知远网整理的一个数除以分数教学设计(精选10篇),希望能帮助到大家,请阅读参考。
一个数除以分数教学设计 篇1
一、教学目标:
1、理解一个数除以小数的计算方法,会计算除数是小数的除法。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。
二、教学重、难点。
重点:一个数除小数的计算方法。
难点:1、把除数转化为整数然后再除的方法。
2、确定商中小数点的位置。
预计教学时间:2节。
三、教学过程:
(一)基础训练。
【口算】。
2.8÷7=0.36÷12=5.05÷5=1.2÷4=。
2.6÷13=9.1÷7=10.2÷2=5.1÷3=。
(二)新知学习。
【典型例题】。
1、学习例5:
想:除数是小数怎么计算?
(1)小组讨论计算方法。
(2)独立完成。
(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。
2.学习例6,进一步体会小数除法的算理、算法。
(1)学生列出竖式,并说明意义。
(2)小组讨论算法。
(3)汇报:鼓励学生用自己的语言解释理由并进行交流。
【小结】怎样计算一个数除以小数?
(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。
(2)被除数位数不够,在末尾用“0”补足再除。
(三)巩固练习。
【基础练习】。
1.书p22做一做第一题。
2.书p22做一做第二题。
3.书p24第3题。
4.书p24第2题。
4、
【提高练习】。
5、书p24第4题。
6、书p24第5题。
7、书p25第6题。
8、书p25第8题。
能说一说其中的规律吗?
【拓展练习】。
9、书p25第7题。
10、书p25第9题。
(四)全课总结。
怎样计算小数除以整数?
(1)按整数除法的方法去除。
(2)商的小数点要和被除数的小数点对齐。
(3)整数部分不够除,商0,点上小数点。
(4)如果有余数,要添0再除。
(五)教学效果评价(小测题)。
1.计算下面各题。
26÷0.13=6.21÷0.03=210÷1.4=。
课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册) 篇八
知识重点[单击此处输入知识重点]。
教学难点[单击此处输入教学难点]。
教学用具。
教学过程教学方法和手段。
引入1大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
概念分析[单击此处输入教学过程]。
例题讲解【例1】。
一、引入新课:
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
二、新授:
1、出示例5。
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的'意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:12.6÷0.28。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
课堂练习1、书上第22页“做一做”
2、练习:判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
3、练习:书上24页的作业。
小结与作业。
课堂小结[单击此处输入课堂小结]。
本课作业[单击此处输入本课作业]。
课后追记。
本课又提高了一个层次,老师要把握好扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
教学内容p21~22。
教学目标初步掌握除数是小数的除法的计算法则。
知识重点应用商不变的性质,掌握除数和被除数小数点的移动方法。
教学难点p22例子6被除数小数位数少于除数小数位数情况的处理。
教学过程教学方法和手段。
引入让学生做p20页第11题。
被除数1.515150。
除数550500。
商
这就是“商不变的性质”
教学过程一、板书1.28÷4=0.32。
那么12.8÷40=?
0.128÷0.4=?
二、出示p21例5主题图:
组织学生分组讨论。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
二、例6。
被除数的小数位数少于除数的小数位数?
12.6÷0.28=。
课堂练习p22练习。
小结与作业。
课堂小结你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
本课作业[单击此处输入本课作业]。
课后追记。
应用被除数和除数同时扩大相同的倍数,商不变的性质应用于小数除法,扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
一个数除以分数教学设计 篇2
教学内容:九年义务教育六年制小学数学第十一册第33-35页例2、例3。
教学目的:
1.进一步理解分数除法的意义,沟通乘除之间的联系。
2.掌握一个数除以分数的推理过程,运用转化的思想领会计算方法的来由。
3.熟记一个数除以分数的计算法则,并能加以运用。
4.培养分析、推理、辩证思维等能力。
教学重点:运算法则。
教学难点:推算过程。
[评:目标表述具体、简便,便于检测和评估。]
教学过程:
一、复习引入
1.复习。
(1)说出各算式的意义和计算结果。
÷3 ÷4 ÷2 ×5
(2)说出应用题的算式及所表示的意义。
一辆汽车2小时行驶90千米,1小时行驶多少千米?
(3)根据分数除法意义,把下面乘法算式改写出两道除法算式。
45× =18 × =
2.设问。
(1)上面所写出的除法算式中,哪个是分数除法?
(2)我们已学习了分数除以整数的分数除法,那么,整数除以分数、分数除以分数的分数除法的计算方法是怎样的呢?
3.揭题。
今天这节课我们就来学习研究"一个数除以分数"的计算方法,看谁最先学会。
[评:复习、设问、揭题紧密相联,设置新旧知识矛盾情境,激发学生学习动机。]
二、新课教学
1.讲解算理。
(l)出示例2。
(2)学生读题,理解题意。
(3)列出算式:
①根据"速度=路程÷时间"应列出怎样的算式?
②板书:18÷
③想一想能不能按照分数除以整数的计算方法计算?
(4)讨论算法。
①根据题意画出思路图:
②分析:
a.已知 2/5小时行18千米,求1/5 小时行多少千米,该怎么算?(18÷2)
b.18÷2,还可以写成什么算式?(18×1/2 )
c. 1/5小时行"18×1/2 (千米)",求1小时行多少千米,又怎么样?(18×1/2×5)
d.18× ×5中的"×5"是什么意思?
e.这个算式还可以写成什么算式表示?
③板书:
18÷2/5 =18×1/2×5=18×2/5
④观察思考:
a.这个等式前后有什么变化?
b. 与 是什么关系?
c.由除法转化为乘法,说明了什么?
d.从"18÷2/5 = 918 × 1"这个等式,可以得出什么结论?
(5)教师小结:由上例可知整数除以分数可以转化为乘以这个分数的倒数。
板书:18÷ =18× =45(千米) 答:(略)
(6)做一做。
12÷3/5 24÷2/3 1÷5/7
[评:以除法转化为乘法为思路,引导学生分析、观察、思考,强化认识过程,注重理解,不轻易下结论。]
2.研究算法:
(1)出示例3:小刚3/10 小时走了14/15千米他1小时走多少千米?
(2)学生自学,教师巡视。
(3)指名学生板算:
14/15÷3/10= 14/3×2/3=28/9=3又1/9(千米) 答:(略)
(4)师生研讨:
①列算式的依据是什么?
②算式中的"÷ "为什么可以变成"× "?
③整数或者分数除以分数,计算时分别转化成什么样的计算?
④怎样验证这种计算结果是正确的?
⑤指名学生板算出验证过程:
14 1 1 3
× = × = ÷ = × =
3 5 5 2
⑥分数除以分数的计算方法能用一句比较恰当的话来叙述吗?让同桌学生相互议论,再指名回答。
⑦教师板书:一个数除以分数,等于这个数乘以原分数的倒数。
[评:采用让学生自学、尝试、验证的教学策略,充分发挥了学生的智能因素,调动了学生去主动获取知识的积极性。]
3.概括法则。
(1)出示: ÷9 9÷ ÷
(2)学生独立计算。
(3)指名学生在黑板上演算并说出计算方法。
÷9= 1× 3= 9÷ = 93× 1=12
÷ = 1× 2=
(4)观察议论:
①上面三道题分别叫做什么除法题?
②上面三道题的计算方法与过程相同吗?为什么?
③想一想,计算分数除法能否找到一个统一的`法则?如果有,那么这个统一的法则是怎样的?
(5)启发概括:
①板书:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
②齐读法则。
4.看书质疑。
5.强化论证。
(1)启发思考:
①这个计算法则,除以上我们研讨的推导方法外,还有没有其它方法推导出来?
②当甲数除以乙数(0除外)时,除数是什么数算起来最方便?
(2)师生共同议论:
①出示: ÷
②怎样使这个算式中的除数变成1?被除数应怎样?
③板书:( × )÷( × )= × ÷1= ×
④让学生各举一例动手验证一下。
[评:利用知识间的联系,可以促进知识的发展。对法则的概括统一和进一步的强化论证法则,就说明了在数学中要善于捕捉这些联系规律,从而促进知识的沟通,促进学生对知识的深化理解。]
三、巩固练习
1.填空:
(1)甲数除以乙数(0除外),等于( )。
(2) ÷ = × (3) ÷ = ( )
(4) ÷ =( )×( ) (5) ÷ =
2.判断。下面各题如果有错误在( )更正。
(l)9÷ = 93× 1= =6 ( )
(2) ÷3= ×3= = ( )
(3) ÷ = 1× 1=4 ( )
(4) ÷ = 2× 1= = ( )
3.口算抢答题:
(1) ÷3 (2)3÷ (3) ÷
(4) ÷ (5) ×2 (6)6×
(7) ÷ (8) ÷
4.记出下面各题的计算方法有什么不同。
+ - × ÷
5.独立计算。
÷10 21÷ ÷ ÷
[评:突出重点,抓住关键,练在点子上,层层推进,在运用法则过程中进一步强化认识,深化记忆,形成知识。]
四、全课小结
1.一个数除以分数包括哪些内容?
2.一个数除以分数的计算法则是什么?
五、布置作业(略)
[总评:全课教学思路清晰,讲究课堂教学实效。按照学生的认识规律,强调对法则的认识过程,避免学生表面化、形式化的理解。同时在法则的揭示、分析、解决中发展了学生思维的内驱力,渗透了辩证观点的教育。]
一个数除以分数教学设计 篇3
一、教学目标:
1、理解一个数除以小数的计算方法,会计算除数是小数的除法。
2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。
二、教学重、难点。
重点:一个数除小数的计算方法。
难点:1、把除数转化为整数然后再除的方法。
2、确定商中小数点的位置。
预计教学时间:2节。
三、教学过程:
(一)基础训练。
【口算】。
2.8÷7=0.36÷12=5.05÷5=1.2÷4=。
2.6÷13=9.1÷7=10.2÷2=5.1÷3=。
(二)新知学习。
【典型例题】。
1、学习例5:
想:除数是小数怎么计算?
(1)小组讨论计算方法。
(2)独立完成。
(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。
2.学习例6,进一步体会小数除法的算理、算法。
(1)学生列出竖式,并说明意义。
(2)小组讨论算法。
(3)汇报:鼓励学生用自己的语言解释理由并进行交流。
【小结】怎样计算一个数除以小数?
(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。
(2)被除数位数不够,在末尾用“0”补足再除。
(三)巩固练习。
【基础练习】。
1.书p22做一做第一题。
2.书p22做一做第二题。
3.书p24第3题。
4.书p24第2题。
4、
【提高练习】。
5、书p24第4题。
6、书p24第5题。
7、书p25第6题。
8、书p25第8题。
能说一说其中的规律吗?
【拓展练习】。
9、书p25第7题。
10、书p25第9题。
(四)全课总结。
怎样计算小数除以整数?
(1)按整数除法的方法去除。
(2)商的小数点要和被除数的小数点对齐。
(3)整数部分不够除,商0,点上小数点。
(4)如果有余数,要添0再除。
(五)教学效果评价(小测题)。
1.计算下面各题。
26÷0.13=6.21÷0.03=210÷1.4=。
课题:《一个数除以分数》 教案教学设计(人教新课标六年级上册) 篇八
知识重点[单击此处输入知识重点]。
教学难点[单击此处输入教学难点]。
教学用具。
教学过程教学方法和手段。
引入1大10倍,小数点应怎样移动?要扩大1000倍呢?
5、学生填写括号里的数:
被除数15150()。
除数550500。
商()()3。
学生小结运用了什么规律?(商不变的性质)。
概念分析[单击此处输入教学过程]。
例题讲解【例1】。
一、引入新课:
学生做43.5÷5=8.7。
然后改题:4.35÷0.5猜一猜得数是多少?为什么?
二、新授:
1、出示例5。
(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85。
(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)。
(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
2、出示例6:12.6÷0.28。
教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的.倍数。小数位移不够,在小数末尾添0。
小结:学生说一说学到了什么?教师适当小结。
课堂练习1、书上第22页“做一做”
2、练习:判断并改错:
1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。
3、练习:书上24页的作业。
小结与作业。
课堂小结[单击此处输入课堂小结]。
本课作业[单击此处输入本课作业]。
课后追记。
本课又提高了一个层次,老师要把握好扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
教学内容p21~22。
教学目标初步掌握除数是小数的除法的计算法则。
知识重点应用商不变的性质,掌握除数和被除数小数点的移动方法。
教学难点p22例子6被除数小数位数少于除数小数位数情况的处理。
教学过程教学方法和手段。
引入让学生做p20页第11题。
被除数1.515150。
除数550500。
商
这就是“商不变的性质”
教学过程一、板书1.28÷4=0.32。
那么12.8÷40=?
0.128÷0.4=?
二、出示p21例5主题图:
组织学生分组讨论。
生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。
二、例6。
被除数的小数位数少于除数的小数位数?
12.6÷0.28=。
课堂练习p22练习。
小结与作业。
课堂小结你们是怎样处理被除数和除数小数位数不同的问题的呢?
引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。
本课作业[单击此处输入本课作业]。
课后追记。
应用被除数和除数同时扩大相同的倍数,商不变的性质应用于小数除法,扩大除数、被除数的倍数(小数点向右边移动几位)是由除数决定的,要先看除数有几位小数,被除数和除数就同时向右移动几位。
一个数除以分数教学设计
作为一位无私奉献的人民教师,时常需要用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?下面是小编整理的一个数除以分数教学设计,仅供参考,大家一起来看看吧。
一个数除以分数教学设计 篇4
教学内容:
五年级上册第21、22页的例。
5、例6及“做一做”,练习四的部分习题。教学目标:
1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。2.培养学生的分析、转化及归纳的能力。
3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的简单问题。教具、学具准备:多媒体课件教学设计:
一、尝试口算,感悟计算方法。
1、我们来看一张口算表。你能快速说出结果吗?
2、我们已经开始学习小数除法了,下面我们来看一个问题(投影出示):一个日记本要2.4元,一块橡皮要0.6元。
1、出示:7.65÷0.85这道题能一眼看出答案来吗?有困难,找笔算。
我希望在大家的笔算竖式中,能看出你们心里是怎么计算的。学生独立尝试,请学生板演。
大家有什么问题吗?预设:a、为什么要划去小数点。
b、为什么被除数和除数都要划去小数点。c、下面的765为什么没有小数点。
d、不是说商的小数点要和被除数的小数点对齐吗?商的.小数点呢?
2、4.48÷3.2学生笔算,指名板演。比较你喜欢哪一种思考方法?突出根据除数的小数位数来确定扩大的倍数。
三、小结方法。
讨论,除数是小数的除法,怎样计算?
四、巩固练习。
2、判断题。
先说一说,你是怎样看出错误的,再全班练习,订正答案。
五、拓展:
板书设计:
除数是小数的除法。
除数是整数的除法。
思考:
1、从口算入手,理清算理。
2、尊重学生个体体验,形成笔算格式。
3、控制一节课的内容非常重要。
4、唤醒学生的知识库存记忆是很有必要的。
一个数除以分数教学设计 篇5
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 【设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。】
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
【设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的'各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。】
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
【设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。】
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
【设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。】
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
【设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。】
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
一个数除以分数教学设计 篇6
1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系。
2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。
3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力。
用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。
一、复习引新。
(一)口算下面各题。
(二)口答分数除以整数的.计算方法.。
(三)一个数的5倍是30,求这个数.。
二、讲授新课。
(一)教学例2。
例2.一辆汽车小时行驶18千米,1小时行驶多少千米?
教师提问:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(板书课题:一个数除以分数)。
教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出小时行18千米?(演示课件:一个数除以分数)。
观察:从图上看1小时里有几个小时?(5个小时)。
推想:要想求出5个小时行驶多少千米?就必须先求出什么呢?(小时行的路程)。
(小里有2个小时,2个小时行18千米,用182就可以求出小时行驶的千米数)。
教师板书:
(二)教学例3。
例3.小刚小时走了千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式:
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
4.汇报:求出小时走的,1小时里有10个小时,所以再乘10就求出1小时走的千米数。
5.推导过程:
(千米)。
6.教师提问:在这一过程中什么变了,什么没变?
(三)总结计算法则。
教师说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数。
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(四)反馈练习。
一个数除以分数教学设计
作为一无名无私奉献的教育工作者,很有必要精心设计一份教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。写教学设计需要注意哪些格式呢?下面是小编收集整理的一个数除以分数教学设计,欢迎阅读,希望大家能够喜欢。
一个数除以分数教学设计 篇7
一、教学目标
(一)知识与技能 通过具体的问题情境,探索并理解一个数除以分数的计算方法,能正确地进行计算。
(二)过程与方法 借助直观,经历一个数除以分数的计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
(三)情感态度和价值观
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
二、教学重难点
教学重点:探究并得出的一个数除以分数的计算方法。
教学难点:对一个数除以分数的算理的理解。
三、教学准备
多媒体课件。
四、教学过程
(一)复习铺垫,温故旧知
1.计算。
2.说说下面的数量关系。
小何3小时走了9千米,平均每小时走多少千米?
3.填空。
小时有()个小时;1小时里有( )个小时。
(二)创设情境,提出问题
教学教材第31页例2。 小明小时走了2 km,小红小时走了 km。谁走得快些?
教师:题中有哪些信息?“谁走得快些?”实际上就是比较什么?你能根据题意列出算式吗?
预设:学生能叙述题中告知的信息是小明和小红各自行走的'时间和对应的路程。借助前面的教学环节中对数量关系的描述,能理解“谁走得快些?”实际上是比较谁的速度快,速度=路程÷时间,由此根据题意分别列出算式(三)引导“转化”,探究新知 ,。
教师:上一节课我们已经学会了分数除以整数的计算方法,
现在你能试着把转化成除数是整数的除法并加以计算吗?
预设:
1.要想把除数变成整数而商不变,根据商不变性质,可得
(km)。
2.同样根据商不变性质,但除数可以化成1,即
(km)。
(四)数形结合,探明算理
教师:看来同学们对自己的计算方法都非常自信,那么教材中是怎样推导计算方法的呢?让我们一起来看一看。
1.阅读理解线段图。
教师:线段图中1小段表示什么?3小段又表示什么?(借助直观图,启发学生:1小时里面有3个小时。)
教师:求1小时走了几千米(即3小段),应该先求什么?
(借助直观,启发:应该先求1小段走了多少千米。)
2.阅读理解算式。
结合对话框,引导学生理解(km)。 教师:表示什么?又表示什么?
(启发:要求1小时行了多少千米,
要先求出小时行了多少千米,然后再求出3个小时行的路程。)
(五)强调“转化”,统一算法
1.对比交流,寻找规律。
教师:从例1中的
么? 与例2中的中,你发现了什
预设:通过对比,学生能得出:分数除法都可以转化为乘法计算。方法是:除以一个数等于乘这个数的倒数。
教师:例1和例2的计算过程有什么共同之处?
预设:学生通过观察,不难得出:不管哪种情况,都可以归结为“乘除数的倒数”来计算。
教师:小红1
小时能走多少千米?即
计算吗?试一试。 该怎样计算?你能用刚才得出的方法
教师:看看教材中是怎样计算的?为什么可以直接写成“
2.课堂小结,归纳算法。 ”?
教师:通过例1和例2的计算,你能用一句话来概括分数除法的计算方法吗?(学生交流。)
教师:再看看教材中是怎样总结的,和你有什么不同吗?
预设:学生可以初步得出分数除法的计算方法:除以一个数,等于乘这个数的
一个数除以分数教学设计 篇8
一个数除以分数教学设计
作为一名专为他人授业解惑的人民教师,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么应当如何写教学设计呢?下面是小编精心整理的一个数除以分数教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
一个数除以分数教学设计 篇9
教学目标
1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系.
2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.
3.培养学生的`计算能力及抽象、概括、分析、比较和综合的能力.
教学重点
使学生理解并掌握一个数除以分数的计算法则.
教学难点
用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.
教学过程
一、复习引新
(一)口算下面各题
(二)口答分数除以整数的计算方法.
(三)一个数的5倍是30,求这个数.
二、讲授新课
(一)教学例2
例2.一辆汽车 小时行驶18千米,1小时行驶多少千米?
教师提问:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(板书课题:一个数除以分数).
教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出
小时行18千米?.(演示课件:一个数除以分数)
观察:从图上看1小时里有几个 小时?(5个 小时)
推想:要想求出5个 小时行驶多少千米?就必须先求出什么呢?( 小时行的路程)
( 小里有2个 小时,2个 小时行18千米,用182就可以求出 小时行驶的千米数)
教师板书:
(二)教学例3
例3.小刚 小时走了 千米,他1小时走多少千米?
1.分析:已知什么,求什么,怎样列式: .
2.比较:和刚才的那道题目哪儿不一样?
3.讨论:这道题如何解答,你从中悟出了什么道理?
4.汇报: 求出 小时走的,1小时里有10个 小时,所以再乘10就求出1小时走的千米数.
5.推导过程:
(千米)
6.教师提问:在这一过程中什么变了,什么没变?
(三)总结计算法则
教师说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数.
甲数除以乙数(0除外),等于甲数乘乙数的倒数.
(四)反馈练习
一个数除以分数教学设计 篇10
教学内容:九年义务教育六年制小学数学第十一册第33-35页例2、例3。
教学目的:
1.进一步理解分数除法的意义,沟通乘除之间的联系。
2.掌握一个数除以分数的推理过程,运用转化的思想领会计算方法的来由。
3.熟记一个数除以分数的计算法则,并能加以运用。
4.培养分析、推理、辩证思维等能力。
教学重点:运算法则。
教学难点:推算过程。
[评:目标表述具体、简便,便于检测和评估。]
教学过程:
一、复习引入
1.复习。
(1)说出各算式的意义和计算结果。
÷3 ÷4 ÷2 ×5
(2)说出应用题的算式及所表示的意义。
一辆汽车2小时行驶90千米,1小时行驶多少千米?
(3)根据分数除法意义,把下面乘法算式改写出两道除法算式。
45× =18 × =
2.设问。
(1)上面所写出的除法算式中,哪个是分数除法?
(2)我们已学习了分数除以整数的分数除法,那么,整数除以分数、分数除以分数的分数除法的计算方法是怎样的呢?
3.揭题。
今天这节课我们就来学习研究"一个数除以分数"的计算方法,看谁最先学会。
[评:复习、设问、揭题紧密相联,设置新旧知识矛盾情境,激发学生学习动机。]
二、新课教学
1.讲解算理。
(l)出示例2。
(2)学生读题,理解题意。
(3)列出算式:
①根据"速度=路程÷时间"应列出怎样的.算式?
②板书:18÷
③想一想能不能按照分数除以整数的计算方法计算?
(4)讨论算法。
①根据题意画出思路图:
②分析:
a.已知 2/5小时行18千米,求1/5 小时行多少千米,该怎么算?(18÷2)
b.18÷2,还可以写成什么算式?(18×1/2 )
c. 1/5小时行"18×1/2 (千米)",求1小时行多少千米,又怎么样?(18×1/2×5)
d.18× ×5中的"×5"是什么意思?
e.这个算式还可以写成什么算式表示?
③板书:
18÷2/5 =18×1/2×5=18×2/5
④观察思考:
a.这个等式前后有什么变化?
b. 与 是什么关系?
c.由除法转化为乘法,说明了什么?
d.从"18÷2/5 = 918 × 1"这个等式,可以得出什么结论?
(5)教师小结:由上例可知整数除以分数可以转化为乘以这个分数的倒数。
板书:18÷ =18× =45(千米) 答:(略)
(6)做一做。
12÷3/5 24÷2/3 1÷5/7
[评:以除法转化为乘法为思路,引导学生分析、观察、思考,强化认识过程,注重理解,不轻易下结论。]
2.研究算法:
(1)出示例3:小刚3/10 小时走了14/15千米他1小时走多少千米?
(2)学生自学,教师巡视。
(3)指名学生板算:
14/15÷3/10= 14/3×2/3=28/9=3又1/9(千米) 答:(略)
(4)师生研讨:
①列算式的依据是什么?
②算式中的"÷ "为什么可以变成"× "?
③整数或者分数除以分数,计算时分别转化成什么样的计算?
④怎样验证这种计算结果是正确的?
⑤指名学生板算出验证过程:
14 1 1 3
× = × = ÷ = × =
3 5 5 2
⑥分数除以分数的计算方法能用一句比较恰当的话来叙述吗?让同桌学生相互议论,再指名回答。
⑦教师板书:一个数除以分数,等于这个数乘以原分数的倒数。
[评:采用让学生自学、尝试、验证的教学策略,充分发挥了学生的智能因素,调动了学生去主动获取知识的积极性。]
3.概括法则。
(1)出示: ÷9 9÷ ÷
(2)学生独立计算。
(3)指名学生在黑板上演算并说出计算方法。
÷9= 1× 3= 9÷ = 93× 1=12
÷ = 1× 2=
(4)观察议论:
①上面三道题分别叫做什么除法题?
②上面三道题的计算方法与过程相同吗?为什么?
③想一想,计算分数除法能否找到一个统一的法则?如果有,那么这个统一的法则是怎样的?
(5)启发概括:
①板书:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
②齐读法则。
4.看书质疑。
5.强化论证。
(1)启发思考:
①这个计算法则,除以上我们研讨的推导方法外,还有没有其它方法推导出来?
②当甲数除以乙数(0除外)时,除数是什么数算起来最方便?
(2)师生共同议论:
①出示: ÷
②怎样使这个算式中的除数变成1?被除数应怎样?
③板书:( × )÷( × )= × ÷1= ×
④让学生各举一例动手验证一下。
[评:利用知识间的联系,可以促进知识的发展。对法则的概括统一和进一步的强化论证法则,就说明了在数学中要善于捕捉这些联系规律,从而促进知识的沟通,促进学生对知识的深化理解。]
三、巩固练习
1.填空:
(1)甲数除以乙数(0除外),等于( )。
(2) ÷ = × (3) ÷ = ( )
(4) ÷ =( )×( ) (5) ÷ =
2.判断。下面各题如果有错误在( )更正。
(l)9÷ = 93× 1= =6 ( )
(2) ÷3= ×3= = ( )
(3) ÷ = 1× 1=4 ( )
(4) ÷ = 2× 1= = ( )
3.口算抢答题:
(1) ÷3 (2)3÷ (3) ÷
(4) ÷ (5) ×2 (6)6×
(7) ÷ (8) ÷
4.记出下面各题的计算方法有什么不同。
+ - × ÷
5.独立计算。
÷10 21÷ ÷ ÷
[评:突出重点,抓住关键,练在点子上,层层推进,在运用法则过程中进一步强化认识,深化记忆,形成知识。]
四、全课小结
1.一个数除以分数包括哪些内容?
2.一个数除以分数的计算法则是什么?
五、布置作业(略)
[总评:全课教学思路清晰,讲究课堂教学实效。按照学生的认识规律,强调对法则的认识过程,避免学生表面化、形式化的理解。同时在法则的揭示、分析、解决中发展了学生思维的内驱力,渗透了辩证观点的教育。]