小数乘法教案

知远网

2025-08-31教案

知远网整理的小数乘法教案(精选9篇),希望能帮助到大家,请阅读参考。

小数乘法教案 篇1

教学目标:

1.理解整数乘法运算定律同样适用于小数乘法。

2.提高学生类推迁移能力。

教学重难点:掌握小数乘法运算定律的应用。

教学过程:

一、复习旧知,激发学习热情

1.计算:50×13×2 125×7×80 3×25×4你能快速的计算出结果吗?(ppt)

2.计算12×5×60 30×7+85 250×4-320 (ppt)

如果第一题没能难住你们,那么这一些题呢?

在这些题中,你应用了哪些我们已学过的整数乘法运算定律?请用字母表示出来。

根据学生的回答,板书:

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配律a(b+c)=ab+ac

3.让学生举例说明怎样应用这些定律使计算简便。

二、探索新知

1.把上面复习题稍作变动(加上小数点),让学生说一说改动后的`运算顺序是什么?(ppt)

变1.2×0.5×60 30×0.7+8.5 2.5×4-3.2

教师板书:小数的运算顺序跟整数一样

2.引导性谈话:整数运算与小数运算有着密切的联系,比如小数的连乘、乘加、乘减的运算顺序与整数和连乘、乘加、乘减完全相同,整数乘法中有交换律、结合律和分配律,这些运算定律在小数乘法中能适用吗?

3.举例说明:出示教材P.9页的3组算式:下面每组算式左右两边的结果相等吗

0.7×1.2○1.2×0.7

(0.8×0.5)×0 .4○0.8×(0 .5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3. 6×0.5

4.小组讨论,汇报结果

●从而得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

5.揭题并板书课题:整数乘法的运算定律推广到小数乘法。

三、巩固知识

教学例7

计算:

(1)0.25×4.78×4

(2)0.65×201

1.第一道题你打算怎么计算?应用了什么定律?

2.第二道题你打算怎么计算?应用了什么定律?

师板书:

0.25×4.78×4 0.65×201

=0.2 5×4×4.78=0.65×(200+1)

=1×4.78=0.65×200+0.65×1

=4.78=130+0.65

=130.65

做一做(课本),生黑板演示

四、总结

(一)今天的学习,你都知道了什么?

(二)学完这节课,你有什么体会或感受想向大家说吗?

(三)对今天所学的知识还有什么不懂的问题?提出来供大家研究

板书:

整数乘法的运算定律推广到小数乘法

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配律a(b+c)=ab+ac

0.25×4.78×4 0.65×201

=0.25×4×4.78=0.65×(200+1)

=1×4.78=0.65×200+0.65×1

=4.78=130+0.65

=130.65

小数乘法教案 篇2

教学内容:

人教版小学数学教材五年级上册第12页教学内容、例7及做一做,练习三第4~6题。

教学目标:

1.使学生理解整数乘法运算定律对于小数乘法同样适用,并能应用这些运算定律进行有关小数乘法的简便计算,进一步发展学生的数感。

2.培养学生的观察能力、类推能力和灵活运用所学知识解决问题的能力。

3.在学习活动中,感受数学知识之间的内在联系,培养科学的思维方式。

教学重点:

理解整数乘法运算定律对于小数乘法也适用。

教学难点:

能根据数据特点,应用乘法运算定律进行小数乘法的简便计算。

教学准备:

PPT教学课件。

教学过程:

一、以旧引新,铺垫迁移

1.不计算,直接把上、下两排得数相等的算式用线连起来。

712

8(54)

(24+36)5

(85)4

245+365

127

(1)指名学生口答。

(2)说明连线理由。

2.指名学生说一说在整数乘法中学过了哪些运算定律?

(1)学生用自己的语言描述三个乘法运算定律,并用字母表示。

(2)教师根据学生回答适时演示课件。

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

3.师:我们知道应用乘法运算定律可以使一些整数乘法计算变得更为简便,那么在小数乘法计算中是否也能应用这些运算定律?今天这节课我们就来研究这个问题。

【设计意图】通过相等算式连线和用字母表示乘法运算定律,复习巩固所学的知识,为新知的学习做好铺垫。顺势联想,以旧引新,不仅激发学生的探究欲望,更让学生有目标地去思考,为方法的迁移奠定必要的基础。

二、猜测验证,发现规律

(一)引导观察,提出猜测

1.出示教材第12页的教学内容(PPT课件演示)。

2.明确小数四则混合运算的顺序。

(1)师:这里有三组算式,有的是小数乘法计算,有的是小数四则混合运算。那么,你知道小数四则混合运算的顺序是怎样的吗?你是怎么知道的?

(2)师:你能说一说第二组中两个算式的运算顺序吗?第三组的两个算式呢?

3.引导学生观察算式,提出猜测。

(1)师:仔细观察这三组算式,你发现它们有什么特点?

(2)师:根据算式的特点,你能猜一猜每组的两个算式之间有什么关系吗?(由于是猜测,学生的答案可能会不一样。)

(二)明确计算,验证猜测

1.教师引导。

(1)师:同学们都仔细观察了每组中的两个算式,也都提出了自己的猜测。那么,你的`猜测对吗?怎样验证你的猜测对不对呢?(引导学生提出可以用实际计算进行验证。)

(2)师:我们刚才已经知道小数四则混合运算的顺序跟整数是一样的,下面就请同学们实际计算一下,看看你的猜测对不对?看看每组中的两个算式相不相等?

2.学生通过实际计算进行验证。

3.学生交流验证结果。

(三)举例验证,概括规律

1.教师引导。

(1)师:通过同学们的实际计算,我们发现这三组算式中每组的两个算式都是相等的,这说明什么呢?(整数乘法的交换律、结合律和分配律对于小数乘法也适用。)

(2)师:对于乘法交换律、结合律和分配律,我们刚才都是只用了一个小数乘法的例子进行验证,那能不能就说明整数乘法的运算定律对于小数乘法一定适用呢?(还需要用更多的举例来进行验证。)

2.指导学生任意举例,进一步加以验证。

(1)师:对,我们还应该举更多的小数乘法的例子来加以验证。那么,你想进一步验证哪条运算定律呢?请同学们参照上面的算式任意举例,看整数乘法的运算定律对于小数乘法是不是适用?

(2)师:谁来说一说你举了一个什么例子?(注意指导举例算式的结构。)

(3)师:这个例子说明了什么?(注意理解算式和运算定律之间的关系。)

3.引导学生概括规律,揭示课题。

(1)师:请同学们在小组里相互交流交流,通过这些例子你发现了什么?(乘法运算定律中的数既可以是整数,也可以是小数。)

(2)师:通过我们对这些算式的观察猜测、计算验证和同学们自己的举例说明,现在谁能说一说你发现了什么规律?(整数乘法的交换律、结合律和分配律对于小数乘法也适用。)

(3)揭示课题。(板书:整数乘法运算定律推广到小数)

【设计意图】本环节是本节课的教学重点。为了让学生理解整数乘法的运算定律可以推广到小数,理解整数乘法的运算定律对于小数乘法同样适用,本环节教学分为三个层次逐步展开,首先让学生对教材提供的三组小数四则运算的算式进行观察和猜测,在头脑中初步感知每组中两个算式之间的关系;然后通过实际计算进行验证,进一步理解每组中两个算式之间的关系;最后通过自己举例验证,发现规律,得出结论。在本环节教学中,教师不是把规律强加给学生,而是在关键处引导点拨,让学生自己去猜测、验证和发现。

三、迁移类推,应用规律

(一)谈话导入

我们已经把整数乘法的运算定律推广到了小数。应用乘法的运算定律可以使一些整数乘法的计算简便,也可以使一些小数乘法的计算简便。

(二)教学例7

1.出示例题。

0.254.784

0.65202

2.引导学生审题,明确算式结构和数据特点,确定计算方法。

3.学生在练习本上自主尝试计算。(教师巡视,个别指导,指名学生板演。)

4.组织学生在小组里交流自己的简便计算方法,感受运算定律的作用。

5.组织学生全班集体交流,并适时板书计算过程。

(1)怎样使计算简便?

(2)应用了哪条运算定律?

6.组织学生针对演板和自己的尝试计算进行交流和评价。

【设计意图】应用所学的知识解决问题,这是发展学生数学能力、培养学生应用意识的重要途径。通过让学生自己尝试将整数乘法的运算定律应用到小数乘法进行简便计算,激发了学生运用新知识解决新问题的欲望,并使学生体验到成功的快乐!

四、及时练习,巩固应用

(一)基本练习

1.第12页做一做第1题。

(1)学生独立练习,教师巡视。

(2)全班集体订正,着重交流各小题分别是根据哪条运算定律进行填空的。

2.第12页做一做第2题。

(1)学生独立练习,教师巡视,了解学生对应用运算定律进行简便计算的掌握情况。

(2)全班集体订正,着重交流简便计算的思维顺序,明确要根据数据的特点应用乘法运算定律,才可以使计算变得简便。

(二)实际应用

练习三第5题。

(1)学生读题理解题意,独立解答。

(2)小组交流,引导学生感受小数四则混合运算在实际生活中的应用。

【设计意图】通过做一做两道题的分层练习,既使学生更加熟悉乘法运算定律的算式结构,又使学生在实际计算中将整数乘法的运算定律迁移、类推到小数乘法中;在集体订正和全班交流中重视培养学生思维的逻辑性,根据数据的特点怎样算比较简便?第一步应该怎样做?应用哪条运算定律?并且通过解决实际问题,既使学生体会到小数四则混合运算在现实生活中的应用,又培养了学生解决问题的能力,拓宽了学生的思维空间。

五、回顾梳理,总结升华

1.提问:这节课你都获得了哪些知识? 在本节课中你最大的收获是什么?

2.教师归纳整理。

【设计意图】让学生对本节课有一个简单的回顾整理,教师可以根据学生的回答加以适当的补充和归纳。另外,从交流中了解学生学习的具体情况,以便加强对某些学生的个别辅导。

六、作业练习

1.课堂作业:练习三第4题。

2.家庭作业:练习三第6题。

小数乘法教案 篇3

教学内容:

课本第102页回顾与整理以及练习与应用1-6题。

教学要求:

使学生进一步理解小数乘法的意义,掌握计算法则,能够比较熟练进行小数乘法、除法笔算和简单的口算;会用“四舍五入”法截取积、商是小数的近似值。

教具准备:小黑板

教学过程:

回顾与整理

(一)计算:0.67X7.5 8.36X0.25 0.125X0.24

学生计算后集体订正。

小组讨论然后汇报交流:

1、小数乘法和整数乘法有什么相同和不同的地方?

2、计算小数乘法时,怎样确定积的小数位数?算出积后,积的小数位数不够应该怎么办?

(二)小数除法的计算法则。

(1)提问:小数除法的计算法则是什么?怎样把除数是小数的除法转化为除数是整数的.除法?商的小数点的位置怎样呢?

(2)计算:1.89÷0.5 4 7.1÷2.5 0.51÷0.22学生做完后集体订正。

二、练习与应用

1、第1题:学生独立计算,教师巡视指导。集体订正。

2、第2题:先分组完成题目,然后通过计算和比较,让学生进一步整理小数乘除法的计算方法。

3、第5题:学生独立审提题解答,教师巡视。让学生根据平均数的意义估计得数范围。

4、做第6题。主要让学生练习根据具体的问题情境合理截取商的近似值。

小结。

三、作业设计

完成整理与练习第3题和第4题。

小数乘法教案(精选3篇)

作为一位杰出的教职工,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。教案要怎么写呢?下面是小编为大家收集的小数乘法教案(精选3篇),希望对大家有所帮助。

小数乘法教案范文

作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。我们应该怎么写教案呢?下面是小编帮大家整理的小数乘法教案范文,仅供参考,大家一起来看看吧。

小数乘法教案 篇4

一、教学目标:

1、理解小数乘以整数的意义。

2、理解小数乘法整数和整数乘法相同。

3、学会小数乘以整数的计算方法。

二、教学重点:

学会小数乘以整数的.计算方法。

难点:理解小数乘以整数的意义。

三、教学准备:

多媒体

四、教学过程:

A、准备题:

1、出示准备题P1 (多媒体投影)

a、全体学生填在书上。

b、学生相互间讨论,你发现了什么规律?

学生小结:一个因数不变,另一个因数扩大(或缩小)几 倍,积也扩大(或缩小)相同的倍数。

2、填空

㈠ 出示例1 每筒面价1.8元,买4筒面付多少元?

1、读题后,让学生列出加法算式。

2、列出乘法算式:

a、提问:怎么计算?根据什么?同学间相互讨论。

b、计算讨论:① 先把被乘数扩大10倍得18。

② 然后按整数乘法算出得数。

③ 被乘数扩大10倍,乘数不变,积也扩大10倍

④ 要使积正确,应把积缩小10,得7.2。

小数乘法教案 篇5

教学目标:

1、使学生知道整数乘法的运算定律对于小数乘法同样适用,能运用乘法的运算定律正确地、合理地、灵活地进行小数乘法的简便计算。

2、培养学生的观察能力,类推能力和灵活运用所学知识解决问题的能力。

3、让学生相互交流、合作、体验成功的喜悦。

教学重点:

1、理解整数乘法的运算定律在小数乘法中同样适用。

2、运用运算定律进行小数乘法的简便计算。

教学难点:

运用运算定律进行小数乘法的简便计算。

教具准备: 电脑投影、卡片

教学过程

一、谈话引入

师:同学们,在上节课我们通过学习,已经知道了整数混合运算顺序适用于小数,除此以外,还有哪些适用于小数呢,这节课我们一起来探讨整数乘法运算定律适不适用于小数(教师板书课题)。

二、探索新知

1、教学整数乘法的运算定律对于小数乘法同样适用。

师:谁来说说你们在整数乘法中学过了哪些运算定律、用定母表示。

生:乘法交换律:a·b=b·a,乘法结合律(a·b)·c=a·(b·c)乘法的分配律:(a+b)·C=ac+bc。 (板书)

0.7×1.2=1.2×0.7

(0. 8×0.5)×0.4=0.8×(0.5×0.4)

(1. 4+3.6)×0.5=2.4×0.5+3.6×0.5

师:(手指算式)这些算式各说明了什么呢?

生1:第一行算式运用了整数乘法的'交换律;

生2:第二行算式运用了整数乘法的结合律;

生3:第三行算式运用了整数乘法的分配律。

师:谁能用一句话来概括一下这些算式说明了什么?

生4:说明了整数乘法的运算定律对于小数乘法同样适用。

2、教学怎样运用乘法运算定律:

师:(板书)0.25×4.78×4

请同学们认真地观察,看看这道题能不能用简便方便计算,怎样算简便,请把你们的思路在小组里相互交流。

(学生观察,思考,再小组交流,教师巡视,参与其中,共同研讨)。让学生在班级汇报交流。

(教师随着学生的归纳板书:看、想、算)

师:现在请同学们用刚才总结的方法来计算这道题,看怎样算简便。

师:(板书)0.65×201

(学习小组讨论,交流各自的思路,教师参与,适时点拨、引导,然后学生计算,学生完成后,教师抽取代表性的作业,用电脑投影展示)。0.65×201

=0.65×(200+1)

=0.65×200+0.65×1

=130+0.65

=130.65

师:(能把你的解题思路说给同学们听听吗?

生1:我先找特殊的数201,因为201可以写成200+1,再把200和1分别与0.65相乘,运用乘法分配律计算的。

(教师边说边板书,分解后再简算)

师:刚才,我们共同探讨了两种简算技巧,有的同学还有许多简算的技巧,同学们可以相互学习,请同学们再来看看下面两道题,怎样算合理简便(让学生独立做)

(电脑投影出示)32×1.25 (4+2)×0.9

三、拓展练习

师:老师这里有三个数4、0.8、1.25请你们根据乘法的运算定律编式题,并说一说如何运用运算定律使计算简便。

四、总结全课,反思体验

师:同学们,我们今天学习了什么内容?你有什么收获?

五、作业

请你运用正确合理的方法进行简便计算

1、必做题:

(1) 102×0.45 (2)0.34×0.5×0.6 (3)1.25×0.7×0.8

(4)1.2×2.5×+0.8×2.5 (5)(0.8+0.2)×6.7

2、选做题

(1) 99×1.45 (2)99×1.45+1.45

(3)99×1.45+3×1.45-1.45×2 (4)99×1.45+2×1.45-1.45

小数乘法教案 篇6

教学内容:

人教版小学数学教材五年级上册第16页例9,练习四第6~9题。

教学目标:

1、经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。

2、在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。

3、通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。

教学重点:

运用分段计算的方法正确解答分段计费的实际问题。

教学难点:

探究分段计费问题的数量关系,初步体会函数思想。

教学准备:

将例题与相关习题制成PPT课件。

教学过程:

一、联系生活,提出问题

1、同学们,你们都乘坐过出租车吧!你知道出租车是怎样收费的吗?(PPT课件演示。)

2、出租车的收费标准是采用分段计费的,今天这节课我们就一起来探究、解决分段计费的实际问题。

3、板书课题:解决问题(2)。

【设计意图】引导学生从自己熟悉的日常生活中发现、提炼具体的数学问题,使学生感受到数学与现实生活的密切联系,体会到数学广泛应用于我们日常生活的方方面面。

二、引导探究,解决问题

(一)阅读与理解

1、呈现情境,明确问题。

(1)出示例9的问题情境。(PPT课件演示,暂不出示收费标准。)

(2)提问:这一情境中要我们解决的问题是什么?解决这个问题还需要知道什么信息?(出租车的收费标准。)

(3)出示收费标准(PPT课件演示)。

2、读懂图文,摘录信息。(教师逐步板书或PPT课件适时演示。)

(1)收费标准:

3km以内:7元;

超过3km:每千米1.5元(不足1km按1km计算)。

(2)行驶里程:6.3km。

3、集体交流,理解标准。(PPT课件突出显示。)

(1)3km以内7元是什么意思?(出租车从起步到行驶3km里程,应付的车费都是7元。)

(2)你为什么认为3km以内7元包括3km呢?(因为超过3km,每千米就要按1.5元收费。)

(3)超过3km后就要按每千米1.5元的标准收费,并且不足1km按1km计算。这里不足1km按1km计算又是什么意思呢?你能举例说明吗?

(4)问题中行驶里程是6.3km,根据收费标准,应按多少千米收费呢?(用进一法取整数,按7km收费。)

4、教师归纳,概括要点。(PPT课件演示。)

(1)问题中的收费标准是分两段计费的,3km以内是一个收费标准,为一段;超过3km又是一个收费标准,又为一段。

(2)超过3km部分,不足1km要按1km计算,也就是要用进一法取整千米数。

【设计意图】解决分段计费问题的关键是理解题意,尤其是理解计费标准。为了帮助学生理解问题中的收费标准,教师采用条件摘录的方式收集信息,引导学生逐条逐句地解释含义,并结合具体数据(学生的举例的和题中的6、3km)帮助学生切实理解,在此基础上教师再对收费标准的两个要点进行明确的归纳和概括,既促使学生养成认真审题的良好学习习惯,又有效地突破了分段计费问题的教学关键和难点。

(二)分析与解答

1、启发学生用自己的方法尝试解答。

(1)教师启发引导:我们已经理解了题意,也理解了这个问题中的收费标准是分两段计费的,那么同学们能不能尝试用自己的方法进行解答?

(2)学生尝试解答。

预设一:7+1.54=7+6=13(元);

预设二:1.57=10.5(元),7-1.53=2.5(元),10.5+2.5=13(元)。

2、组织、引导学生讨论、交流不同的解答方法。(PPT课件适时演示解答过程。)

(1)预设一(分段计算):

生:我是分两段计算的,前面3km为一段,应付车费7元;后面4km为一段,每千米1.5元,应付车费是1.54=6(元);再把两段应付的车费合起来就是13元。

师(质疑):后面一段里程为什么是4km,计算后面一段车费为什么用1.54?

生:根据收费标准,6.3km按7km计算,前面一段是3km,后面一段就是4km,所以计算后面一段的车费就应该用1.54。

(2)预设二(先假设再调整):

生:我是用先假设再调整的方法解答的,先假设总里程7km都按每千米1.5元计算,结果是10.5元;而这样前面3km的费用少算了7-1.53=2.5(元);再来调整,用10.5元加上少算的2.5元,所以应付车费13元。

【学情预设】根据学生已有的知识和经验,大多数学生容易想到用第一种解答方法解答。但第二种解答方法学生不容易想到,因此,在组织学生讨论、交流时,教师可以根据学生的具体情况进行引导。如:如果把前面一段3km也按每千米1.5元收费,车费是少算了还是多算了?

3、引导学生积累解决分段计费实际问题的经验。

(1)变换例题条件:如果行驶里程是8.4km,你还能用刚才的方法计算出车费吗?如果行驶里程是9.8km呢?(PPT课件演示。)

(2)学生自主解答,教师巡视。

(3)集体交流订正。(教师板书或PPT课件呈现解答过程。)

【设计意图】沿用例题情境,变换问题条件,让学生在熟悉的情境中解决变换后的问题,不仅有利于学生进一步体会解决分段计费问题的思路和方法,也有利于学生在对比中发现解决分段计费问题的规律,积累解决实际问题的经验,促进学生观察分析、归纳概括能力的发展。

(三)回顾与反思

1、回顾。

(1)我们刚才解决的.实际问题都具有什么特点?

(2)这些问题我们是怎样解决的?

2、反思用分段计算解决分段计费问题的过程与方法。

(1)呈现例题及变式题的解答过程。(PPT课件呈现。)

(2)提问:观察、比较上面的解答过程,你发现了什么规律?

(3)揭示规律(PPT课件演示):应付车费=7+1、5(总里程-3)。

(4)质疑:为什么总是用7元去加后段里程的车费?(引导学生说出:根据收费标准,前段里程3km的车费7元是固定不变的。所以,只需要计算出后段里程的车费,再和7元相加,就求出了应付的车费。)

3、反思用先假设再调整方法解决分段计费问题的过程与方法。

(1)呈现例题及变式题的解答过程。(PPT课件呈现。)

(2)提问:观察、比较上面的解答过程,你发现了什么规律?

(3)揭示规律(PPT课件演示):应付车费=1.5总里程+2.5。

(4)质疑:为什么总是用假设车费再加上2.5元?(引导学生说出:如果把所有里程都假设为每千米1.5元,那么前段里程3km的车费就只算了4.5元,少算了2.5元。所以,算出假设车费后,再加上2.5元才是应付的车费。)

4、教师归纳。

(1)通过同学们刚才的讨论和交流,我们发现了解决分段计费问题的规律,找到了解决分段计费问题的两种一般方法。(PPT课件演示。)

(2)在解决问题时,我们都应该像这样对解答的过程与方法进行回顾与反思,从中发现所蕴含的规律,找到解决问题的一般方法,提高我们解决问题的能力。

5、拓展(制作、应用出租车价格表)。

(1)这节课,我们用两种方法解决了乘出租车付费的实际问题。其实,我们还可以用制作价格表的方法来解决乘出租车付费的问题。

(2)你能完成下面的出租车价格表吗?(PPT课件出示价格表。)

(3)学生完成出租车价格表。(教材第16页。)

(4)思考:观察表中的数据,你发现行驶里程与出租车费之间有什么关系?它们之间的变化情况又是怎样的?(PPT课件呈现。)

(5)应用出租车价格表解决问题。(PPT课件呈现。)

①妈妈坐出租车行驶了7.2km,应付车费多少钱?

②王叔叔乘坐出租车,下车后付了16元车费,他至少乘坐了多少千米?至多呢?

【设计意图】通过回顾与反思,引导学生分别反思用分段计算和先假设再调整的方法解决分段计费问题的过程,帮助学生建立解决这类问题的两种一般方法。通过引导学生完成出租车价格表,并观察、思考表中行驶里程与出租车费之间的关系及变化情况,感受分段计费的特点和规律,让学生初步体会函数思想。

三、实践应用,内化提升

(一)基本应用

练习四第7题。

(1)理解题意:你怎样理解合影价格表中的信息?问题一共需付多少钱是分哪两段计费?

(2)学生独立完成。

(3)全班集体交流:你是怎样解决这个问题的?

(二)拓展应用

1、练习四第8题。

(1)理解题意:这道题是实际生活中的一个什么问题?它的收费标准是怎样的?

(2)学生独立完成。

(3)全班集体交流:通话时间8分29秒应该按几分钟计算?你是怎样解答的?

2、练习四第9题。

(1)理解题意:这道题里有几种收费标准?解答这道题除了考虑分段计费外,还要区分什么?

(2)学生独立完成。

(3)全班集体交流:你是怎样解答第(1)问的?第(2)问呢?

(4)你还能提出其他数学问题并解答吗?

【设计意图】直接选用教材提供的练习,让学生充分感受分段计费问题在实际生活中的广泛应用。练习根据问题的复杂程度分了基本应用和拓展应用两个层次,在练习中特别注意引导学生理解题意,理解问题中的计费标准,这既是解决这类问题的基础,又是解决这类问题的关键。解答时放手让学生自己独立完成,并通过交流让学生体会解决问题的多种方法,增强学生分析问题、解决问题的能力。

四、全课总结,畅谈收获

1、说一说,这节课的学习你有什么收获?

2、本节课是本单元的最后一节课,本单元的学习你有什么收获?

五、作业练习

1、课堂作业:练习四第6题。

2、家庭作业。

(1)回顾本单元的学习内容,你有哪些收获?

(2)学习中遇到了哪些问题?你是怎样解决的?

小数乘法教案 篇7

教学内容

教科书第1页的例1和做一做,练习一的第1~4题.

教学目的

1.使学生理解小数乘整数的意义,掌握小数乘整数的计算法则.

2.培养学生的迁移类推能力.

教具准备

教师将教科书第1页的复习中的表格写在小黑板上.

教学过程

一、复习

1.复习整数乘法的意义.

教师:我们已经学过整数的乘法,同学们还记得整数乘法的意义是什么吗?让两个学生说一说整数乘法的意义.

教师:在乘法算式中各部分的名称是什么?(因数、因数、积)

2.复习整数乘法中因数变化引起积变化的规律.

教师出示小黑板的复习题.让一名学生在小黑板上做,其他学生打开教科书,在书上自己独立做.教师巡视,集体订正.

订正后,教师可以引导学生观察、比较:

第2栏与第1栏比较,因数有什么变化?积有什么变化?(第2栏与第1栏相比,第一个因数扩大了10倍,第二个因数没变,积也扩大了10倍.)

第3栏与第1栏比较,因数有什么变化?积有什么变化?(第3栏与第1栏相比,第一个因数扩大了100倍,第二个因数没变,积也扩大了100倍.)

第4栏与第1栏比较又怎样呢?(第一个因数扩大了1000倍,第二个因数没变,积也扩大了1000倍.)

我们现在再倒过来观察,第3栏与第4栏比较有什么变化?(第一个因数缩小了10倍,第二个因数没变,积也缩小了10倍.)

那么,第2栏、第3栏与第4栏比较呢?(第一个因数分别缩小了100倍、1000倍,第二个因数没变,积也分别缩小了100倍、1000倍.)

根据上面的观察、比较,我们能得出什么结论呢?可以让学生适当讨论,从而得出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍积也扩大(或缩小)10倍、100倍、1000倍

教师:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要很好地掌握.

二、新课

1.教学小数乘整数的意义(例1的前半部分).

教师出示例1.

教师:想一想,这道题可以怎样解答,该怎样列算式?多让几名学生回答,教师把学生的列式写在黑板上.(如果学生中没有列出乘法算式,教师可以借助加法算式启发学生想:加法中的各个加数有什么特点?还能用别的方法计算吗?怎样列式?引导学生列出乘法算式.)

学生列出算式以后,着重让列出乘法算式的'学生说一说是怎样想的.

13.55表示什么意思?(5个13.5)

还表示什么?(求13.5的5倍是多少.)

教师:过去我们学习的是整数乘整数,今天我们列的乘法算式是小数乘整数.同学们想一想,小数乘整数的意义同整数乘法的意义比较相同不相同?(相同)

让两名学生说一说小数乘整数的意义.教师板书:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

2.教学小数乘整数的计算法则(例1的后半部分).

教师:我们已经知道了小数乘整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?

教师:我们先复习一下小数点位置移动引起小数大小变化的规律.让两个学生说一说.

教师:小数乘法可以依照整数乘法用竖式进行计算.

教师板书:13 . 5

5

教师:如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子变成了什么?(1355)教师在小数乘法的竖式右边写出整数乘法的竖式:

13 . 5135

55

让学生说一说整数乘法应该怎样计算.教师在整数乘法下面写出积(675).

13 . 5135

55

675

教师引导学生讨论:

13.5变成135相当于小数点怎样移动,因数扩大了多少倍?(小数点向右移动一位,因数扩大了10倍.)教师依照教科书例题的形式,用彩色粉笔画出从13.5到135的箭头,并在箭头上标明扩大10倍.

另一个因数变化了没有?(没有)

一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积相比发生了什么变化?(积比原来扩大了10倍)

那么,要得到原来的积就要把新的积怎么样?(缩小10倍.)教师用彩色粉笔画出从675到小数乘法竖式积的箭头,并在箭头上标明缩小10倍.

要把675缩小10倍,就要把小数点怎样移动?(小数点向左移动一位)

13.55的积应该是多少?(67.5)

教师在小数乘法竖式下面积的位置上板书:67.5

教师:买5米花布要用多少元?(67.5元)教师在横式上写出得数,注明单位名称,板书答案.

教师引导学生回顾一下小数乘整数的计算方法,使学生明确:先把小数看作整数,小数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍.

3.基本练习.

做教科书第84页下面的做一做.

教师:这道题该怎样列式?(9.7614)

同学们能根据例题的方法计算出这道题的得数吗?让学生独立计算,教师巡视,了解全班学生掌握的情况以及存在的问题.

集体订正时,让两名学习好的学生说一说是怎样想的.特别要让学生比较一下这道题与例题的异同.(这道题因数有两位小数,都是小数乘整数.)使学生初步认识到积的小数位数与因数的小数位数应该一样.

三、巩固练习

1.做练习一的第1题.

指名让学生说一说每个乘法算式的意义.可有意识地让学习有困难的学生说,并按照下面的问题顺序回答:读算式;说出是什么数乘什么数;算式的意义是什么?

2.做练习一的第2题.

教师说明题目要求,学生独立列式.集体订正时,让学生再说一说小数乘整数的意义.

3.做练习一的第3题的前两道小题.

学生独立计算,教师巡视,对学习有困难的学生进行个别辅导.集体订正时,可让计算有错误的学生说一说是怎样算的,使他们知道自己错在哪里,以提醒全班学生注意不要犯类似的错误.

四、小结

教师引导学生根据例题与练习中因数的小数位数的不同情况,总结小数乘整数的计算方法:小数乘整数,先按照整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位点上小数点.

五、作业

练习一的第3题的后四道题,第4题.

小数乘法教案 篇8

教学内容:

较复杂的小数乘法(P.7页的例5和“做一做”.)

教学要求:

1、使学生进一步掌握小数乘法的计算法则。

2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教学重点:

运用小数乘法的计算法则;正确计算小数乘法。

教学难点:

正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教学用具:

小黑板或投影片若干张。

教学过程:

一、复习准备:

1、口算:P.5页10题。

0.9×6 7×0.08

1.87×0

0.24×2

1.4×0.3

0.12×6

1.6×5

4×0.25

60×0.5

老师抽卡片,学生写结果,集体订正。

2、不计算,说出下面的积有几位小数。

3、思考并回答。

(1)做小数乘法时,怎样确定积的小数位数?

(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。

二、探究新知:

1、教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的`1.3倍,鸵鸟的最高速度是多少千米/小时?

⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)

⑵是这样的吗?我们一起来算一算?

①怎样列式?

②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)

使学生明确:现在倍数关系也可以是比1大的小数。

⑶生独立完成,指名板演,集体订正。

⑷算得对吗?可以怎样验算?

⑸通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。

2、看乘数,比较积和被乘数的大小。

①(出示练习一 10题中积和被乘数的大小)先计算。

小数乘法教案 篇9

课题:

小数乘法和除法

教学目的:

1、整理小数乘法和除法的计算法则。

2、理解小数乘法和除法的结果与第二个因数和除数的关系。

3、能进行小数乘法和除法的简便运算。

4、理解循环小数的意义,会用循环小数表示商。

5、能用进一法和收尾法解决简单的实际问题。

教学过程:

一、概念回顾。

1、小数乘法和除法的计算方法与整数乘法和除法的.计算方法有什么相同点和不同点?

2、计算小数乘法和除法要注意什么?

3、计算结果有几种取近似值的方法?

4、什么叫循环小数?

二、在判断中辨析概念。

1、两个因数都是两位小数,它的积是两位小数。

2、M×0.98的积一定小于M.

3、3.636363是循环小数。

4、2.5×17+2.5×13=2.5×(17+13)运用了乘法结合律。

5、小毛看一本120页的故事书,每天看35页,要看4天。

三、在计算中理解法则。

3.25×4.83.6÷0.25

四、简便计算。

0.25×32×1.252.85×5.2+2.85×5.8-2.85

3.6÷0.25÷0.43.69-(1.69-5.8)

五、在运用中掌握方法。

1、李老师用200元买字典,每本48.5元,可以买几本?

2、工地上有160吨货物,用载重8.5吨的汽车要运多少次?

六、作业。

1、总复习第1、2题。

2、练习二十五第1---5题。

小数乘法教案

作为一位优秀的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?下面是小编收集整理的小数乘法教案,希望能够帮助到大家。

大家都在看