知远网整理的《比的意义》教学设计(精选12篇),希望能帮助到大家,请阅读参考。
《比的意义》教学设计 篇1
教材分析
这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。
学情分析
1、本班现有学生92人,男生49人,女生43人。
2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。
3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。
教学目标
1、知识与技能:理解比例的意义,认识比例各部分的名称。
2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的'意义,判断两个比能否组成比例,会组比例。
3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点和难点
1、掌握比例的意义。
2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
3、能根据一个比例写几个不同的比例。
教学过程
教学环节 教师活动 预设学生行为 设计意图
一、复习
1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?
2、怎样求比值?求下面各比的比值,你发现了什么?
20∶252.7∶4.56∶10生回答。
学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。
揭示
课题这节课我们在比的知识基础上,进一步学习新知识。
揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。
探究
比例的意义
1、课件出示
例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。
列表如下:
竹竿长(m)23...... 影子长(m)69......
2、你能写出多少个有意义的比?并求出它们的比值。
3、观察这些比,把能用等号连接的比用等号连接起来。
4、教师板书
3∶2=9∶6
2∶6=3∶9
强调:这些都是比例。
引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。
5、2∶9和3∶6能组成比例吗?你是怎么知道的?
6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”
1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。
2、学生试写:
2:3=6:9
2:6=3:9
3、学生合作探究:什么是比例?
4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。
1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。
2、让学生分享在主动参与、探究中获取知识的愉悦心情。
3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。
认识比例的各个项
1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。
要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。
介绍分数形式的比例写法。
学生小组合作探究,找出3∶2=9∶6和2:6=3:9
的内项和外项。加深认识,学以致用。
五、巩固练习
1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?
2、说一说比和比例有什么区别。
3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。
4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?
5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?
1、学生独立完成。
2、汇报答题情况。
检测学生学习效果。
六、比与比例的区别
1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。
2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。
《比的意义》教学设计 篇2
教学目标
1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。
2、培养学生比较、分析和概括等思维能力。
教学重难点
使学生认识比的意义和各部分的`名称,学会比的读写方法,理解和认识比与除法、分数之间的联系
教学准备
幻灯片
教学过程设计
教学内容
师生活动
备注
一、 引入新课
二、教学新课
三、巩固联系
四、作业
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)
引入新课
2、出示两道文字题
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法。
1、书本53页练一练
2、练习十二1、2
练习十二3、4、5
关于《比的意义》教学设计
作为一名教师,编写教学设计是必不可少的,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编整理的关于《比的意义》教学设计,欢迎大家分享。
《比的意义》教学设计 篇3
教材简析:
这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:
(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。
(2)比的后项不能是0。
教学内容:
苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。
教学对象分析:
学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。
教学目标:
1、理解并掌握比的意义,会正确读写比。
2、记住比各部分的名称,并会正确求比值。
3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。
4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。
5、养成认真观察、积极思考的良好学习习惯。
教学重点:
理解和运用比的意义及比与除法、分数的联系。
教学难点:
理解比的意义。
教学媒体:
电脑课件、实物投影
教学过程:
一、创设情景,激发兴趣
1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。
你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)
32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)
27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)
2、联系奥运,分析题目.
在奥运会上,你认为我国的`哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下
新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。
看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?(12。91)
那你知道他的速度到底有多快吗?
如果我要你们列式来求该怎么求呢?(110÷12。91)你是根据什么来列式的?(路程÷时间=速度)
看完奥运,我们再来看看我们学校的事情
3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)
4、学校用150元买来3个小足球,每个小足球多少元?
(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?
学生读题回答,教师板书(总价÷数量=单价150÷3)
5、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)
[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]
二、自主探究,合作交流
1、比的意义。
(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。
那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)
(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。
质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?
引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。
(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)
都说完了,那谁愿意站起来说一说呢?
(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。
那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)
那单价呢?可以怎么说啊?(单价是总价和数量的比)
在我们常用的数量关系中还有工作效率=工作总量÷工作时间
这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)
[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]
(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)
汇报,板书:两个数相除又叫做两个数的比。(齐读)
你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)
[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]
(4)练习题:填空。
有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。
[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]
2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。
(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!
[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]
(2)汇报。
1:我学会了比的写法,3比4记作3∶4。(让学生板演)
问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12。51又记作什么?(指名板演,其他同学写在练习本上)3∶44∶3110∶12。91又怎样读呢?
思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)
[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]
2:我学会了比的各部分名称。(结合3∶4来说明)
如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)
3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)
问:那么怎样求比值呢?(前项除以后项的商)
练习题:(课件出示)求出下面各比的比值。3∶40。7∶0。358∶40。2∶1/5
想:比值通常可以是什么数?
[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]
4:两数相除又叫做两个数比,看来比和除法之间有着一定的联
系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。
出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)
相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数
设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。
5:我还知道比的后项不能为“0”。
问:为什么呢?(引导学生从不同角度说明)
三、多层练习,巩固新知
《比的意义》教学设计
作为一名老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。那么优秀的教学设计是什么样的呢?下面是小编整理的《比的意义》教学设计,仅供参考,大家一起来看看吧。
《比的意义》教学设计 篇4
教学目标:
1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.
2、渗透恒等变换思想.
教学重点:
最简分数的概念.
教学难点:
约分的方法和正确的书写格式.
教学课型:
新授课
教具准备:
课件
一、出示课题,学习目标
理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.
二、出示自学指导认真看课本学习、掌握约分的方法,能够正确地进行约分;培养学生综合运用已有知识解决问题的能力.
三、学生看书,自学
四、效果检测
最简分数的意义.
(1)提问:A,有一个分数18/24,你能不能找到与它大小相等,而分子分母又比它的分子分母小的分数
(2)分组交流:说说你是怎样找到的 你的'依据是什么 找到3/4以后为什么不继续找了
板书: 18/24 =(18÷6)×(24÷6)= 3/4
述:像3/4这样的分数就叫做最简分数.
B,分析观察3/4,想想,什么叫做最简分数呢
※ P112 .做一做(上)
※ 请各举5个最简分数.
约分的意义与方法.
板书:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(通常是把一个分数约分成最简分数.)
(1)教学P112 .例 2: 把12/30约分
提问:A,想一想,怎样把这个分数进行约分
(用分子和分母的公约数(1除外)去除分数的分子和分母)
B, 约分时需要运用到什么知识
板书:
※ 先找出8/24的分子分母的公约数,再约分.想一想8/24用什么数去除可以使它更快地化成最简分数 [课件3]
※ 把12/30约分.
C,要使约分过程比较简便,应该怎样做
(直接用分子和分母的最大公约数去除则比较简便.)
板书: 12/30=(12÷6)/(30÷6)=2/5
※ P112 . 做一做(下)
五、重点指导
1,P113 . 1
2,找出最简分数.[课件4]
2/3 6/8 9/12 5/6 5/18 21/28 34/51
3,P113 . 3
六、课堂小结,抽象概括
今天我们学习了什么知识 谁能概括
家作
P113 . 2,4
板书设计: 约分的意义及方法
把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.
P112 .例 2 把12/30约分
12/30=(12÷6)/(30÷6)=2/5
课后反思:
《比的意义》教学设计 篇5
教学内容:
分数的意义是人教版五年级下册《分数的意义和性质》中的教学内容。
教学目标:
1、初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。
2、在理解分数意义的过程中,进一步培养分析、比较、综合、抽象与概括的能力。
3、在学习中感受分数与生活的联系,增强数学学习的信心。
教学重点与难点:
重点:理解分数的意义。
难点:理解单位“1”的含义
教具准备:
课件,苹果,饼干一包。
学具准备:
课堂小卷,尺子,彩笔等。
教学过程:
一.情景导入
课件出示自古至今几种不同的分数表示方法,通过教师的讲解,让学生了解分数的发展史。
师:你们知道这些不同的数学符号表示什么吗?教师介绍分数发展史。
这四种标记都是表示同一个数:1/2
(设计意图:通过分数发展史的介绍,激发学生的学习兴趣,也让学生了解分数的发展历史,也为新知识的引入做了铺垫。)
让学生举起手跟老师一起书写1/2。
提问:你知道1/2各部分的名称吗?教师板书。
分母表示什么?分子表示什么?
经历分数的形成过程。
师:把四个苹果平均分成两份,每份是几个苹果?(2个)把两个苹果平均分成两份,每份是几个?(1个)把一个苹果平均分成两份每份是几个苹果呢?(半个)
师:半个能用整数来表示吗?学生:不能
师:那可以怎么表示呢?(分数1/2个)
师:谁能借助老师手中的`实物(苹果)来表示分数1/2?
学生演示:把一个苹果平均分成两份,其中一份用分数表示是1/2。
教师总结:在生活中,进行测量、分物、或计算时往往得不到正好的整数,这时我们就要用分数来表示。
师:老师这里有两个苹果,我把它们平均分成两份,其中一份(也就1个)就是这些苹果的1/2。大家有疑问吗?(学生可能会认为一份苹果不就是1个吗?为什么用1/2表示呢?
由此引出课题:分数的意义
课件出示几组把一个物体平均分得到的分数,让学生感受是把什么平均分,近而引处“1”的概念。
课件出示一块饼干,一个正三角形,一条线段平均分,让学生在学生说出所得到的分数,在说分数的时候,一定要让学生说一说是怎样想的,并强调是把哪个整体平均分?把学生说出的分数按照分子是不是1进行分类板书。
师:一块饼干,一个图形,一条线段都可以平均分,我们可以把它看作一个整体,我们给它起个名字叫做单位1。追问;这个整数1表示什么?
把单位“1”由一个物体扩展到“几个物体”。
师,接下来,我想带领大家做个游戏。看课件。
露出的一个三角形用分数表示是1/4,请同学们猜一猜白纸遮上的部分是什么样子的呢?让学生在纸上画一画。
有两种画法:一个是一个图形。另一种是4个三角形。
强调;一个物体可以看作单位1,通过平均分得到分数,那4个三角形能不能也看作单位1呢?能!
师;为什么?让学生发言。
验证:分饼干的游戏。教师实物演示平均分饼干,让学生说一说把什么看做一个整体,也就是单位“1”。
师;生活中还有哪些物体可以看作单位“1”?学生回答。
课件出示练习题,学生看图填空。
师:几分之一表示什么?(板书)几分之几表示什么?
师:你认为他们谁重要?学生回答。
几分之几是由几个几分之一组成的,所以几分之一是构成分数的最基本的单位,叫做分数单位。举例。
三、课堂练习。
《比的意义》教学设计 篇6
教学内容:
九年义务教育六年制小学数学第十二册P62——63
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:
认识正比例的意义
教学难点:
掌握成正比例量的变化规律及其特征
设计理念:
课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充
二、初步感知探究规律1、出示例1的表格(略)
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)
(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,(板书:路程和时间成正比例)
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书
3、抽象表达正比例的意义
引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的`量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书:=k(一定)
揭示板书课题。
先观察思考,再同桌说说
大组讨论、交流
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系
学生独立填表
完整说说铅笔的总价和数量成什么关系
学生概括
三、巩固应用深化规律
1、练一练
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
讨论、交流
独立完成,集体评讲
说明判断的理由
说一说,画一画
填一填,议一议
讨论
四、总结回顾评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
《比的意义》教学设计 篇7
教学内容:比的意义。
教学目的:
1.使学生理解比的意义,知道比各部分的名称;学会求比值的方法,能正确地求出一个比的比值;理解比同除法、分数的关系。
2.培养学生比较、分析、抽象、概括和自主学习的能力。
教学重点:使学生理解比的意义。
教学过程:
一、创设情境
同学们,在我们的生活中,经常可以发现两个数量之间有关系。
1、比如说,周老师今年25岁,这位同学你今年几岁啊?(指着第一位同学)(12岁)
师:大家能列个算式表示出我们年龄之间的关系吗?
(25-12=13)这个是相差关系。
师:还可以用别的方法进行比较吗?
生;12除以25求的是倍数关系。
师:好的,请坐!
2、请这组同学起立,我们一起来数一数,有几个男生,几个女生啊?(老师指着一起数,男生5人,女生3人)
师:除了表示出他们人数之间的相差关系,你还能列什么算式表示出他们之间的关系呢?
生:倍数关系。
3、我们以前还学过这样的题,看大家还记得吗?看屏幕:
一辆汽车2小时行驶90千米,平均每小时行驶多少千米?
学校用150元买来3个小足球,每个小足球多少元?
自己读题,看看每道题求的是什么?怎样列式。
交流:谁来说第1个小题,指名回答,根据回答板书:
(电脑出示:速度90÷2)
这里的90表示的是(路程),2表示的是(时间)
那你能说一说数量关系吗?(速度=路程÷时间)
这里的速度表示的就是路程与时间的关系。
下一道呢?指名回答,(电脑出示:单价150÷3)
数量关系式是什么呢?(单价=总价÷数量)
单价表示的就是总价和数量的关系。
好极了,请坐
师小结:我们看这些题都是用除法算式来表示两种数量之间的关系。
二、探究新知
(一)教学比的意义。
在我们日常的工作和生活中,常常要把两种数量进行比较,今天我们就来学习一种新的比较两种数量关系的方法。叫做“比”,一起来研究“比的意义”。(板书:比的意义)
1、这里的老师年龄是同学年龄的几倍用25÷12,可以说成“老师和同学年龄的比是25比12”
(电脑演示:老师和同学年龄的比是25比12)
一起读一下。
可以记作25:12(电脑演示25:12)
这里中间的两个圆点叫做比号,读作比。
那同学年龄是老师年龄的几分之几就可以说成同学和老师的`年龄比是多少啊?(电脑演示:同学和老师年龄的比是12:25)
2、那你能把这句话变一个说法吗?
男生人数是女生人数的几倍可以说成“男生人数与女生人数的比是5:2”(电脑演示)
那如果是2:5呢?应该是谁和谁的比呢?
(电脑出示2:5)(电脑演示:女生和男生人数的比)
所以我们在说比的时候要有顺序地说。
3、那么路程÷时间=速度可以怎么说呢?(指着算式90÷2问)
你来试试:(路程和时间的比是90比2)
也就是速度可以说成是――(电脑演示:路程和时间的比)
4、单价可以说成什么呢?
生:单价可以说成是总价与数量的比(电脑演示:总价与数量的比)
5、那么从刚刚这些例子中我们可以看到,两个数相除,又可以说成这种比的形式。你能不能说说什么是比呢?
先在组里互相说说,开始。(学生说,教师巡视)
谁愿意来说说?(多说几个)
把他们的意见综合一下就是两个数相除又叫做两个数的比。
(板书:两个数相除又叫做两个数的比。)
一起读一下。这就是比的意义。比表示的就是两个数相除的关系。
7、那你们能不能自己举个用比表示两个数量关系的例子呢?同桌先相互说说。(学生说)
8、交流:学生回答,教师小结。这些都可以说成比。
9、刚才我们通过观察,研究,发现“两个数相除又叫做两个数的比”,并知道了比的写法,那你会写比了吗?一起来试试看,完成练习第1题。
(二)教学比的读写法,各部分的名称、求比值的方法
1、我们已经理解了比的意义而且学会了怎样来写比。那比是由哪几部分组成的?各部分名称又是什么呢?我想通过大家的自学,一定能很快解决。请大家对照要
(学生自学3分钟)
(电脑出示电脑自学提纲)
(1)什么叫比的前项?什么叫比的后项?什么叫比值?
(2)怎样求比值?
(3)“试一试”(完成练习第2题)
2、学生交流。
好,我们来交流一下你们的自学情况。
(1)指名学生回答问题1,教师板书
我们以5:3(板书5:3)为例,你能具体向大家介绍一下吗?
(比号前面的5叫做比的前项)
(比号后面的3叫做比的后项)
比的前项除以后项所得的商,叫做比值。
(2)那怎样来求比值呢?
(只要把前项除以后项)
以5:3为例呢?怎样求比值?(板书:=5÷3=5/3比值)
师:通过刚才的练习我们可以发现,比值可以用分数表示,也可以用小数表示,有时也可以是整数。当比值用分数表示时一定要是最简分数。
3、刚刚我们已经知道了比的写法,其实比还有另一种写法,同学们一起看。
例如5:2(教师指着5:2讲解)还可以写成分数形式。
我们一起来书空一下,注意:写的时候要从上往下写,它还是一个比,而不是分数,所以仍读作5比2。(板书:仍读作5比2),《比的意义》
《比的意义》教学设计 篇8
【教学目标】
1、理解比例的意义,认识比例各部分的名称。
2、让学生经历探讨“两内项之积等于两外项之积”的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质判断两个比能否组成比例,会组比例。
3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
【教学重点】理解比例的意义和基本性质。
【教学难点】
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
【教学准备】课件,扑克牌10张(2~10以及A),圆规一个。
【教学过程】
一、复习准备
(1)一辆汽车4时行160km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
121634184、52、、7106
教师:同学们发现4、52、、7和106的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1、提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题——比例的意义和基本性质。板书:比例的意义和基本性质
2、探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长(米)26……
影子长(米)39……
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:32=96,62=93……
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的意义)
教师:29和36能组成比例吗?你是怎么知道的?
指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”再判断
25和80200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3、认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出32=96和62=93的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4、教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5、运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0、425能否和1、275组成比例?为什么?
学生讨论后回答:因为0、4×75=25×1、2,所以0、425和1、275能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在65=3025这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。
2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。
《比例的意义和基本性质》教学设计7
教学内容:
义务教育课程标准实验教科书人教版数学六年级下册。
教学目标:
1.理解和掌握比例的意义和基本性质。
2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。
3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的.情感体验。
教学过程:
一、认识比例的意义
1.出示小红、小明在超市购买练习本的一组信息。
(1)根据表中信息,你能选出其中两个量写出有意义的比吗?
(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)
(2)算算这些比的比值,说说你有什么发现。
(学生说出自己的发现,教师用“=”连接比值相等的两个比。)
(3)说说什么叫比例。
(学生各抒己见,师生共同归纳后板书:比例的意义)
评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。
2.即时训练。
A.判断下面每个式子是不是比例,依据是什么?
(1)10∶11(2)15∶3=10∶2
a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。
b.剩下的(1)(2)(4)三个比中有没有能组成比例的?
c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?
评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。
3.教学比例各部分的名称。
(1)引导学生读教材(相关内容),认识比例各部分名称。
(2)集体交流。(教师板书:内项、外项)
(3)把比例写成分数形式,指出它的内、外项。
(4)任意写一个比例,同桌相互说一说比例各部分的名称。
二、探究比例的基本性质
1.填数。
(1)出示比例8∶()=()∶3。想一想,这两个空可能是哪两个数。
〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕
(2)观察思考:在填这些数的过程中,你有什么发现?
(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)
(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)
A.先验证黑板上的比例式,再验证自己写的比例式。
B.概括比例的基本性质。同桌相互说一说比例的基本性质。
(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)
评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。
2.即时训练。
应用比例的基本性质,判断下面的两个比能否组成比例。
3.6∶1.8和4∶24∶9和5∶10
小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。
三、巩固新知,解决问题
1.猜数游戏。
在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?
3∶5=6∶()()∶5=6∶()3∶5=()∶()
2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)
利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)
评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。
总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。
《比的意义》教学设计 篇9
教学内容:
人教版小学数学教材六年级上册P48-P49内容。
教学目标:
1、在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2、经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
3、在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:
理解比的意义以及比与分数、除法之间的关系。
教学难点:
理解比与分数、除法之间的关系,明确比与比值的区别。
教学准备:
课件,学具。
教学过程:
一、创设情境,揭示课题
1、课件出示:我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。
教师提问:这就是杨利伟展示的两面旗,它们的长都是15 cm,宽都是10 cm。比较它们长和宽的关系,你能提出怎样的数学问题?
预设情况:
(1)长比宽多多少厘米?15—10;
(2)宽比长少多少厘米?15—10;
(3)长是宽的多少倍?15÷10;
(4)宽是长的几分之几?10÷15。
2、揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)
【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。
二、探究新知,理解比的意义
(一)同类量的比
师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)
师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)
(二)不同类量的比
课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252 km。那么飞船进入轨道后平均每分钟飞行多少千米?
1、读题理解题意,说说知道了哪些信息?
2、独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)
3、尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)
(三)比较分析
1、观察比较。
师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)
师:想一想,路程与时间的比可以表示哪个量?(速度)
2、归纳:什么叫比?(板书:两个数的比表示两个数相除。)
三、自主学习,加深认识
(一)深化理解
1、自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?
2、汇报交流。
(1)比各部分的名称。
课件出示:15:10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)
(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)
(3)练习:求出下列各比的比值:
3:5;0、4:0、16;6:8。
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
【设计意图】自主学习也是学生探索问题、解决问题的重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的基础上自主学习比的相关知识,促进学生自主探究能力的发展。
(二)沟通联系
1、师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?
2、请尝试用字母表示比和除法、分数之间的内在联系。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。
3、师:足球比赛中的'比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
四、巩固知识,应用拓展
1、P49“做一做”第1题。
(1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)
(2)提问:小敏所花的钱数和练习本数之比是( ):( ),比值是( )。
请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。
2、P49“做一做”第2题。
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)
【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。
3、练习十一第1题。
(1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)
(2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)
【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。
五、回顾总结,交流收获
师:说说这节课我们学习了什么?你有什么收获或问题?
《比的意义》教学设计 篇10
教学设想:
本文位于苏教版说明文第一板块“科学之光·探索与发现”的第二篇,属于自学选教课文。文本侧重于人类在科学领域的探究,对客观世界内在规律的把握,同时对科学的价值进行认识与思考,享受发现与探索的无穷乐趣。编者的意图是,借该篇培养学生自主阅读科学说明文的能力。本文的阅读也没有什么难度,教学时以自读把握信息为主。
目标要求:
1、能够筛选主要信息,把握文章脉络。
2、继续了解说明文的特点,理解说明方法,体会说明文的语言特色。
3、了解科学探索应该具备的品格,并培养自己良好的素养。
课时设置:
1教时。
过程:
一、导入(本文的属性与教学要求)
本文的属性——学术报告,演讲稿,所以语言通俗易懂。文章在结构上,也为了适应学术演讲的需要而安排得条理清楚,纲目分明。学习中,要善于筛选主要信息,把握文章脉络;理解说明方法,体会说明文的语言特色。
二、解题
20世纪初期,人类发现了生命的基本规律之一--遗传规律。20世纪50年代初,英国和美国的科学家提出遗传物质DNA的双螺旋模型,打开了人类认识生命奥秘的大门。70年代开始的DNA克隆技术和后来蓬勃发展的转基因技术、动物植物克隆技术.让人类对生命奥秘有了进一步的认识。与此同时,人们还发现,几乎人类所有的疾病都与基因有关。在这样的背景之下,人类基因组计划诞生了。目的是为了解决人类健康问题,并以此带动生物信息产业的发展。
人类基因组计划最早在1985年由诺贝尔奖获得者、美国的杜尔贝克提出。1990年10月,国际人类基因组计划正式启动。中国于1999年9月获准加人人类基因组计划并承担了l%的测序任务。本文作者杨焕明教授为争取和主持完成中国参与人类基因组1%序列的测定立下汗马功劳。在这篇文章中,作者对这一计划尤其是实施这一计划的意义作了详细的说明。
三、指导阅读理解
1、先自读课文,再和同学合作,试制作出作者演讲时放映的提纲幻灯片,再看看文章呈现怎样的逻辑结构。
2、学生上讲台投影展示提纲幻灯片
一、(1-2)人类基因组计划的启动及其宗旨与目标。
二、(3-10)计划的意义。
(一)规模化
(二)序列化
(三)信息化
(四)医学化
(五)产业化
(六)人文化
三、(11-18)这一计划对人类社会生活的影响。
(一)基因平等,需善待他人
(二)遗传平等,需善待自己
(三)基因属于隐私,需要尊重
(四)促进人性文明、社会和谐
1、知情权
2、基因组研究的非和平使用的可能性
总分结构。条理清楚,一目了然,归纳总结,纲目清楚。)
3、浏览课文,看看本文运用了哪些说明方法,请举例说明。
(下定义:“人类基因组计划……重大工程。”
列数字:“人类基因组计划……技术人员参加。”
举例子:“这些细微差异……极为少见。”
这些方法的使用都使得说明更清楚、通俗。)
4、体会本文语言通俗的特点。本文语言通俗性表现在哪里?
(除了绕不过去的专业术语外,尽量用大众化、通俗形象的语言,收到很好的科普效果。)
四、课堂练习
阅读下面文字,完成7~10题。
第三是信息化。人类基因组计划的成功,是借助了生物信息学,也借助于把地球变小的网络。没有它们,国际人类基因组计划的协调与全世界的及时公布是不可能的。没有全部的'软件与硬件,人类基因组计划的一切都不可能。序列一经读出,它的质控、组装,以至于递交、分析都有赖于生物信息学,而从现在开始,序列的意义完全决定于生物信息学。没有电子计算机的分析与正在爆炸的信息的比较,序列又有何用?而且信息化又改变了整个生命科学,改变了实验对象存在的方式。今天的生物学实验可能大部分工作是分析序列信息。
1、文中加点的“它们”的具体内容是什么?
(生物信息学和“把地球变小的网络”)
2、文中加点的词语“质控”“组装”“递交”“分析”能否调换顺序?为什么?
(不能。“以至于”表示递进关系。)
3、文中加点的“可能大部分”去掉行不行,为什么?
(不能。体现说明文语言的严密性、科学性。)
4、文段中划线的句子的含义是什么?
(序列需要借助了生物信息学。)
《比的意义》教学设计 篇11
教学内容:
比的意义。
教学目的:
1.使学生理解比的意义,知道比各部分的名称;学会求比值的方法,能正确地求出一个比的比值;理解比同除法、分数的关系。
2.培养学生比较、分析、抽象、概括和自主学习的能力。
教学重点:
使学生理解比的意义。
教学过程:
一、创设情境
同学们,在我们的生活中,经常可以发现两个数量之间有关系。
1、比如说,周老师今年25岁,这位同学你今年几岁啊?(指着第一位同学)(12岁)
师:大家能列个算式表示出我们年龄之间的关系吗?
(25-12=13)这个是相差关系。
师:还可以用别的方法进行比较吗?
生;12除以25求的是倍数关系。
师:好的,请坐!
2、请这组同学起立,我们一起来数一数,有几个男生,几个女生啊?(老师指着一起数,男生5人,女生3人)
师:除了表示出他们人数之间的相差关系,你还能列什么算式表示出他们之间的关系呢?
生:倍数关系。
3、我们以前还学过这样的题,看大家还记得吗?看屏幕:
一辆汽车2小时行驶90千米,平均每小时行驶多少千米?
学校用150元买来3个小足球,每个小足球多少元?
自己读题,看看每道题求的是什么?怎样列式。
交流:谁来说第1个小题,指名回答,根据回答板书:
(电脑出示:速度90÷2)
这里的90表示的是(路程),2表示的是(时间)
那你能说一说数量关系吗?(速度=路程÷时间)
这里的'速度表示的就是路程与时间的关系。
下一道呢?指名回答,
(电脑出示:单价150÷3)
数量关系式是什么呢?(单价=总价÷数量)
单价表示的就是总价和数量的关系。
好极了,请坐
师小结:我们看这些题都是用除法算式来表示两种数量之间的关系。
二、探究新知
(一)教学比的意义。
在我们日常的工作和生活中,常常要把两种数量进行比较,今天我们就来学习一种新的比较两种数量关系的方法。叫做“比”,一起来研究“比的意义”。(板书:比的意义)
1、这里的老师年龄是同学年龄的几倍用25÷12,可以说成“老师和同学年龄的比是25比12”
(电脑演示:老师和同学年龄的比是25比12)
一起读一下。
可以记作25:12(电脑演示25:12)
这里中间的两个圆点叫做比号,读作比。
那同学年龄是老师年龄的几分之几就可以说成同学和老师的年龄比是多少啊?(电脑演示:同学和老师年龄的比是12:25)
2、那你能把这句话变一个说法吗?
男生人数是女生人数的几倍可以说成“男生人数与女生人数的比是5:2”(电脑演示)
那如果是2:5呢?应该是谁和谁的比呢?
(电脑出示2:5)(电脑演示:女生和男生人数的比)
所以我们在说比的时候要有顺序地说。
3、那么路程÷时间=速度可以怎么说呢?(指着算式90÷2问)
你来试试:(路程和时间的比是90比2)
也就是速度可以说成是――(电脑演示:路程和时间的比)
4、单价可以说成什么呢?
生:单价可以说成是总价与数量的比(电脑演示:总价与数量的比)
5、那么从刚刚这些例子中我们可以看到,两个数相除,又可以说成这种比的形式。你能不能说说什么是比呢?
先在组里互相说说,开始。(学生说,教师巡视)
谁愿意来说说?(多说几个)
把他们的意见综合一下就是两个数相除又叫做两个数的比。
(板书:两个数相除又叫做两个数的比。)
一起读一下。这就是比的意义。比表示的就是两个数相除的关系。
7、那你们能不能自己举个用比表示两个数量关系的例子呢?同桌先相互说说。(学生说)
8、交流:学生回答,教师小结。这些都可以说成比。
9、刚才我们通过观察,研究,发现“两个数相除又叫做两个数的比”,并知道了比的写法,那你会写比了吗?一起来试试看,完成练习第1题。
(二)教学比的读写法,各部分的名称、求比值的方法
1、我们已经理解了比的意义而且学会了怎样来写比。那比是由哪几部分组成的?各部分名称又是什么呢?我想通过大家的自学,一定能很快解决。请大家对照要
(学生自学3分钟)
(电脑出示电脑自学提纲)
(1)什么叫比的前项?什么叫比的后项?什么叫比值?
(2)怎样求比值?
(3)“试一试”(完成练习第2题)
2、学生交流。
好,我们来交流一下你们的自学情况。
(1)指名学生回答问题1,教师板书
我们以5:3(板书5:3)为例,你能具体向大家介绍一下吗?
(比号前面的5叫做比的前项)
(比号后面的3叫做比的后项)
比的前项除以后项所得的商,叫做比值。
(2)那怎样来求比值呢?
(只要把前项除以后项)
以5:3为例呢?怎样求比值?(板书:=5÷3=5/3比值)
师:通过刚才的练习我们可以发现,比值可以用分数表示,也可以用小数表示,有时也可以是整数。当比值用分数表示时一定要是最简分数。
3、刚刚我们已经知道了比的写法,其实比还有另一种写法,同学们一起看。
例如5:2(教师指着5:2讲解)还可以写成分数形式。
我们一起来书空一下,注意:写的时候要从上往下写,它还是一个比,而不是分数,所以仍读作5比2。(板书:仍读作5比2),
《比的意义》教学设计 篇12
教学内容:
人教版小学数学第十一册46页—47页。
教学目标:
1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。
2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。
教学重点:
比的意义。
教学难点:
比和除法、分数之间的联系和区别。
教学过程:
一、回忆生活素材,导入新课。
师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?
生2:黑板的周长是多少?
生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4
师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)
[评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。
二、充分感知,建构意义1、整理生活素材
师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)
宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?
生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)
2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的`比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。
3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。
学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。
师:从这道题你能发现比值的取值范围吗?
生:比值可以是整数,可以是小数,但更多形式是分数。
4、练习①说出下面每个比的前项和后项,并说出比值。
(生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。
[评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。
5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:
比前项比号后项比值
除法
分数
②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。
在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。
(学生情绪高涨,一分钟后陆续汇报。)
生1:(很高兴)四局比赛我赢了,4比0。
生2:我和同伴打平局2比2。
生3:我和同桌的比赛结果是2比3。
……
师板书:4:02:32:20:43:1
生:老师,比的后项不能为0,这里为什么是0呢?
生:比赛中的比和我们今天学的比一样吗?
生:这个2:2可以化简比吗?
(没等我组织学生讨论,就有学生站了起来。)
生:2:2只表示双方各得二分,不表示相除关系,不可以化简。
生:4:0表示对方得0分。
……
师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。
生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。
[评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。
因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。
三、巩固练习:
①、苹果是梨的,苹果与梨的比是():()
②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()
③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。
④开放题:选择合适的数量组成比
我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。
学生回答后讲评。
[评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。
四、小结归纳,应用拓展
全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?
[评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。
课后反思:
《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。