植树问题教案

知远网

2025-09-11教案

知远网整理的植树问题教案(精选14篇),希望能帮助到大家,请阅读参考。

植树问题教案 篇1

植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。下面给大家提高了植树问题例3的教案设计,一起来看看吧!

教学内容:人教版新课标实验教材,四年级数学 下册P120的例3,P121的做一做,练习二十第4、6、7题

教学目标

1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。

2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。

教学重难点:掌握封闭图形中“植树问题”的解决方法

教具准备:正方形,围棋棋盘、棋子

教学过程

一、激趣导入

脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?

1、让学生独立思考,提示学生可用画图的方法进行思考。

2、全班交流,找出方法,并在正方形上把它表达出来。

3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?

4、在学生的思考中,导入新课,板书课题:植树问题

二、探索规律

1、教学例3

(1)出示围棋棋盘

数一数

围棋棋盘的最外边每边能放几个棋子?(19个)

(2)算一算

最外层一共可以摆放多少个棋子?

学生先独立思考,寻找出自己的计算方法

全班交流,学生叙述自己的算法和结果

方法一:19×4=76(个)

方法二: 19×4-4=72(个)

方法三: 18×4=72(个)

(3)议一议

全班交流,指名叙述每种方法的理由。

方法一忽略了角上算重的情况,多算了4个。

方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。

方法三每边都只算一个端点,这样每边有18个,3边正好是6个。

(4) 比一比

你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?

(5) 想一想

前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。

(6)类推

钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的.水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?

(7)归纳规律

与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。

2、解决问题

(1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?

(2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。

(3)集体交流,指名学生说出算理。

(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。

三、巩固练习

例3后面的“做一做”

四、课堂小结

今天我们学习的是封闭图形内的“植树问题”。你发现了什么规律?

五、作业布置:练习二十第4、6、7题。

教学反思

一、寻找例题间的联系

封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。

二、精心设计教学流程

教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。

三、反思不足促进教学

不足之处:

1. 对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。

2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。

3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。

植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。

植树问题教案 篇2

教学目标

1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

3.让学生感受数学在日常生活中的广泛应用。

教学重难点

教学重点:

从封闭曲线(方阵)中探讨植树问题。

教学难点:

用数学的方法解决实际生活中的简单问题。

教学过程

一、复习旧知,情境导入(课件出示)

(1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

(2) 校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?

师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)

师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

你能说说棵数与间隔数之间的关系

二、探索新知。

1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

板书课题:封闭图形的植树问题

2、运用规律。

圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

(1)引导学生读题,理解题意。独立完成。

(2)理解圆形的株数与间隔数相等,

列出算式:12÷2=6(盆)

3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

5、学习例题:

(1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子? (2)生读题,独立列出算式

学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

方法1:直接点数出最外层一共可以摆放72个棋子。

方法2:列式:19 ×2+(19-2)× 2=72(个)

方法3:列式:(19-1)×4=72(个)

方法4:列式:4+(19-2)×4=72(个)

方法5:列式:19×4 - 4=72(个)

以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

6、探究规律。

(1)首先理解封闭图形

围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

(2)提问:

我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的'发现?

(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究?

学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。

列式:(19-1)×4=72(个)

(5)请一学生板演,并说出每个算式所表示的意义 19-1=18(段) ----表示19个旗子有18段间隔 18×4=72(个)----表示最外层的总数

答:最外层一共可以放72个旗子。

(6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

7、运用规律解决问题。

(1)摆棋子:一个四边形,每个顶点都摆一个。

(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

设问:100-1求的是什么?乘4呢?(为什么要乘4?)

(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

8、摆花盆:完成做一做第2题 问题:

沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

三、巩固延伸

解决问题:

1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

课后延伸题

1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

四、全课小结 师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧? 封闭图形的植树问题,株数=间隔数

最外层总数=间隔数×边数

五、作业布置

教材122页的第4、6、7、8题

植树问题教案 篇3

教材分析

本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。

“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。

教学目标

1、建立“树的'棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

3、 体会数学模型的生活意义与作用,体验到学习的喜悦。

学习重点:建立“树的棵数=间隔数-1”的数学模型。

学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

预设过程

一、复习两端都栽

在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。新课标第一

3、反馈解法,强调“两端都种”与“间隔数+1”。

二、研究两端都不栽

在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

1、提出研究课题:要是两端都不种呢?

2、呈现问题,请学生思考后试解。

3、反馈解法,强调“两端都不种”与“间隔数-1”。

4、比较:“两端都种”与“两端都不种”有什么不同?

三、练习

1、画示意图,完成P118例2,注意“两端都不种”与“两旁都种”。

2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。

3、画示意图,完成做一做2,发现“锯的次数=段数-1”。

4、完成补充题,知道“四层楼三个间隔”。

四、

植树问题教案 篇4

一、教材概述

二、教学目标(知识与技能、过程与方法、情感态度与价值观)

1、使学生理解并掌握一个封闭图形的植树问题的规律。

2、学会用不同的方法分析具体的数学问题。

3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。

三、学习者特征分析

学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

四、教学策略选择与设计

自主探索 合作交流 总结规律

五、教学环境及资源准备

投影仪,每小组一副围棋。

六、教学过程

教学过程教师活动预设学生行为设计意图及资源准备

一、创设情境教师投影出示教材第120页例3情境图。

教师:图上两位小朋友在干什么?(下围棋)

你对围棋有哪些了解?

师:在这小小的围棋盘下可有不少数学问题呢!

板书课题:

让学生畅所欲言。吸引学生的注意力,激发学生的学习兴趣。

二、探究新知

(1)教师投影出示围棋盘。

师:在围棋盘上一个点可以放一个子。

(2)出示例3。

围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

师:同学们算得都正确。还有其他的方法吗?

师:你发现了什么?

学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

(1)学生读题,理解题意。

(2)动手在围棋盘上摆一摆,数一数,小组合作探究。

(3)学生汇报。

通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

三、反馈应用

(1)教材第121页做一做第1题。

教师投影出示情境画面,出示第1题。

(2)教材第121页“做一做”第2题。

①讨论:可以怎么摆放?

②最少需要多少盆花?

(3)教材第121页“做一做”第3题。学生读题,理解题意。

学生汇报。

学生在小组中合作完成,然后教师指名汇报,全班集体订正。

四、全课小结通过今天的学习活动,你有什么收获?

板书设计: 植树问题(二)

a.19×2+17×2=72(个)

(19+17)×2=72(个)

b.18×4=72(个)

c.17×4+4=72(个)

封闭图形:植树棵数=间隔数

植树问题教案

植树问题教案

作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?下面是小编收集整理的植树问题教案,希望对大家有所帮助。

植树问题教案 篇5

植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。下面给大家提高了植树问题例3的教案设计,一起来看看吧!

教学内容:人教版新课标实验教材,四年级数学 下册P120的例3,P121的做一做,练习二十第4、6、7题

教学目标

1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。

2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。

教学重难点:掌握封闭图形中“植树问题”的解决方法

教具准备:正方形,围棋棋盘、棋子

教学过程

一、激趣导入

脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?

1、让学生独立思考,提示学生可用画图的方法进行思考。

2、全班交流,找出方法,并在正方形上把它表达出来。

3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?

4、在学生的思考中,导入新课,板书课题:植树问题

二、探索规律

1、教学例3

(1)出示围棋棋盘

数一数

围棋棋盘的最外边每边能放几个棋子?(19个)

(2)算一算

最外层一共可以摆放多少个棋子?

学生先独立思考,寻找出自己的计算方法

全班交流,学生叙述自己的算法和结果

方法一:19×4=76(个)

方法二: 19×4-4=72(个)

方法三: 18×4=72(个)

(3)议一议

全班交流,指名叙述每种方法的理由。

方法一忽略了角上算重的情况,多算了4个。

方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。

方法三每边都只算一个端点,这样每边有18个,3边正好是6个。

(4) 比一比

你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?

(5) 想一想

前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。

(6)类推

钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的.水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?

(7)归纳规律

与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。

2、解决问题

(1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?

(2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。

(3)集体交流,指名学生说出算理。

(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。

三、巩固练习

例3后面的“做一做”

四、课堂小结

今天我们学习的是封闭图形内的“植树问题”。你发现了什么规律?

五、作业布置:练习二十第4、6、7题。

教学反思

一、寻找例题间的联系

封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。

二、精心设计教学流程

教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。

三、反思不足促进教学

不足之处:

1. 对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。

2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。

3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。

植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。

植树问题教案 篇6

学情分析

由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。

教学目标

1.认识不封闭曲线路上间隔排列中的简单规律。

2.会解决问题中“两端都栽”情形的植树的实际问题。

教学重难点

重点:间隔排列中的简单规律

难点:两端栽树棵数与间隔数之间的关系。

教学过程

一、口算:(白板出示)

48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=

100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=

二、谈话导入

师:同学们你们知道每年的植树节是几月几日吗?

生:3月12日

师:那你们植过树吗?

生:没有 有

师:那今天老师就来带领大家一起来研究数学上的 “植树问题”吧!

出示课题(ppt):植树问题

准备:

伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。

5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;

?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。

三、探究新知

下面让我们一起来研究,出示课件例题1

(1)理解题意

师:认真读题,你认为哪些词语最关键?

生:全长100米 ?? ? 一边

每隔五米 间隔 ?两端都要栽

问题:一共需要几棵树苗?棵数

(这些同学审题真仔细)

师:那什么叫做每隔五米?两端都要栽?

生:每相邻两棵树之间的间隔距离是5米?

小路的最开始和末尾各栽一棵。

师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?

师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()

(老师重点强调单位名称和答)

师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)

师:那么大家来看黑板上,间隔数和棵树之间有什么联系?

生:棵数=间隔数+1? 多找几个同学回答

师:出示课件 一起读。

师生共同回头看例1,学生在练习本上计算。

师出示课件ppt例1的`计算过程

100÷5=20(个)

20+1=21(棵)

答:一共需要21棵小树苗。

(表扬—你真了不起,写的跟答案一模一样,点赞!)

四、巩固练习(ppt呈现)

1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?

2、把“1千米”改成“2千米”

3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?

4、两侧都放呢?

5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树

五、思考题

学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?

六、谈收获

通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?

(师生共同本课内容,下课。)

植树问题教案 篇7

教学内容:

人教版五年级上册第七单元第一课植树问题

知识与技能:

(1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

(2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

(3)从封闭曲线(方阵)中发现植树问题的规律。

过程与方法:

培养学生观察能力、操作能力以及与人合作的能力。

情感态度与价值观:

学生通过观察、操作、交流等活动探索新知。

教学重点

在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

教学难点

基本规律的提炼和方法的应用。

教具准备

课件

学具准备:

练习本

教学过程:

一、课前谈话。

同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

二、探究规律。

(一)1.出示题目

这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

①理解题意

a、 指名读题,从题中你了解到了哪些信息?

b、 理解“两端”是什么意思?

指名说一说,然后实物演示。

指一指哪里是小棒的两端?

说明:两端要栽就是小路的两头要种。

②学生动手操作。

拿出小棒,同桌间互相说一说,画一画,摆一摆。

③同桌互相讨论后,全班汇报交流

a、指名说一说:你一共摆了多少根小棒?

上黑板上来摆给大家看一看。

b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

c、间隔与种树的'棵数有什么关系?

④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

2.改变题目条件变为:

在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

1.学生试解答

2.用小棒检验

3.说一说你的想法

间隔数与栽树的棵数又有什么关系呢?

学生试说后,教师小结。

4. 基本练习:同学们做操,某竖行从第一人到最后一人 的距离是24米,每两人之间相距2米,这一行 有多少人?

5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

(二)出示例2

1、学生读题,理解题意

①“两馆间的小路”指的是哪一段?

②“小路两旁”指的是要栽几边?

2、学生互相合作,用小棒摆一摆

师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

要求完成:

①你一共摆了几根小棒?

②每一边的小棒根数和间隔数之间有什么关系?

3、全班交流

4、教师小结

这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

(三)用摆小棒的方法教学例3

教师小结:两端封闭的情况下 植树棵数=间隔个数

三、练习应用

1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

植树问题教案 篇8

教学过程:

一、导入。

1、手引发的思考。

师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

2、提问:每年的3月12日是什么日子?(点出植树的好处,进行思想教育。)揭题。(板书课题)

二、新课探究。

1、出示题目:同学们在校园小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?【学生读题,分析题意。】

2、学生大胆猜测。让学生利用学具表格完成对因为长度不定的猜想,展示学生的猜想:(由于长度的不同,学生出现的情况不同,但总是会出现棵数比间隔数多一)

理解:“间隔”、“间隔数”、“棵数”。

3、验证,建立数模。(学生分小组亲自动手验证)

棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

课件显示:隔5米种一棵,再隔5米种一棵……,一直画到100米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

4、发现规律。

学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

课件动态演示:一个间隔对应一棵,这样一直对应下去,100个间隔就有100棵,种完了吗?

师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

5、总结归纳,应用规律,完成例1的学习。

归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的`解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

师:你们能用一个式子把规律表示出来吗?

【板书】间隔数+1=棵数棵数-1=间隔数

学生完成课本例1的学习、解答。

6、联系生活

在我们生活中存在着很多类似植树问题的现象,你发现了吗?(让学生找出生活中的有关植树问题原理的实例)

让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

三、巩固练习。

1、点击生活。

(1)一排同学之间有7个间隔,这一排有()个同学。

(2)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有()个间隔。

2、解决问题。

(1)5路公共汽车行驶路线全长12km,相邻两站之间的距离都是1km。一共设有多少个车站?(2)在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?3、拓展练习

园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

四、课堂总结。

五、作业:课本P109练习二十四第1、3题。

板书设计:

植树问题

(两端要栽)

全长÷间隔长度=间隔数间隔数+1=棵数

100÷5=20(个)20+1=21(棵)

答:一共要栽21棵树。

教学反思

“植树问题”是人教20_版五年级上册“数学广角”的内容,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情况”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:

一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。

二、以一道植树问题为载体,放手让学生自主学习,应用不同方法解决问题,引发学生认知冲突。

三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。

四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。

反思整个教学过程,我认为这节课有以下几点做得比较好:

1、通过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应该题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自己喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。

2、渗透一一对应的思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、交流等活动,既学会一些解决问题的一般方法和策略又逐步形成求实态度和科学精神。

3、注意反映数学与人类生活的密切联系。

本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。

4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:

(1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中知道总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的能力。

(2)现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不同现象的“植树问题”。

这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。

设计理念及思路:

植树问题教案 篇9

教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:

课件、表格、尺子等。

教学过程:

一、教学间隔

1.教学间隔的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

2.引入植树问题的`学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究找出规律

1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

预设:学生可能大多数对得到20棵。

师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

总长(米)

20

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

师:对得到的这个规律有没有不同意见?

三、巩固练习

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

A1.在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

A2.如果是每隔10米栽一棵呢?(口答)

B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教案 篇10

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、探究新知。

(一)、创设情境,提出问题。

1、出示题目信息:一条新修的公路,全长1000米,在它的.一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到1000米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!)

(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

师:请大家默读题目,然后在练习本上独立完成。

三、学以致用。

1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

生独立审题,尝试在练习本上独立完成。

生交流方法和思路。

2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

3、师:你们真了不起。请到知识城堡一展身手吧。

(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

生汇报交流。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

植树问题教案(通用11篇)

作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么什么样的教案才是好的呢?以下是小编整理的植树问题教案,欢迎阅读,希望大家能够喜欢。

植树问题教案

作为一名教职工,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?下面是小编为大家整理的植树问题教案,希望对大家有所帮助。

植树问题教案 篇11

一、教材内容分析

1.人教版四年级下册第8单元书119页

二、教学目标(知识与技能、过程与方法、情感态度与价值观)

1、进一步理解和掌握在直线上植树问题的解题规律。

2、会根据实际问题,灵活选择方法进行解答。

3、经历解决植树问题的过程,体验比较、区别学习方法。

4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。

三、学习者特征分析

学生通过生活中的简单事例,初步体会解决植树问题的思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的'过程,体验数学思想方法在解决实际问题中的应用。

四、教学策略选择与设计

认真观察分析,运用规律解决问题

五、教学环境及资源准备

投影仪

六、教学过程

教学过程 教师活动 预设学生行为 设计意图及资源准备

一、复习回顾

(1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:

①两端都要栽:植树棵树=间隔数+1

②两端都不栽:植树棵数=间隔数-1

③只栽一端:植树棵数=间隔数 学生在小组中议一议。相互交流。

二、指导练习

(1)教材练习二十第1题。

①学生读题:理解题意。

②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?

③大钟敲12下,需要多长时间呢?

大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。

组织学生读题,理解题意。

(2)教材练习二十第3题

教师:从王村到李村之间设电线杆,会有几种情况?

学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。

a.16-1=15 200×15=3000(米)

b.16+1=17 200×17=3400(米)

c.200×16=3200(米)

教材第119页思考题。

教材练习二十第4题。

①学生读题,理解题意。

②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?

教师:你发现了什么?

教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)

教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。

所以排名是:

1号 2号 3号 4名

第3名 第4名 第2名 第1名

学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。

学生独立思考,并解答。教师指名汇报,然后集体订正。

组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:

a. 两端都设有电线杆。

b. 两端都不设电线杆。

c. 只在一端设电线杆。

学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名

三、应用练习

(1)一度长180米的大桥两侧,每隔30米安装一盏路灯。

①两端要安装,需路灯几盏?

②两端不安装,需路灯几盏?

(2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多 学生独立练习,然后小组交流。

指2名学生板演,再集体订正。

学生读题,理解题意。

小组合作讨论,交流解答。

四、总结

通过这节课的练习,你又有哪些收获?

板书设计: 植树问题

植树问题教案 篇12

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)感受数学在生活中的广泛应用。

(2)在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、探究新知。

(一)创设情境,提出问题。

1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)从题目中你得到了哪些数学信息?

(2)理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

(5)尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到1000米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的.方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)自主探究。

(1)师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)应用规律,解决问题。

(1)出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)生找出正确解法。

(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!)

(4)师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

师:请大家默读题目,然后在练习本上独立完成。

三、学以致用。

1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

生独立审题,尝试在练习本上独立完成。

生交流方法和思路。

2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

3、师:你们真了不起。请到知识城堡一展身手吧。

(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

生汇报交流。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

植树问题教案 篇13

教学目标:

1、使学生通过生活中的事例,初步体会解决植树问题的方法。

2、初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,培养学生的应用意识和解决问题的能力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:

多媒体。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1、能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2、能利用植树问题,灵活解决生活中类似的`实际问题。

三、探究新知:

1、出示例1:同学们在全长一百米的小路一边植树,每隔五米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有十米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2、学生自学探讨。(师巡视)

3、班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1、做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2、 122页第2题。独立完成,同桌交流想法,可一生板演。

五、检测反馈:(独立完成)

1、在一条长400米的马路的一边,从头到尾每隔八米种一棵树。一共可以种多少棵树?

2、五路公共汽车行驶路线全长十二千米,相邻两站的距离是一千米。一共有几个车站?

3、从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:

这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

植树问题教案 篇14

一、教材

《植树问题》是《义务教育教科书.数学》五年级册第七单元《数学广角》中的内容。

教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。

本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

二、教学目标

1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

5.能运用所得到的规律解决实际问题。能和他人合作交流。

6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

三、重、难点

重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。

难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活解决一些相关的实际问题。

四、说教法与学法

教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。

学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。

五、教学流程

(一)课前互动、引出课题

师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

1.一根木头长10米,要把它平均锯成9段,需要锯几次?

2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

(这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)

(二)探索规律、建立模型

1.创设情境,引入学习。

园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由. (创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)

(二)动手操作,设计方案

2.同桌二人合作,摆一摆或画一画。

(先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)

3.交流汇报,演示。

4.比较方案,探究规律。

(1)间隔数与总长、间距的关系。

①出示植树的三种情况,学生观察相同点。

②学生汇报,教师板书。

③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)

(2)间隔数与植树棵数之间的关系。

①学生观察不同点,教师讲解三种方法的名称。

②同桌交流棵树和间隔数的关系。

③汇报交流。(板书)

④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的'思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)

(3)小结:

①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。

(三)巩固应用、内化提高

师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

(练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)

(四)课堂总结,拓展延伸

六、说板书设计

(一条线段上的)植树问题

大家都在看