七年级数学教学教案

知远网

2025-09-02教案

知远网整理的七年级数学教学教案(精选11篇),希望能帮助到大家,请阅读参考。

七年级数学教学教案 篇1

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的.解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

七年级数学教学教案 篇2

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的.数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。教科书第3页,习题6.1第1、3题。

七年级数学教学教案 篇3

一、教学目标

1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.

2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.

3.通过平行关系在生活中的应用,培养学生的应用意识.

二、引导性材料

复习提问:

1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?

2.试说出两直线平行的意义.

前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.

三、知识产生和发展过程的教学设计

问题1—1:观察下图(也可要求学生携带一个长方体的包装纸盒)中的`长方体,棱AB与面A'B'C'D'的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面A'B'C'D'向各个方向延展,它们之间有无可能相交?

问题1-2:图中,你能以棱AB与面A'B'C'D'为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?(由学生口答,教师帮助完善,得出定义.)

问题1-3:图中,除了棱AB外,还有与面A'B'C'D'平行的棱吗?有哪几条?(由学生分别说出棱BC,CD,AD都与面A'B'C'D'平行.)

问题1-4:除了面A'B'C'D'外,棱AB还与哪个平面平行?

问题2—1:如下图的长方体中,面ABCD与面A'B'C'D'能否相交?怎样定义空间里的两平面平行?

问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)

四、例题解析

例题:如下图,在长方体中,棱CD与哪些面平行?面A'B'C'D'与哪些棱平行?

答:棱CD与面A'B'BC、面A'B'C'D'平行;

面A'ADD'棱BB、棱BC、棱C'C、棱B'C平行;

面A'B'BA与面D'C'CD平行.(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)

五、练习

课本第90页练习第l、2题.

六、小结

本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.

我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.

七年级数学教学教案 篇4

一、教学目标

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的.点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

七年级数学教学教案 篇5

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的`解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。教科书第3页,习题6.1第1、3题。

七年级数学教学教案 篇6

一、知识结构

在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.

二、重点、难点分析

能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.

1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.

2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:

(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.

(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.

正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面BB'C'C、与面DD'C'C也是互相平行的再看面ABCD与A'B'C'D',这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA'B'B与DD'C'C也是互相平行的

3.直线与平面、平面与平面平行的判定

(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。(直线与平面平行的判定)

(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。(空间里平面与平面平行的判定)

三、教法建议

1.空间里的平行关系,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识.学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了.

2.本节在已有的对长方体的直观认识的`基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系.目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习.

3.教学时应该注意的是这里所说的平面一定是无限延伸的两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行.

七年级数学教学教案 篇7

本学期是初中学习的关键时期,教学任务非常艰巨。要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际情况,把握好重点、难点。同时九年级毕业班总复习的教学时间紧,任务重,要求高,如何提高数学总复习的质量和收效,是每位毕业班数学教师必须要解决的问题。下面针对我班的情况进行分析并制定复习计划。

一、学情分析

本班学生两极分化比较严重,部分学生数学基础不够好,学习积极性不高,其中女生居多:xx等。部分男生学习习惯不太好,家长也不够重视,如:xx等。由于平时学习不够认真和扎实,我非常担心这些学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、教学内容分析

本学期的课本内容只剩下投影和视图这一章,因此在一周内把课本最后一章结束,接下来就是整体初中内容的有计划复习,复习的教学内容大致可分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:

(1)审题不清,不能正确理解题意;

(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

(3)对所学知识综合应用能力不够;

(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

三、教学计划措施

1、认真研读学习课标,紧抓中考方向,了解中考的有关的政策,避免走弯路,走错路。同时研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。

2、扎扎实实打好基础。

重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现中考仍以基础的.为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。

3、综合运用知识,提高自身的各种能力。

初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。

(1)提高综合运用数学知识解题的能力。要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。

(2)狠抓重点内容,适当练习热点题型。几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。方程思想、函数思想贯穿试卷始终。另外,开放题、探索题、阅读理解题、方案设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。

4、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

同时经常听取学生良好的合理化建议。

七年级数学教学教案 篇8

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的.方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。教科书第3页,习题6.1第1、3题。

七年级数学教学教案 篇9

教学目标

1、知识与技能

(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法、

(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算、

2、过程与方法

提高学生的识图能力,学会用运动变化的观点看问题、

3、情感态度与价值观

经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲、

重、难点与关键

1、重点:会用不同的方法表示一个角,会进行角度的换算是重点、

2、难点:角的表示、角度的换算是难点、

3、关键:学会观察图形是正确表示一个角的关键、

教具准备

多媒体设备、量角器、时钟、四棱锥、

教学过程

一、引入新课

1、观察时钟、四棱锥、

2、提出问题:

时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来、

学生活动:进行独立思考、画图,然后观看教师的演示过程、

教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角、

板书:角、

二、新授

1、角的概念、

(1)提出问题:

从上面活动过程中,你能知道角是由什么图形组成的吗?

学生回答:两条射线、

(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)

2、角的表示、

学生活动:阅读课本第137页有关内容,了解角的表示方法、

教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法、

请用适当的方法表示下图中的每个角、

学生活动:请一个学生板书练习,其余学生独立练习、

教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价、

学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论、

教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价、

答案:分别形成平角、周角、

3、角的度量、

教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算、

板书:1周角=_____,1平角=_____,1=____,1=____、

学生活动:思考并完成上面的填空、

例:把一个周角7等分,每一份是多少度的角(精确到分)?

教师讲解计算过程、

三、巩固练习

1、课本第139页练习、

2、计算:(1)4839+6741

(2)90-781940

(3)2230 (4)176523、

此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、

3、想一想:时钟在5点15分时,时钟的'时针与分针所成的角是多少度?

师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案、

答案:76、5、

四、课堂小结

师生互动,完成本节课的小结:

1、什么是角?组成角的图形是什么?如何表示一个角?

2、本节课还复习了平面、周角?怎样得到这两种角?

3、角的度量单位是什么?它们是如何换算的?

五、作业布置

1、课本第144页习题4、3第1、2、3、4题、

2、选用课时作业设计、

第一课时作业设计

一、填空题、

1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________、

2、将上右图中的角用不同的方法表示出来,填入下表:

3 4

BCA ABC

3、( )=_____=_____6000=______=_______、

二、选择题、

4、在钟表上,1点30分时,时针与分针所成的角是( )、

A、150 B、165 C、135 D、120

5、下列各角中,不可能是钝角的角是( )、

A、 周角 B、 平角 C、 钝角 D、 直角

三、解答题、

6、计算:

(1)5328+4732 (2)1750-327

(3)1524 (4)31425(精确到1)、

7、如下图,分别确定四个城市相应钟表上时针与分针所成角的度数、

8、想一想,做一做、

(1)用字母表示图中的每个城市、

(2)请用字母在下图分别表示以北京为中心的每两个城市之间的夹角、

答案:

一、1、ADE,BDE,CED,B,AED

2、5 BCE BAC BAD 

3、7、5 450 100 ( )

二、4、C 5、D

三、6、(1)101 (2)1423 (3)77 (4)62024

7、30,0,120,90 8、略

七年级数学教学教案 篇10

教学目标

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

教学重点

平行线的性质。

教学难点

平行线的性质定理与判定定理的区别。

教学模式

发现教学模式。

教学方法

直观教学法、发现教学法、主体互动法。

教学手段

计算机辅助教学。

教学过程

教学环节

教师活动

学 生活 动

教 学 意 图

复习提 问

复习提问:

判定两直线平行的方法有哪些?怎样用符号语言表述?

思考、回答

了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

随后同桌同学交换,再次测量、填表。

关注:

对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。

画图、测量、填表

思考、动手尝试,方法可能多种多样

激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。

给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。

【提问】能否将我们发现的结论给予较为准确的文字表述?

总结、表述

锻炼学生的'归纳、表达能力,鼓励学生敢于发表自己的观点。

【大屏幕】平行线的性质:

定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。

定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。

定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。

【提问】讨论这些性质定理与前面所学的判定定理有什么不同?

理解、记忆、思考、讨论、回答

进行文字语言的规范。

避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

【大屏幕】符号语言:(不唯一)

性质定理1。∵l1∥l2

∴∠1=∠5 (两直线平行,同位角相等)

性质定理1。∵l1∥l2

∴∠3=∠5 (两直线平行,内错角相等)

性质定理1。∵l1∥l2

∴∠3+∠6=180o (两直线平行,同旁内角互补)

思考、一位同学板书。

观察、理解

为今后进一步学习推理打基础,并进行符号语言的规范。

【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

鼓励学生使用符号语言表述推导过程。

【大屏幕】规范定理的推导过程。

思考、尝试回答

观察

培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?

思考、尝试运用符号语言进行推理。

要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

【大屏幕】(见附录2)

思考、讨论、解释结论

寓教于乐,进一步让学生感受“认识来源于实践”。

【大屏幕】巩固练习(见附录3)

积极思考、展开讨论、踊跃回答

循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

【大屏幕】探究题(见附录4)

【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

猜测、讨论,寻找规律

使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

课堂小结

【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

回顾、归纳

将本节课知识进行回顾。

布置

作业

【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12

课后完成

课后能进一步巩固,鼓励学生去发现身边的数学问题。

七年级数学教学教案(精选12篇)

在教学工作者开展教学活动前,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的七年级数学教学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级数学教学教案 篇11

教学目标

1、知识与技能

(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法、

(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算、

2、过程与方法

提高学生的识图能力,学会用运动变化的观点看问题、

3、情感态度与价值观

经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲、

重、难点与关键

1、重点:会用不同的方法表示一个角,会进行角度的换算是重点、

2、难点:角的表示、角度的换算是难点、

3、关键:学会观察图形是正确表示一个角的关键、

教具准备

多媒体设备、量角器、时钟、四棱锥、

教学过程

一、引入新课

1、观察时钟、四棱锥、

2、提出问题:

时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来、

学生活动:进行独立思考、画图,然后观看教师的演示过程、

教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角、

板书:角、

二、新授

1、角的概念、

(1)提出问题:

从上面活动过程中,你能知道角是由什么图形组成的吗?

学生回答:两条射线、

(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)

2、角的表示、

学生活动:阅读课本第137页有关内容,了解角的表示方法、

教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法、

请用适当的`方法表示下图中的每个角、

学生活动:请一个学生板书练习,其余学生独立练习、

教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价、

学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论、

教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价、

答案:分别形成平角、周角、

3、角的度量、

教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算、

板书:1周角=_____,1平角=_____,1=____,1=____、

学生活动:思考并完成上面的填空、

例:把一个周角7等分,每一份是多少度的角(精确到分)?

教师讲解计算过程、

三、巩固练习

1、课本第139页练习、

2、计算:(1)4839+6741

(2)90-781940

(3)2230 (4)176523、

此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、

3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?

师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案、

答案:76、5、

四、课堂小结

师生互动,完成本节课的小结:

1、什么是角?组成角的图形是什么?如何表示一个角?

2、本节课还复习了平面、周角?怎样得到这两种角?

3、角的度量单位是什么?它们是如何换算的?

五、作业布置

1、课本第144页习题4、3第1、2、3、4题、

2、选用课时作业设计、

第一课时作业设计

一、填空题、

1、如下左图所示,把图中用数学表示的角,改用大写字母表示分别是________、

2、将上右图中的角用不同的方法表示出来,填入下表:

3 4

BCA ABC

3、( )=_____=_____6000=______=_______、

二、选择题、

4、在钟表上,1点30分时,时针与分针所成的角是( )、

A、150 B、165 C、135 D、120

5、下列各角中,不可能是钝角的角是( )、

A、 周角 B、 平角 C、 钝角 D、 直角

三、解答题、

6、计算:

(1)5328+4732 (2)1750-327

(3)1524 (4)31425(精确到1)、

7、如下图,分别确定四个城市相应钟表上时针与分针所成角的度数、

8、想一想,做一做、

(1)用字母表示图中的每个城市、

(2)请用字母在下图分别表示以北京为中心的每两个城市之间的夹角、

答案:

一、1、ADE,BDE,CED,B,AED

2、5 BCE BAC BAD 

3、7、5 450 100 ( )

二、4、C 5、D

三、6、(1)101 (2)1423 (3)77 (4)62024

7、30,0,120,90 8、略

大家都在看