知远网整理的分数乘法教学反思(精选15篇),希望能帮助到大家,请阅读参考。
分数乘法教学反思 篇1
这节整理复习课我对分数乘法知识进行一次梳理,给学生建立一个完整的分数乘法知识体系,巩固对乘法知识的掌握和理解应用。
1、讲练结合,发挥学生主体地位
本节课是一节复习练习课,内容学生都已经基本掌握,所以,我放手让学生自想、自做、自讲、自论。先是学生自己思考,独立完成,然后上台解答,自己讲解方法,如有疑问可以自由进行交流,最后集体订正。整个过程都是学生在互相交流、讨论、讲解,每个学生都是那么的认真、积极,似乎比老师问、讲兴趣更高。在没有太大难度的练习题中,一直采用这种方式,学生学的主动、积极。就连学困生也很主动地进行参与。
2、小组合作,培(养学生解决问题的能力
让学生进行解决简单问题的`练习。在练习中,通过小组间的合作,优生带差生的方式,在小组合作中,我还重点培养优生的讲题能力,引导优生如何利用实践操作帮助学困生进一步理解和掌握解决关于倍的知识和技能。从而为课堂节约了时间,使老师有了更多的时间去关注学困生。
由于本节课主要是针对全体学生的一次整理复习,所以设计上并没有出现太大难度的题型,使得优生有点浪费时间。在以后练习课中,不仅要考虑到学困生的能力,还要考虑到优生的特点,使每个学生都有大的收获。
分数乘法教学反思 篇2
今天的教学内容是分数乘分数,重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用数形结合的数学方法,帮助学生达成以上的两个数学目标。对于今天的探究活动没有直接放手,这是因为学生对求一个数的几分之几是多少的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化求一个数的几分之几是多少的分数乘法意义,感知分数乘分数的计算过程。
二、以3/41/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过以形论数和以数表形的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的做一做,进一步达成以上目标,并为总结分数乘分数的计算积累知识。可以说整体教学的效果还好。
通过今天的课我对数形结合的.思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材中,数形结合思想的渗透也有着不同的层次,例如上学期的分数乘法(一)和分数乘法(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲以形论数和以数表形两个方面有机的结合起来,只有完整的是学生经历数与形之间的互动,才能使他们感知数形结合,才能使他们能在解决问题时自觉地应用数形结合的方法。
分数乘法教学反思 篇3
把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,小学数学练习课是以巩固数学基础知识,形成解题技能、技巧和培养学生运用所学知识解决实际问题为主要任务的课。而练习课常见的形式单调、内容直白、活动平淡、学生积极性不高,需要用好多时间来算啊写啊,为了提高学生的学习兴趣,激发他们的求知欲,培养探究思索能力。在教学中,我对教材进行了有效的处理,选择了充满生活原味、趣味性强、形式多样的练习,从谈话激趣引入,口算突显计算方法,涂一涂明算理,到各种变式计算,综合应用,让学生在算一算、说一说、想一想中理解分数乘法的意义,明白分数乘法的算理,知道分数乘法从生活中来,从而进一步认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感,无疑使学生变得爱练想练。
教学是一项复杂的活动,它需要教师课前做出周密的策划,这就是对教学的预设。准确把握教材,全面了解学生,有效开发资源,是进行教学预设的重点,也是走向动态生成的逻辑起点。学生的差异和教学的开放,使课堂呈现出多变性和复杂性。教学活动的发展有时和教学预设相吻合,而更多时候则与预设有差异,甚至截然不同。当教学不再按照预设展开,教师将面临严峻的考验和艰难的抉择。教师要根据实际情况灵活选择、整合乃至放弃教学预设,机智生成新的教学方案,使教学富有灵性,彰显智慧。预设和生成是讲好课的两个因素,二者缺一不可。传统的教学中,教师过分依赖于课前的预设,课堂教学往往显得过于严谨而周密,具有很强的计划性,这一点是预设的优点,同时也是预设的不足之处。虽然预设是进行教学的必要条件,但决不是上好课的决定条件,更不是上好一节课的唯一条件。教师预设过程中不能充分想象课堂当中所发生的一切,必须随时的发现,甚至是挖掘课堂中学生的`内因动态的生成,并创造条件促使内因向提高数学素养的方向转化。
本课也存在着许多不足之处:
1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。
2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。
在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。
分数乘法教学反思范文
作为一名人民教师,我们需要很强的课堂教学能力,写教学反思可以快速提升我们的教学能力,写教学反思需要注意哪些格式呢?以下是小编帮大家整理的分数乘法教学反思范文,欢迎大家借鉴与参考,希望对大家有所帮助。
分数乘法教学反思 篇4
小学数学《分数乘法》这节课是让学生理解分数乘整数的意义,掌握分数的计算法则。依据知识的迁移,我首先进行了必要的铺垫,复习整数乘法的意义,利用知识之间的联系,使学生顺利掌握“分数乘以整数的意义与整数乘法意义相同”。同时,复习分数加法,为后续教学铺垫。
在教学分数乘法在过程中约分时,书上的.例题是:6×5/9,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性,因此,我将题目改得稍复杂些,变成“6×17/18”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘法教学反思 篇5
本周学习了分数乘法,从分数乘整数到分数乘分数,从意义到计算,相对于前一个单元的内容来讲,应该是比较好理解的,但从作业情况来看,在分数乘法的计算中还是存在以下一些问题:
1、计算结果不能约分成最简分数。像9/15,16/24,3/72,35/56等这些比较常见的分数,部分学生竟然不知道该怎么约分,找不到分子和分母的公因数。另外一种情况是,在计算过程中,约分之后又与另一个分子或分母有公因数的,往往忘记约分或看不到约分。
对策:熟记乘法口诀,用乘法口诀去寻找分子和分母的公因数。例如35/56,就想5、7三十五,7、8五十六,这样就可以看出能用7去约分,可以提高做题的效率。
2、计算过程中,让分子和分子进行约分的。
例如:7×7/10=1/10,让7和7约分。
对策:赋予算式一定的情境或故事,比如我在讲的过程中这样说:在计算中这个分数线相当于战场上的分界线,分子和分母分别是交战的双方,你想,打仗时只能去和对方的'敌人对打,而不能窝里斗,打自己人。,也就是分子只能和分母约分,而不能和分子约分。这样一讲,很多学生听的饶有兴趣,而且浅显易懂,出现这种错误的几率大大降低了。
3、计算中,约分后不与原来的分子、分母再相乘的。
例如:
对策:继续讲故事,你和战友一起出去打仗了,遇到了敌人,要派一人出战(约分),战斗完毕,每个人都要有团队意识,结伴而行,几个人出去的,还要几个人一起回来。即:分子和分母都还要由两个数相乘得到。
4、其他由于不细心、书写不规范出错的。
例如有些在约分中把约分的结果写在原数的旁边,然后计算的结果又与过程写得很挤,造成计算结果混淆,看不清楚而出错。这就需要在平时的教学中对学生做题过程严格要求,规范书写,使学生养成认真、细心的好习惯。
分数乘法教学反思
作为一名优秀的教师,教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,优秀的教学反思都具备一些什么特点呢?下面是小编收集整理的分数乘法教学反思,仅供参考,大家一起来看看吧。
分数乘法教学反思 篇6
这节课主要是让学生通过具体的情境初步理解“求一个数的几分之几可以用乘法计算”。在以前没学分数乘法的时候,我们是先求出1份的量,再乘法相应的份数解答求一个数的几分之几是多少的问题,今天的学习既是对分数乘整数意义的拓展,可以看作是一次方法上的优化和提升。从课堂反馈看刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是运用分数意义的认识去解决问题,但经过一系列的训练后大多数的学生列式已经很自然的把单位“1”的量与它的几分之几相乘。
本课教学的导入部分,我选择了复习导入的方式,我把课后的“练一练”提前,改变题目要求,让学生运用分数的认知相关知识解决问题,学生非常熟练,在这个部分。我的教学意图非常明确:复习分数的相关知识、强化单位“1”。为解决例2问题、学习新的方法做好铺垫。
在教学例2时,我首先带领学生理解题意,重点带领学生理解1/2、2/5的.意义,从而确定单位“1”。在解决问题的环节,我首先出示问题(1)红花有多少朵?学生独立解决,学生根据以前所学知识,当然列式10÷2=5(朵)这时候我再揭示:像这样求10的1/2是多少还可以用乘法计算。这时出示:10×1/2让学生独立计算得到与第一种计算方法一样的结果。然后,我引导学生进行比较这两个算式有什么联系?问题一提出来,学生的反应不是很强烈,很多学生不知道应该怎样去回答这个问题,这时,我就直接告诉了学生,实际上如果我将问题设计的更有坡度一些,能再等一等让学生多思考了一会儿,我想信学生一定会明白了原来两个算式都是求一个数的二分之一是多少。这样就很好的把旧的方法与新的方法进行很融洽的衔接。实现了方法上的跨越。
基于问题(1)的教学,问题(2)抛出以后,我直接让学生独立完成,在学生汇报环节,果然与我预期的一样,学生列出了两种不同的算式10÷5×2、10×2/5。在这个部分的教学,我主要把教学重点放在两种计算方法的意义与联系上,我采取小组讨论的方法,让学生去分析这两种算法的本质联系。但在汇报环节,我有些操之过急,没有给学生更多表达的机会,自己就把答案分析给学生听了。
在整个教学环节中,我一直加强的“单位1”概念的强化和训练,我始终抓住一句话,“是谁的几分之几?把谁看作单位1”,另外还教学生在条件中找单位“1”的一些方法,为后面的学生作一个铺垫。因为,本节课的所有习题都是用同一个数乘以几分之几,这样学生在列式时就会不考虑单位“1”而直接就用整数与分数相乘,加深学生对单位“1”的理解。这样就可以避免学生形成思维定势:因为学乘法而用乘法。
巩固练习环节,我把“练一练”再次出示,不过这次改变题目要求:用乘法列式计算。让学生再次练习,使学生体会到今天所学方法的实际作用。巩固练习部分我还安排了练习拔的第6题:一瓶饮料一共900毫升,这道练习需要学生解决的问题一共有4道,其中问题(1)是3瓶饮料多少毫升?其它三道问题都是用不同的表达方式求900毫升的几分之几是多少。因此在共同解决四道问题以后,我让学生找出其中一道与其他几道表示意义不同的。并且分析原因,目地就是强化分数乘整数的不同意义。
本次课的教学,有以下几个问题值得深思:
一、备课设计时要多了解学生情况。由于刚接班不久,学生的基础、能力等方面的情况掌握不多,在教学时,不敢放手,导致学生的思维、表达缺乏深度。
二、要在教会学生学习方法上多下功夫。本次课的教学在这方面进行了一些探索,但不够。今后要加强这一环节的引导。提高课堂教学的实效性。
分数乘法教学反思 篇7
这节课是让学生理解分数乘整数的意义,掌握分数和整数相乘的计算方法。依据知识的迁移,我首先进行了必要的铺垫,复习整数乘法的意义,利用知识之间的联系,使学生顺利掌握“分数乘以整数的`意义与整数乘法意义相同”。同时,复习分数加法,为后续教学铺垫。
在教学分数乘法在过程中约分时,书上的例题是:6×5/9,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性,因此,我在教学完例题之后将题目深化,变成“6×17/18”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘法教学反思15篇
身为一位到岗不久的教师,我们的任务之一就是教学,对教学中的新发现可以写在教学反思中,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的分数乘法教学反思,仅供参考,希望能够帮助到大家。
分数乘法教学反思 篇8
本节课教学的就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后我的.感受是:
1、让学生回忆一下一个数乘分数的意义。对分数的意义进一步加深。
2、求一个数的几分之几是多少的文字题,这为学习相应的分数应用题做准备。
3、在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。
4、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的上面。为以后应用题教学作好辅垫。
5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
分数乘法教学反思 篇9
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的`几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。并根据关键句说出数量关系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。
分数乘法教学反思 篇10
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的'几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
分数乘法教学反思 篇11
在本节课的教学中,我以折纸涂色活动为主线,给学生提供了大量的动手操作的时间和观察交流,思考的空间,鼓励学生独立思考,从不同的角度去探究问题。探索并掌握分数乘分数的计算方法,并能够正确计算,还要能运用分数乘分数的知识解决简单的实际问题。我还重视将操作过程、文字语言、图形语言和符号语言的结合,相辅相成,鼓励学生讨论如何折纸表示3/41/4及其结果,这样不仅解释了符号语言的意义,也直观形象地展示了3/41/4的计算方法,使学生在折纸过程中,充分体会到分数乘分数的意义,感受计算分数乘分数时为什么是分子乘分子,分母乘分母的道理。满足了学生多样化的学习需求。
在分数乘法(二)中我结合教材和课程标准的需求,首先向孩子们提出并应用了数形结合的方法。例如在引入中:把一张长方形的纸对折一次,用斜线涂出它的 1/2,然后对其再对折第二次,用红色涂出斜线部分的1/2,请你说一说红色部分占整张纸的几分之几。从学生的反馈来看,能够直观得从图中看出网格部分所占几分之几,但是学生很难列出乘法算式。(14的比较多)。说明学生不能够充分理解两次做为单位1的'量。两次折纸中有两个单位1,比如第一次的1份占整个图形的1/2,此时的单位1是1,但是网格部分却占斜线部分的1/2,此时的单位1是1/2,也就是说网格部分对于整个长方形来说是1/4,这其间隐含着两个不同的单位1。在此说明,学生对于分数的意义掌握还不牢固。又例如在验证分数乘法法则的过程中,让学生通过折纸的方式来理解。
其次,本课我力图让学生亲自经历学习过程。即让学生在动手操作探究算法举例验证交流评价法则统整等一系列活动中经历分数乘分数计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。在教学的整体设计上是由特殊(分子位1分数相乘)去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出分数乘分数只要分子相乘,分母相乘的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法。但是对于折纸的验证方法,有个别学生还是很难理解,允许他们用小数的方法来验证,但这种方法只适用与能够化成有限小数的分数,因此在出现不能转化为有限小数的分数相乘时,这些学生就只能听同学发言,没有自己的思考过程了。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个问题。
把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。
不足之处:
1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。
2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。
在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。
分数乘法教学反思 篇12
本单元的教学,分数乘法解决问题是一个重点资料。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的好处的应用。它是分数应用题中最基本的。不仅仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的好处。在帮忙学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮忙。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的潜力将会有很大提高。而下一单元的教学如果学生能根据题意画出适宜的线段图,对正确解答问题将会有很大的帮忙。
此外,在教学中注重对单位“1”的.理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。
具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的好处解答。
在教学中,我强调以下几点:
(1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
(2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。
(3)帮忙学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
对稍复杂的分数应用题,透过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的潜力。透过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜群众讲,更应注重学生个体表达,并且不必必须按照课本的固定模式,就应允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。
分数乘法教学反思 篇13
整数乘法运算定律推广到分数乘法是在学生已经掌握了分数乘法计算、整数乘法运算定律的基础上进行教学的。面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,反思这节课中存在的问题,应该从以下几方面改进:
1、树立学生自信心,尤其爱护后进生,培养学生口算心算、勤动手勤动脑的习惯。并对学生的多样思维应加大评价力度。评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还要继续加强。
2、课前对学生学习效果估计不足,所以使一些事先设计好的练习没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、上课时复习的时候应该安排一些整数乘法简便运算的题目,帮助学生回忆简便运算,为本课的简便运算打好基础。
4、例题6中本来只有前面2道题,但是备课时拔高了难度,多加了2道较难的简便运算题目,在前面复习时没让学生回忆、做做类似的.整数乘法混合运算题,所以学生做题效果不理想。
总之,通过本节课,使我在教育教学理念上有了很大的转变和提高。我认为,在落实新课改的精神上,只有做到了让教为学服务,让学生充分从事数学活动,提供学生自主探索、合作交流的机会,提高他们的思维,培养他们的创新能力,才能真正提高教学质量。
分数乘法教学反思(精选20篇)
作为一位优秀的老师,我们需要很强的教学能力,写教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!下面是小编精心整理的分数乘法教学反思,仅供参考,欢迎大家阅读。
分数乘法教学反思 篇14
上一轮教分数乘法已经是六年前的事了,那时用的教材是人教版的,而北师大版的教材还是第一次教到这一内容,因此集体备课时与同事们进行了深入的探讨。
分数乘法如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
一、充分利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,导学稿上设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的.和,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练5×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
二、努力结合现实的问题情境,引导学生理解分数乘法的意义。
练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法教学反思 篇15
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的.流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗