4)汇报交流(着重请学生说出方法。)

可能会出现以下方法:

32+2=824=8

33-1=834-4=8直接点数。

教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)

2.教学每边摆放4粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。

[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

(4)汇报交流(着重请学生说出方法)

教师随学生回答,用课件出示摆放方法。

(5)你们最喜欢哪种方法?为什么?

3.教学每边摆放5粒棋子的方法。

(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

(2)动手操作:请学生分小组按要求摆放棋子,写出算式。

(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

(4)你们最喜欢哪种方法?和同桌说一说。

[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]

三、总结规律

(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

每边放的个数最外层总数

3

4

5

6

18

你发现了什么规律:_____________________________________

(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

(2)总结规律::教师随着学生的回答板书:

间隔数边数=最外层的总数

(3)学生根据规律,独立完成例3。

三、运用规律

1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

2.做第121页第三题

教材分析:

《植树问题》教学设计 篇11

设计说明

“植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

1.通过对比,提高学生解决问题的能力。

植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

2.通过变式练习,培养学生灵活运用所学知识的能力。

在学生进一步明确了三个类型的“植树问题”的'解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

课前准备

教师准备:PPT课件、课堂练习卡

学生准备:课堂练习卡

教学过程

⊙创设情境,导入复习

第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

(1)在线段上栽树。

①两端都栽:棵数=间隔数+1

②两端都不栽:棵数=间隔数-1

(2)在封闭路线上栽树:棵数=间隔数。

设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

⊙分层练习,强化提高

1.基本练习。

(1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

(2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

(3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

(4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

(学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

2.综合练习。

一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

(1)读题明确题意。

(2)分组合作探究。

设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

⊙全课总结

通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

⊙布置作业

1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

教材分析:教学过程:

《植树问题》教学设计范文(精选5篇)

作为一名专为他人授业解惑的人民教师,就不得不需要编写教学设计,教学设计是一个系统化规划教学系统的过程。我们该怎么去写教学设计呢?以下是小编帮大家整理的《植树问题》教学设计范文(精选5篇),仅供参考,大家一起来看看吧。

《植树问题》教学设计 篇12

教材分析:

“植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

教学重难点:

掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

教具学具:

绳子、挂图、泡沫、小树、题卡

教学过程:

一.创设情境,导入新课

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

二.新课探究:

1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:(1)计算一共需要准备多少棵树苗

(2)思考棵数与间隔数的关系。

点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1

(2)只种一端:棵数=间隔数

(3)两端都不种:棵数=间隔数-1

点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

三、课堂练习

1、做一做:

(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的'距离有多远?

点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

五、板书设计

植树问题

两端都种:棵数=间隔数+1

只种一端:棵数=间隔数

两端都不种:棵数=间隔数-1

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)

只种一端:50÷5=10(棵)

两端都不种:50÷5-1=9(棵)

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

(6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

教学后记:

本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

三、充分体现学生的主体作用及教师的主导作用:

本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《植树问题》教学设计 篇13

一、教学目标:

1、通过探究发现一条线段上两端要种植树问题的规律。

2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

二、教学重点

使学生掌握“两端都要种的植树问题”的解题方法。

三、教学难点

使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

四、教学准备

多媒体课件、小棒、直尺、卡片、探究表。

五、课前互动

1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

教学过程

六、引入课题

生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。(板书课题:植树问题)

七、引导探究,发现“两端要种”的规律

1、情景导入例题

①课件出示校园图片。

植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的*场,*场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

②理解题意。

a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

b、理解“两端”“一边”是什么意思?

指名说一说,然后师实物演示:指一指哪里是这尺子的`两端?一边又是什么意思?

说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

③算一算,一共需要多少棵树苗?

④反馈。

2、引发猜想

师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

八、解决两端都种求总长度的实际问题

同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?

师:这个问题与刚才的类型有什么不同?学生试做,反馈。

你运用哪个规律?(间隔长×间隔数=总长度)

2、这一列共有10个同学呢?100个同学呢?

3、这个规律,你能算算我们学校综合楼的长度吗?

出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)

小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

九、回归生活,实际应用

其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

学生讨论,汇报。(示意选拔设计师)

十、全课总结

1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

全长除以间隔长度。

2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

《植树问题》教学设计 篇14

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的`左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、合作探索,了解三种植树方法

1、直接出示题目:

在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?

师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?

2、小组交流。

师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求

(1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;

(3)小组内说一说:你是怎样画的?

3、汇报。

师:谁来说一说,你栽了几棵树?谁还有不同的答案?

(2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的同学栽了3棵,咱就先请栽了5棵的同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)

有哪些同学是4棵的?说说你是怎样栽的?

刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?

4、三种植树方法的命名。 师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)

1、出示题目信息:一条新修的公路,全长100米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到100米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!) (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!

三、学以致用。

1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)

生独立审题,尝试在练习本上独立完成。

师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?

2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

生独立审题,尝试在练习本上独立完成。

这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?

3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。

拓展延伸:

现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?

大家都在看