知远网整理的《折扣》教学设计(精选14篇),希望能帮助到大家,请阅读参考。
《折扣》教学设计 篇1
教学目标:
1.理解“打折”的含义,会解答有关“打折”的问题。
2.体验百分数在现实生活中的广泛应用,获得用数学解决问题的成功体验,丰富学生的生活体验。
教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:
能应用“折扣”这个知识解决生活中的相关问题,培养学生与日常生活的密切联系,体会到数学的应用价值。
教法:
启发引导法
学法:
自主探究法、合作交流法
教具:
课件。
教学过程:
一、定向导学(5分)
(一)导入:
1、同学们春节刚刚过去,三八妇女节马上又要到了,一些商家为了招揽顾客,经常采用一些促销手段。(请看大屏幕)你知道他们都采用了哪些促销手段?
2、同学们提到了打折,打折是商家常用的一种促销手段,也是一种商业用语,那么什么是打折?打折后商品的'售价比原价便宜了还是贵了呢?同样的商品,打一折便宜还是打九折便宜呢?今天这节课,我们就来研究和打折有关的数学知识。
师板书:打折
(二)出示学习目标
1、理解“打折“的含义。
2、能用“折扣”知识解决生活中的实际问题。
二、自主学习(8分)
1、自学内容:书上第8页内容
2、自学时间:8分
3、自学方法:先独立学习,然后完成下面的问题:
(1)什么叫“打折”?几折表示什么?三折、六折、五五折、八八折、一折、九五折各表示什么?
(2)例1中,打八五折出售是什么意思?怎样求“买这辆车用多少钱?”
(3)怎样求“比原价便宜多少钱?”
(4)尝试独立解答例1中的2个小题
三、合作交流(10分)
先小组交流,再派代表上台交流
1、现价=原价×折扣
便宜的钱数=原价×(1-折扣)
2、完成书上第8页做一做。
四、质疑探究(2分)
通过这节课的学习,你还有什么疑问,请提出来。
五、小结检测(15分)
(一)小结:同学们通过这节课的学习,你有什么收获?
你们今天的表现都很出色,其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个生活的有心人。
(二)检测:
填空。
(1)五折就是十分之( ),写成百分数就是( )%。
(2)某商品打七折销售,就表示现价是原价的( )%, 现价比原价降低了( )%。
(3)某商品售价降低到原价的83%销售,就是打( )折。
判断。
a.商品打折扣都是以商品原价格为单位“1”的。( )
b.一件上衣现在打八折销售,就是比原价降低80%。(
c.一种游戏卡先提价15%,后来又按八五折出售,现价与原价相等。( )
3、完成书上第13页1、2、3题。
4(选做题)小林在商店买了一个书包,打了八五折花了68元。如果打七五折,需要多少钱?
板书设计:
折 扣
例1:180×85%=153(元)
160-160×90%=16(元)
160×(1-90%)=16(元)
方法:原价×折扣=现价
便宜的钱数=原价×(1-折扣)
《折扣》教学设计 篇2
学习内容:人教版六年级数学上册第97页的例4、“做一做”。
学习目标:
1、感知打折在生活中的应用,理解打折的意义和计算方法。
2、懂得商业打折扣问题的数量关系,与“求一个数的百分之几是多少”问题的数量关系相同,并能正确列式计算。
3、能在问题的解决中意识到用数学知识去解决在生活中的实际问题的必要性和重要性。
学习重点:在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。
学习难点:能应用“折扣”知识解决生活中的相关问题。
学习过程:
一、激趣定标
明确学习目标。
二、自学互动,适时点拨
(一)自学97页第一自然段:理解“打折”的意义。
1、概括“打折”的含义。
2、看到“打折”这个词,你想到了什么?
3、回答问题:
商品打七折出售就是按原价的百分之几十出售?如果用分母是10的分数表示,七折是十分之几?
归纳填空:打几折表示现价是原价的.( )或( )。
4、填一填:
(1)四折是十分之( ),改写成百分数是( )。
(2)八折是十分之( ),改写成百分数是( )。
(3)七五折是十分之( ),改写成百分数是( )。
(4)九二折是十分之( ),改写成百分数是( )。
(二)自学例题4:“打折”的相关计算。
1、读题,理解题意。
例4(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
A、思考回答:①打八五折是什么意思?
②单位“1”是什么?
B、独立解答后,小组同学间对学,做好展示准备。
C、小组展示汇报。
D、总结现价、原价、折扣之间有什么关系?
( )( )( )
2、例4(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
独立思考并试着解答,展示汇报时说说自己的解题思路。(点拨:理解便宜的钱数应该怎么求)
第一种算法:
第二种算法:
A、小组展示汇报。
B、交流讨论:解答折扣应用题的方法。(把折数化成百分数,再按解百分数应用题方法解答。)
三、达标测评
1、完成第97页“做一做”。
算完书上的问题后,思考问题:每种物品分别比原来便宜了多少元?
2、填空:
(1)六折就是十分之( ),写成百分数就是( )%。
(2)某商品打四折销售,就表示现价是原价的( )%,现价比原价降低了( )%。
(3)某商品售价降低到原价的82%销售,就是打( )折。
3、判断:
(1)商品打折扣都是以商品原价格为单位“1”的。 ( )
(2)一件上衣现在打九折销售,就是比原价降低90%。 ( )
(3)一种游戏卡先提价25%,后来又按七五折出售,现价与原价相等。( )
4、列式解答。
(1)一件书包原价50元,现价30元,打几折?
(2)一件衣服现价77元,打七折出售,这件衣服的原价是多少?
(3)一支毛笔打八折,比原价便宜20元,求原价是多少?
(4)小林在商店买了一个书包,打了八五折花了68元。如果打七五折,需要多少钱?
5、理财小能手:妈妈去买可乐,看到同一种可乐在两个超市有不同的促销策略。她要买5瓶可乐,去哪个超市买合算呢?
甲超市:每瓶6元(八五折)
乙超市:每瓶6元(买四送一)
6、教材第101页练习二十三第1、2、3题。(时间不够,可留课后练习)
《折扣》教学设计 篇3
教学目标:
1、结合学生自身的生活经验,通过合作交流学习,理解打折的含义,进一步掌握求一个数的百分之几的问题的方法。
2、学生通过解决生活中打折的实际问题,提高运用所学知识解决问题的能力。
3、让学生明白“数学来源于生活,并运用于生活”。学会从数学的'角度来看待周围的事物,感受数学的现实意义。
教学重点:学生能独立解决与折扣相关的问题。
教学难点:学生能运用折扣知识,对生活中不同的折扣现象做出正确的判断与选择。
教学过程:
一、创设情境,激发兴趣。
1、谈话导入:学生说说身边的商场优惠活动都有哪些?人们为什么都在商场“搞活动”时去采购?
2、通过谈话引出商家往往在这个时候采取一些优惠措施,如打折等。
3、出示一幅关于商场打折的情景相片,让学生谈谈自己的理解。
二、小组交流,学习新知。
1、认识“打折”。
(1)让学生交流,关于折扣已经知道些什么?
(2)概括:“打折”的含义,商店有时降价出售商品,叫做打折扣销售,通称“打折”。
2、教学例1。
(1)、课件出示小雨和他爸爸逛商场的情境,定价在广告横幅上:店庆五周年,电器九折,其他商品八五折。
(2)、让学生说一说:九折是什么意思?八五折表示什么意思?归纳:几折表示十分或百分之几十。
(3)、练习:说一说以下折数表示原价的百分之几?
六折:—————三折———————八五折—————
(4)、课件展示小雨买自行的情境,学生说一说其中的数学信息,出示例1第(1)题。学生试算。并汇报:180×85%=153(元)
(5)、课件展示爸爸买随身听的过程,学生说一说数学信息。理解题意:怎么知道打九折?
(6)、出示例1第(2)题。学生试算、汇报、交流。
第一种算法:原价160元,减去现价,就是比原价便宜多少钱。
160—160×90%
第二种算法:原价160元,现价比原价便宜了(1—90%)。
160×(1—90%)
三、巩固练习,深化认知。
1、完成本课的“做一做。”算出下面各物品打折店出售的价钱(单位:元)
(1)、说一说,从图上获得哪些数学信息?
(2)、打完折后,每种物品的现价是多少元?如何计算?
(3)、学生独立完成,个别小组代表黑板板演,并说说解题思路。
四、拓展练习,灵活运用。
1、课件出示生活情境:百佳汇超市和惠民商店出售排球。百佳汇超市写着“打八折”出售;惠民商店门口写着九折出售。
(1)、如果是你,会上哪家店买?为什么?
(2)、出示原价:百佳汇超市60元,惠民商店50元。
现在你会怎么选择?你是怎么想的?
2、商店新进一款运动服,进价为400元,现在标价为500元。如果你是商店经理,会怎样设计打折广告来促销?
3、完成课本练习
二1、2、3题。学生独立完成后个别汇报,核对。
五、课堂小结
今天,我们主要学习了什么数学知识?这些知识在你的现实生活中用得上吗?请举例说说。六、布置作业:同步练习册P8《折扣》练习题。
附板书设计:
折扣
1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。
2、几折表示十分之几或百分之几十。如九折表示原价的90%。
例1:
(1)180×85%=153(元)
(2)160—160×90%或160×(1—90%)=160—144=160×10%=16(元)=16(元)答:————————————————————————
《折扣》教学设计 篇4
一、教学目标
(一)知识与技能
1.理解“折扣”“成数”的含义,知道它们在生活中的简单应用。
2.在理解“折扣”“成数”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。
(二)过程与方法
利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比及学生的自主探索,发现知识之间的联系。
(三)情感态度和价值观
通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。在自主探索的过程中,感受数学学习的乐趣。
二、教学重难点
教学重点:理解“折扣”“成数”的含义,并能进行应用。
教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。
三、教学准备
教学课件。
四、教学过程
(一)创设情境,引入新课
1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段?
2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。
【设计意图】从学生的生活经验入手,引导学生进行知识的迁移,为学生自主探索理解打下基础,也让学生体会到数学与生活的联系。
(二)结合情境,学习新知
1.理解“折扣”
(1)(课件出示促销文字信息)这里的九折、八五折是什么意思?
(2)同桌互相说一说。
(3)反馈:
预设:①举例说明:一件衣服100元,八五折的话就只要85元。
②九折就是现价是原价的90%。
(4)归纳:商品打几折,其实就是指现价是原价的百分之几。
(5)练习:看折扣写出相应的百分数。
( )%( )%( )%
2.解决与“折扣”相关的问题
(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①独立完成并进行校对。
②反馈:谁能来说说自己是怎么想的,为什么这样计算?
重点分析以下问题:
问题一:八五折是什么意思?是把谁看作单位“1”?
问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)
(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①独立思考并完成,同桌交流解题思路。
②交流反馈:
重点对比两种解题方式:
第一种算法:原价160减去现价(即原价的90%):160-160×90%。
第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。
想想哪种方法计算起来比较简便。
(3)练习教材第8页“做一做”,完成后校对。
(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?
现价=原价×折扣。
【设计意图】引导学生运用折扣的意义解决生活中的问题。让学生充分掌握学习的自主权,认真去分析、思考,并在理解的基础上展示不同的解题方法,实现问题解决的多样化,并进行方法优化的引领。
3.理解“成数”
生活中的百分数还有很多,比如说“成数”。(板书课题──成数)
(1)学生自学教材,明确成数的含义。
(2)反馈:说说什么是成数,可请学生举例说明。
(3)练习:将下列成数改写成百分数。
二成=( )%;四成五=( )%;七成二=( )%。
【设计意图】有了折扣理解的基础,虽然学生在生活中对成数接触较少,但教师完全可以放手让学生去自学理解,并通过反馈对学生的自学情况进行了解,对培养学生的自学能力很有帮助。
4.解决与“成数”相关的问题
(1)课件出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
①学生读题,独立解答问题。
②交流说说解题思路。
思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。
思路二:去年用电数减去今年节约的度数,即350-350×25%。
教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。
(2)课件出示教材第9页“做一做”:某市20xx年出境旅游人数为15000人次,比上一年增长两成。该市20xx年出境旅游人数为多少人次?
①独立完成再进行集体校对。
②说说如何解决这类“成数”的问题。
5.小结
(1)结合例1及例2说说我们是怎么解决有关“折扣”和“成数”的问题的?
(2)教师小结:在解答这类应用题时,关键是理解“折扣”及“成数”的含义,把“折扣”或“成数”化成百分数,再按解百分数应用题的方法解答。
【设计意图】引导学生通过对比、探讨,参与解题方法的'总结,对于发展学生数学思维、数学语言表达很有帮助。
(三)应用练习,巩固认知
今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。
1.课件出示教材第13页练习二第1题。
(1)独立完成,集体校对。
(2)引导学生按一定的顺序进行思考。
2.课件出示教材第13页练习二第3题。
书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。
(2)尝试练习,集体校对。
3.课件出示教材第13页练习二第4题。
某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?
4.课件出示教材第13页练习二第5题。
某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽【您现在访问的是六年级数学教案,请勿转载或建立镜像】车多少万辆?
(1)读题,找出关键句,想想两道题目中增长的3成,分别是谁的3成?也就是把谁看作单位“1”?应该怎样进行计算?
(2)独立完成,集体校对。
【设计意图】练习的设置和安排有层次性和针对性,教师对于练习的辅导也相应有层次性,简单的题由学生自行梳理、分析、解答,易错题和难题进行针对性点拨,对于学生对数学的学习应用也大有益处。
(四)回顾梳理,课堂总结
今天这节课我们学了什么?我们应如何解决这一类问题?
《折扣》教学设计 篇5
教学目标:
1、使学生联系百分数的意义认识“折扣”的含义,体会折扣和分数、百分数的关系,加深对百分数的数量关系的理解。
2、了解“打折”在日常生活中的应用, 懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,能应用这些知识解决一些简单的生活实际问题。
3、进一步让学生感受数学和人们生活的密切关系,体会到数学的价值。 教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。 教学难点:
能应用“折扣”这个知识解决生活中的相关问题,让学生了解数学与日常生活的密切联系,体会到数学的应用价值。
教学准备:
课件
教学过程:
一、创设情境,导入新课:
1、同学们,圣诞节快到了,每年的'这个时候,各商家都会举行各式各样的促销活动。昨天我来到一家商场门口,看到上面的标语,我很高兴,这条标语是:大甩卖,半价销售,心想:上次在他家看到的这件风衣(出示风衣),现在肯定便宜不少,上次原价是400元,当时打九折,我觉得还是贵,所以没买,这次应该可以买了。我进店一看,纳闷了,怎么会是这样(出示:,第一次:原价为400元,打九折
第二次:半价销售现价370元 价格比起第一次是升了,还是降了?)原来全都是折扣惹得祸。大家想知道这是为什么吗?相信学完这节课的内容后,同学们一定能找到答案。
2、那什么叫折扣?用你理解的话说一说。学生交流。
师小结:看样子,同学们对打折有一定的了解。商家有时降价出售商品,就叫做打折扣销售,通称“打折”。
今天,我们就来学习与我们生活紧密相关的数学问题——打折。(板书课题: 折扣)
(设计意图:在生活中经常遇到“折扣”,开课时,我设计这一个情景,激发学生学习的兴趣,同时为后面的内容做铺垫,让学生感知生活中处处有数学,“折扣”这一学习内容和我们的生活息息相关,同时让学生对“折扣”有初步的了解。)
二、自主学习,探索新知:
1、明确教学目标。
2、理解折扣:
1)(出示教科书第97页含促销广告的主题图)
师:想一想,这里的电器打九折是什么意思?
师:其他商品打八五折是什么意思?
2)回答下面各题:
师:商品打五折出售就是按原价的百分之几十出售?如果用分母是10的分数表示,五折是十分之几?
归纳:几折表示十分之几,也就是百分之几十。
3)及时填一填,你能行:
①四折是十分之( ),改写成百分数是( )。
②对折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
④九二折是十分之( ),改写成百分数是( )。
3、自主探究:
(1)例4:爸爸给小强买了一个书包,原价是100元,现在打八五折,现价多少元?比原来少花几元?
八五折表示()是( )的()%。( )价为单位“1”,求现价就是求( )的85%是多少。
列式:
答:现价( )元,比原来少花()元。
小结:打折的商品:现价=(
)
原价=(()
折扣=(( )
(2)自学检测:爸爸给小强买了一套运动服,原价120元,现在打九折出售,比原来便宜多少元?
①九折表示()价是()的( )% 。②本题是以( )价为单位“1”。
方法一: 方法二:
答:比原来便宜()元。
(3)学生自主学习后集体订正,教师适时引导和点拨。
3、总结归纳:
刚才,我们解答了有关折扣的问题,你认为解决折扣问题的关键是什么? 学生交流,归纳小结:解答这类问题时,关键是理解折扣的含义,把折扣转化成百分数后,再按照百分数问题的方法去解答。 (设计意图:在学生理解了折扣的含义的基础上,将学生熟悉的生活情景再次引入课堂作为教学切入点,引导学生进行知识迁移,使学生迅速进入最佳学习状态,身临其境地去自主观察、自主分析、自主思考,在理解折扣意义的基础上体会根据原价和折扣求现价的问题,实质就是求有关一个数的几分之几是多少的问题。解答方法也相同。 自主学习后都有及时练习和自我检测,帮助学生及时巩固新知,培养迁移和举一反三的能力。 ]
三、实践应用,巩固新知,形成技能:
必做题:
1、判断。
①商品打折扣都是以原商品的价格作为单位“1”,即标准量。( ) ②一件上衣现在打八折出售,就是说比原价便宜了10%()
2、填空。
①商品打八折出售,就是按原价的( )%出售,也就是降价( )%。 打七五折出售,就是按原价的( )%出售,也就是降价( )%。 ②某种商品实际售价是原价的95%,也就是按( )折出售。
3、买一件T恤衫原价80元,如果打八折出售是多少元?
4、一顶帽子原价50元,现价30元,打几折?
5、一件衬衣打八折后是120元,这件商品原价是多少元?
[设计意图:继续创设情境,利用题与题之间的差异,让学生联系“求一个数在百分之几是多少”的知识,学会自主寻求解决“求比原价便宜多少”、“求折数”和“求原价”的方法。培养学生的解题能力,训练学生的发散思维、逆向思维。]
选做题:
1、解决开课时老师提出的问题,引导得出:在生活中购物时要货比三家, 谨防折扣背后的骗局。
2、小林在商店买了一个书包,打了八五折花了68元。如果打七折,需要多少钱?
学生独立完成,师生交流。 [设计意图:设计不同层次和不同类型的练习,首先是巩固新知,形成技能;其次是满足不同的学生,是每个学生都能获得自己必需的数学知识;再次是培养学生的举一反三、迁移的能力。]
四、课外延伸,拓展新知:
喜洋洋文具店和米老鼠文具店同时销售小画家牌彩笔。情景图:喜洋洋文具店门口写着8折出售,米老鼠文具店前写着9折出售。
1)如果是你,你会上哪家店买?为什么?
2)出示原价:喜洋洋文具店的彩笔价格为30元,米老鼠文具店的彩笔价格为25元。现在你会选择去哪家店买?你由此想到了什么?
[设计意图:通过练习,让学生对“折扣“有进一步的了解。在学生掌握了原价、现价和打几折之间的关系之后,进行去两家文具店买彩笔的练习,目的是使学生知道购物时不能只看打几折,还要看清原价,做一个聪明的消费者。]
五、课堂总结:
同学们,通过这节课的学习,你有什么收获?其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个有心人! 板书设计:
折扣
几折表示十分之几,也就是百分之几十。
现价=原价×折扣
原价=现价÷折扣
折扣=现价÷原价
《折扣》教学设计 篇6
教学内容:
苏教版义务教育课程标准实验教科书第9—10页练习三的第5—9题。
教材学情分析:
前一节课学习的内容是“已知一个数的百分之几是多少,求这个数”的简单实际问题,学生已经基本掌握了这类问题的思考方法和解决问题的步骤,本节课是上一节基础上的安排练习课,旨在让学生熟悉解决“已知一个数的百分之几是多少,求这个数”实际问题的方法和步骤,形成相应的技能。
练习三第5题是一组相互关联的实际问题,两小题的条件类似,但问题不同,思考方法也不同;第6题也是一组对比题。通过练习重点帮助学生沟通“求一个数的百分之几是多少”和“已知一个数的百分之几是多少,求这个数”这两类实际问题思考方法的.联系,促进学生在整体上把握有关百分数的实际问题的思考方法;第7—9题与例题相比稍有变化,需要学生更加灵活地选择和组合信息,并正确分析数量关系。
教学目标:
⑴使学生联系百分数的意义进一步认识“折扣”的含义,了解打折在日常生活中的应用,并联系对“求一个数的百分之几是多少”的已有认识,熟悉列方程或列算式解答“已知一个数的百分之几是多少,求这个数”的题型,能应用这些知识解决一些简单的实际问题,体会以及折扣和分数、百分数的关系,加深对百分数表示的数量关系的理解。
⑵使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,体验成功的乐趣,增强学好数学的信心。
⑶继续体会数学知识服务于生活的价值,感受学习数学的价值,激发学习数学的兴趣。
教学重点难点:掌握“已知一个数的百分之几是多少,求这个数”的基本思路和方法。
教学流程:
一、回顾知识,揭示课题。
⑴回顾关于“打折”的知识。
说说“七折”的知识。重点抓住“七折”的含义展开,如重点句子现价是原价的70%,数量关系式是原价70%=现价等;体会表示“七折”的各种方式,有“七折”、70%、7/10和0。7四种。
⑵揭示课题。
揭示课题——“折扣问题练习课”。
二、集中练习,内化知识。
⑴完成练习三第5题。
独立完成,反馈算式或方程;比较两小题的相同点和不同点,相同点是条件都有原价和折扣,不同点是要解决的问题不同,第一问求的是现在的价钱,第二问是比原价便宜多少元。
⑵完成练习三第6题。
独立完成,反馈算式或方程;沟通两小题之间的联系,它们的相同点是“一律九折”,第一题已知原价求现价,第二题是已知现价求原价,刚好相反。
⑶完成练习三第7—9题。
独立在课堂作业本上完成。第7题抓住每张反馈,现价54元是2张足球票的价钱,和前面不同的是要注意2张票,先或者后要算出每张票的价钱;第8题从“贵宾卡”的不同之处切入,体会贵宾卡的九五折是在八折优惠的基础上再打的折。
三、阅读课本,拓展学生的视野。
⑴阅读“你知道吗”。
学生阅读“你知道吗”,准备交流。
⑵交流“你知道吗”。
成数的产生,产生于农业;成数的表示方法,如有三成、3/10、30%和0。3四种;成数的意义,表示十分之几;成数应用的拓展,工业生产,形容旅游事业、交通事故等。
《折扣》教学设计 篇7
教学内容:人教版义务教育标准实验教科书《数学》六年级上册第97页的内容
教学目的:
1、学生理解打折的含义,进一步解决求一个数的百分之几的问题的解法。
2、学生根据实际情况选择最佳方案与策略,提高运用所学知识解决实际问题的'能力。
3、学生学会用数学的眼光来看待周围的事物,感受数学的魅力。
教学过程:
一、创设情境,激发兴趣
师生谈话,在“十一”长假做了些什么?人们为什么都在这个时候去采购?通过谈话引出商家往往在这个时候采取一些优惠措施,如打折等。
二、尝试交流,探索新知
1、认识“打折”。
(1)让学生交流,关于折扣已经知道些什么?
(2)概括:“打折”的含义,商店有时降价出售商品,叫做打折扣销售,通称“打折”。
2、教学例4。
(1)课件出示小宇和他爸爸逛商场的情境,定价在广告横幅上:
店庆五周年,电器九折,其他商品八五折。
(1)让学生说一说:九折是什么意思?八五折表示什么意思?
归纳:几折表示十分或百分之几十。
(2)练习:说一说表示原价的百分之几?
六折 三折 九五折 对折
(3)课件展示小雨买自行的过程,学生说一说数学信息,出示例4第1题。学生试算。
汇报:180×85%=153(元)
(4)课件展示爸爸买随身听的过程,学生说一说数学信息。
理解题意:怎么知道打九折?
出示例4第(2)题。
学生试算。
交流。
第一种算法:原价160元,减去现价,就是比原价便宜多少钱。
160-160×90%
第二种算法:原价160元,现价比原价便宜了(1-90%)。
160×(1-90%)
三、应用拓展,深化认识
1、第97页“做一做。”
算出下面各物品打折店出售的价钱(单位:元)
2、说一说,从图上获得哪些数学信息?
(1)打完折后,每种面包多少元?
(2)晚8:00以后,玲玲拿3元钱去买面包,她可以怎样买?
3、这个玩具多少元?
帮助学生理解题意。
学生尝试解决。
可以直接列式,也可以列方程解决。
4、“大风车”文具店和“红太阳”文具店销售“小画家”彩笔。情境图:“大风车”文具店写着8折出售;“红太阳”门口写着9折出售。
(1)如果是你,会上哪家店买?为什么?
(2)出示原价:“大风车”文具店30元,“红太阳”文具店25元。
现在你会怎么选择?你想到些什么?
5、商店新进一款羽绒服,进价为300元,现在标价为400元。如果你是商店经理,会怎样设计打折广告来促销?
《折扣》教学设计 篇8
学习目标:
1.通过丰富多彩的学习情境,使学生感悟到“折扣”在日常生活中的广泛应用,明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题;
2.使学生深刻体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确地应用所学知识解决实际问题,培养他们良好的数学素养;
3.通过小组合作,培养学生的群体意识,促进他们创造性地解决问题的能力,培养他们的创新精神和学习数学的积极情感。
学习重点:
使学生能正确地按折扣和成数进行计算,并能领会所学知识与现实生活的联系以及其在日常生活中的实用性。
学习难点:
使学生能够在教学情境之中创造性地应用所学知识解决实际问题,培养他们良好的数学应用意识。
教学设想:
《折扣》是《分数(百分数)乘法应用题》的第二教时,是在学生学习了把折扣、成数改写成百分数,以及“求一个数的百分之几是多少”的应用题的基础上进行教学的。
本节课的教学设计力图体现“尊重学生,体现创新”和“关注生活,注重实效”的教学理念。在新课程的.理念下使用旧教材,一方面,教材本身固有的学习要求还是应当达到的,另一方面,要使学生真正成为学习的主体,使他们能够自始至终都兴趣盎然地参与学习活动,并能学有所思、学有所得,教师对原有教材又不能不进行一定的开拓与创新。为此,我着重做好以下三点:
1.巧设情境,激发学习兴趣,凸现学生的主体地位。
2.联系生活,加强应用,培养学生良好的数学素养。
3.自主创新,改编教材,谋求师生的共同发展。
教学过程预设:
一.创设情境,激发兴趣。
1.出示雅典奥运会吉祥物“雅典娜”和“费沃斯”,说说它们的名称,并猜测价格。(课件展示)
二.导入新课,感悟新知。
1.出示两家商店中这种吉祥物的不同价格,说说你会上哪一家店购买。
甲商店:120元
乙商店:110元
2.出示两家商店不同的促销方式:
甲商店:底价抢购,八折起
乙商店:六一特价,一律九折
3.说一说:“八折”和“九折”各表示什么意思?现在你觉得上哪一家店购买比较合算了?为什么?
4.这种吉祥物在这两家店的价格究竟各是多少,我们该怎样计算?
[指导学生列式计算:甲商店
120×80%=96(元)乙商店
110×90%=99(元)]
5.小结:刚才这道题的的实质,就是求商品原价的百分之几是多少。
6.试一试:
(1)某家具商店将一种原价320元的床垫八五折出售,这种床垫的现
价是多少元?
(2)一种电视机原价每台2600元,“五一”期间以9.5折出售。这种电视机的促销价是多少元?
三.简单应用,加深体验。
情境展示:某儿童用品商店在儿童节期间对部分商品进行特价酬宾:
大肚熊:原价120元,打八折;
天文望远镜:原价528元,打七五折;
笔袋:原价35元,打九折;
电动汽车:原价156元,打六折;
玩具机器人:原价220元,打四折;
水杯:原价20元,打九五折;
故事书:原价120元,打八折;
篮球:原价78元,六五折。
问:如果给你100元钱进这家商店购物,你将如何合理使用这100元钱?
四:合作探究,解决问题。
一种饮料,大瓶装每瓶1200毫升,10元一瓶;听装每听200毫升,2元一听。
现有三家商店出售这种饮料,并推出了不同的促销方式:
甲商店:买一大瓶,送一听;
乙商店:一律九折;
丙商店:满30元八折优惠。
问:1.你喜欢上哪一家商店购买?说说你的想法。
2.你们班共有多少同学?如果每位同学配备200毫升饮料,共需多少饮料?
3.这么多饮料,上哪一家店购买可以使所花费的钱最省?请通过小组合作制订一个购买方案。
(思考:购买方案的制订应视班级的具体情况而定。这道题具有比较开阔的思维空间,对学生而言是一种挑战。要尽可能使学生感悟以下两点:1,可以在两家或两家以上商店组合购买;2,用同样多的钱买到更多的饮料。这样这道题就具备了一定的创新意义)
五.总结收获,课后延伸。
1.说说学了这节课你有什么收获。(结合学生回答小结本课内容)
2.出示课后延伸题:
(1)河汉村有个种粮大户,前年收稻谷26000千克,去年比前年增产了一成五。这个种粮大户去年比前年要多收多少稻谷?
(2)安华镇某大型袜厂2003年的产值达到了560万元,打算2004年在此基础上增值二成。该袜厂2004年比2003年增值多少万元?
说说这两题涉及到了什么内容,回家后先独立完成,再请家长进行检查。
板书设计:
折扣应用题
甲商店:120元
乙商店:110元
底价抢购,八折起
中秋特价,一律九折
(表示现价是原价的80%)
(表示现价是原价的90%)
120×80%=96(元)
110×90%=99(元)
教学反思
这堂课是我曾经开设过的一堂校级公开课,课后学生与听课教师的反响相当好。我个人认为,这堂课在以下几方面是处理得比较成功的:
一、重视学生在学习过程中的参与程度,关注他们的处境和感受。
兴趣永远是最好的老师,本节课中我针对小学生的年龄特征,以他们熟悉的“购物情境”导入学习,把简单、枯燥的学习理性知识的过程变成学生自主探究、发现问题并解决问题的动态过程,促使学生思维活跃地参与整个学习过程,也使课堂充满了生机和活力。
二、注意到了数学知识与现实生活之间的联系,关注学生的生活经验。
“实用性”是这节课的一个显着特点,无论是“折扣”还是“成数”,都是现实生活中的客观存在,也正因为此我们才有学习和探讨的必要。因此,我结合班级和上课时的实际情况组织教材,尽可能使学习内容贴近学生的生活,并通过课后延伸等方式,启发学生将所学内容在现实生活中进行充分的体验和感悟,为学生提供一个更为深广的学习空间。
三、大胆改编教材,使课堂教学更具艺术性。
在原教材中,这一课时的学习内容包括“折扣”和“成数”两部分,我在教学中则选择了小学生比较感兴趣的“折扣”作为主要的学习内容。至于“成数”相对而言离学生的日常生活有一定的距离,但却是学生家长所熟悉的,因此我把这一内容作为这堂课的课后延伸,让学生在回家以后通过自学以及与家长的交流和探讨自主掌握。从学生的反馈情况看,他们完全能够做到这一点。
当然,这堂课也有不足之处,对一些同学而言,这节课的难度较大,尤其是“合作探究”部分。虽然有小组成员间的互助互学,还是有部分同学不能按时完成学习任务。用新课程的理念教学旧教材,对于那些习惯了传统教学的学生而言也是一种挑战,这是值得教师重新思考的。
《折扣》教学设计 篇9
教学目标:
1、知识目标:理解打折的含义,明白有关折扣的应用题的数量关系与“求一个数的百分之几是多少"的应用题的数量关系相同,能正确列式计算。并使学生进一步理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略。
2、能力目标:通过小组合作和研究性学习,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。
3、情感目标:感受数学的魅力,能够用数学的眼光来看待周围的事物。
教学重点:
理解打折的含义,能够解决求一个数的.百分之几的问题。
教具:
课件
教学过程:
一、说说下面谁是单位“1”的量,并说出下面百分数表示的意义
1、一件衣服,涨了15%。
2、一双鞋子,降价了20%
二、导入:
现代社会的竞争越来越厉害,何时何地都存在着激烈的竞争,做生意更是这样,商家们总是绞尽脑汁地想办法吸引顾客,这样就萌发了多种多样的促销手段。其中,打折是商家常用的一种。今天,我们就来共同研究有关打折的知识“折扣”。(板书课题)
三、新授
1、认识折扣
教师出示各种商品打折图片
师:你了解图片中的几折表示什么意思?(学生回答,教师归纳)几折就是十分之几,百分之几十。
出示各种商品打折图片,理解各种折扣意思,它们分别表示谁是谁的百分之几十
(有没有十折的说法?十一折、0折呢?)
2、教师指着图片或口述让学生巩固几折和百分数之间的联系。(折扣换成百分数,百分数换成折扣)
巩固练习(填空)
3、逛淘宝网购鞋子情境
师:老师特别喜欢网购,在双十一购物狂欢节时老师看重了一款李宁牌运动鞋(幻灯片出示)。
师:从图中你获得哪些数学信息,折什么意思,他表示谁是谁的百分之四十五?
出示鞋子原价:380元,现在你能帮老师算算这双鞋子花了多少钱吗?
学生计算,教师巡视,学生回报,教师板书。
4、出示老师购买85折裤子图片,如果老师花了374元购买,你能算出这条裤子的原价呢?
四、巩固练习
1、张老师准备买一条裤子,原价180元,现价153元,这条裤子在打几折出售?
2、杨老师买了一双阿迪达斯的旅游鞋,原价460价,打八折,比原价便宜了多少元?
五、出示玉虹国际和金源一品图片
最近我有一个亲戚想买一套商品房,走了金溪两个楼盘,这两个楼盘也在进行促销。(出示)如果不考虑房子的地理位置、楼层,单从每平方米的单价考虑,你认为哪个楼盘更便宜?为什么?(小组讨论)
1、如果再给出两个条件你能算出哪个楼盘更便宜吗?
2、师总结,但看折扣往往不能判断一件商品的购买价格,折扣和原价才能最终决定购买价格。课件出示判断练习:
1、打折后的商品一定比原价便宜()
2、打折后商家所卖出的商品一定赔钱了。()
3、折扣越低越便宜。
4、同一种商品,折扣越低,越便宜。()
六、真假辩论
这则广告欺骗消费者了吗?
问题:东方家电城将每台进价为1800元的电视机按如下广告销售:“原价3000元,7折优惠,亏本大甩卖。”该家电城是否真亏本,若未亏本,每台利润是多少?
教师小结。
七、出示其它促销广告
八、拓展练习
1、同一种伊利幼儿配方奶粉,甲超市买三送一,乙超市八折出售,李阿姨要买4罐奶粉,在哪家超市买实惠?
2、设计广告。
《折扣》教学设计 篇10
教学目标:
1、使学生联系百分数的意义认识“折扣”的含义,体会折扣和分数、百分数的关系,加深对百分数的数量关系的理解。
2、了解“打折”在日常生活中的应用, 懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,能应用这些知识解决一些简单的生活实际问题。
3、进一步让学生感受数学和人们生活的密切关系,体会到数学的价值。 教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。 教学难点:
能应用“折扣”这个知识解决生活中的相关问题,让学生了解数学与日常生活的密切联系,体会到数学的应用价值。
教学准备:
课件
教学过程:
一、创设情境,导入新课:
1、同学们,圣诞节快到了,每年的这个时候,各商家都会举行各式各样的.促销活动。昨天我来到一家商场门口,看到上面的标语,我很高兴,这条标语是:大甩卖,半价销售,心想:上次在他家看到的这件风衣(出示风衣),现在肯定便宜不少,上次原价是400元,当时打九折,我觉得还是贵,所以没买,这次应该可以买了。我进店一看,纳闷了,怎么会是这样(出示:,第一次:原价为400元,打九折
第二次:半价销售现价370元 价格比起第一次是升了,还是降了?)原来全都是折扣惹得祸。大家想知道这是为什么吗?相信学完这节课的内容后,同学们一定能找到答案。
2、那什么叫折扣?用你理解的话说一说。学生交流。
师小结:看样子,同学们对打折有一定的了解。商家有时降价出售商品,就叫做打折扣销售,通称“打折”。
今天,我们就来学习与我们生活紧密相关的数学问题——打折。(板书课题: 折扣)
(设计意图:在生活中经常遇到“折扣”,开课时,我设计这一个情景,激发学生学习的兴趣,同时为后面的内容做铺垫,让学生感知生活中处处有数学,“折扣”这一学习内容和我们的生活息息相关,同时让学生对“折扣”有初步的了解。)
二、自主学习,探索新知:
1、明确教学目标。
2、理解折扣:
1)(出示教科书第97页含促销广告的主题图)
师:想一想,这里的电器打九折是什么意思?
师:其他商品打八五折是什么意思?
2)回答下面各题:
师:商品打五折出售就是按原价的百分之几十出售?如果用分母是10的分数表示,五折是十分之几?
归纳:几折表示十分之几,也就是百分之几十。
3)及时填一填,你能行:
①四折是十分之( ),改写成百分数是( )。
②对折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
④九二折是十分之( ),改写成百分数是( )。
3、自主探究:
(1)例4:爸爸给小强买了一个书包,原价是100元,现在打八五折,现价多少元?比原来少花几元?
八五折表示()是( )的()%。( )价为单位“1”,求现价就是求( )的85%是多少。
列式:
答:现价( )元,比原来少花()元。
小结:打折的商品:现价=(
)
原价=(()
折扣=(( )
(2)自学检测:爸爸给小强买了一套运动服,原价120元,现在打九折出售,比原来便宜多少元?
①九折表示()价是()的( )% 。②本题是以( )价为单位“1”。
方法一: 方法二:
答:比原来便宜()元。
(3)学生自主学习后集体订正,教师适时引导和点拨。
3、总结归纳:
刚才,我们解答了有关折扣的问题,你认为解决折扣问题的关键是什么? 学生交流,归纳小结:解答这类问题时,关键是理解折扣的含义,把折扣转化成百分数后,再按照百分数问题的方法去解答。 (设计意图:在学生理解了折扣的含义的基础上,将学生熟悉的生活情景再次引入课堂作为教学切入点,引导学生进行知识迁移,使学生迅速进入最佳学习状态,身临其境地去自主观察、自主分析、自主思考,在理解折扣意义的基础上体会根据原价和折扣求现价的问题,实质就是求有关一个数的几分之几是多少的问题。解答方法也相同。 自主学习后都有及时练习和自我检测,帮助学生及时巩固新知,培养迁移和举一反三的能力。 ]
三、实践应用,巩固新知,形成技能:
必做题:
1、判断。
①商品打折扣都是以原商品的价格作为单位“1”,即标准量。( ) ②一件上衣现在打八折出售,就是说比原价便宜了10%()
2、填空。
①商品打八折出售,就是按原价的( )%出售,也就是降价( )%。 打七五折出售,就是按原价的( )%出售,也就是降价( )%。 ②某种商品实际售价是原价的95%,也就是按( )折出售。
3、买一件T恤衫原价80元,如果打八折出售是多少元?
4、一顶帽子原价50元,现价30元,打几折?
5、一件衬衣打八折后是120元,这件商品原价是多少元?
[设计意图:继续创设情境,利用题与题之间的差异,让学生联系“求一个数在百分之几是多少”的知识,学会自主寻求解决“求比原价便宜多少”、“求折数”和“求原价”的方法。培养学生的解题能力,训练学生的发散思维、逆向思维。]
选做题:
1、解决开课时老师提出的问题,引导得出:在生活中购物时要货比三家, 谨防折扣背后的骗局。
2、小林在商店买了一个书包,打了八五折花了68元。如果打七折,需要多少钱?
学生独立完成,师生交流。 [设计意图:设计不同层次和不同类型的练习,首先是巩固新知,形成技能;其次是满足不同的学生,是每个学生都能获得自己必需的数学知识;再次是培养学生的举一反三、迁移的能力。]
四、课外延伸,拓展新知:
喜洋洋文具店和米老鼠文具店同时销售小画家牌彩笔。情景图:喜洋洋文具店门口写着8折出售,米老鼠文具店前写着9折出售。
1)如果是你,你会上哪家店买?为什么?
2)出示原价:喜洋洋文具店的彩笔价格为30元,米老鼠文具店的彩笔价格为25元。现在你会选择去哪家店买?你由此想到了什么?
[设计意图:通过练习,让学生对“折扣“有进一步的了解。在学生掌握了原价、现价和打几折之间的关系之后,进行去两家文具店买彩笔的练习,目的是使学生知道购物时不能只看打几折,还要看清原价,做一个聪明的消费者。]
五、课堂总结:
同学们,通过这节课的学习,你有什么收获?其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个有心人! 板书设计:
折扣
几折表示十分之几,也就是百分之几十。
现价=原价×折扣
原价=现价÷折扣
折扣=现价÷原价
《折扣》教学设计
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么教学设计应该怎么写才合适呢?以下是小编精心整理的《折扣》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《折扣》教学设计 篇11
教学目标:
1、知识目标:理解打折的含义,明白有关折扣的应用题的数量关系与“求一个数的百分之几是多少"的应用题的数量关系相同,能正确列式计算。并使学生进一步理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略。
2、能力目标:通过小组合作和研究性学习,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。
3、情感目标:感受数学的魅力,能够用数学的眼光来看待周围的事物。
教学重点:
理解打折的含义,能够解决求一个数的百分之几的问题。
教具:
课件
教学过程:
一、说说下面谁是单位“1”的`量,并说出下面百分数表示的意义
1、一件衣服,涨了15%。
2、一双鞋子,降价了20%
二、导入:
现代社会的竞争越来越厉害,何时何地都存在着激烈的竞争,做生意更是这样,商家们总是绞尽脑汁地想办法吸引顾客,这样就萌发了多种多样的促销手段。其中,打折是商家常用的一种。今天,我们就来共同研究有关打折的知识“折扣”。(板书课题)
三、新授
1、认识折扣
教师出示各种商品打折图片
师:你了解图片中的几折表示什么意思?(学生回答,教师归纳)几折就是十分之几,百分之几十。
出示各种商品打折图片,理解各种折扣意思,它们分别表示谁是谁的百分之几十
(有没有十折的说法?十一折、0折呢?)
2、教师指着图片或口述让学生巩固几折和百分数之间的联系。(折扣换成百分数,百分数换成折扣)
巩固练习(填空)
3、逛淘宝网购鞋子情境
师:老师特别喜欢网购,在双十一购物狂欢节时老师看重了一款李宁牌运动鞋(幻灯片出示)。
师:从图中你获得哪些数学信息,折什么意思,他表示谁是谁的百分之四十五?
出示鞋子原价:380元,现在你能帮老师算算这双鞋子花了多少钱吗?
学生计算,教师巡视,学生回报,教师板书。
4、出示老师购买85折裤子图片,如果老师花了374元购买,你能算出这条裤子的原价呢?
四、巩固练习
1、张老师准备买一条裤子,原价180元,现价153元,这条裤子在打几折出售?
2、杨老师买了一双阿迪达斯的旅游鞋,原价460价,打八折,比原价便宜了多少元?
五、出示玉虹国际和金源一品图片
最近我有一个亲戚想买一套商品房,走了金溪两个楼盘,这两个楼盘也在进行促销。(出示)如果不考虑房子的地理位置、楼层,单从每平方米的单价考虑,你认为哪个楼盘更便宜?为什么?(小组讨论)
1、如果再给出两个条件你能算出哪个楼盘更便宜吗?
2、师总结,但看折扣往往不能判断一件商品的购买价格,折扣和原价才能最终决定购买价格。课件出示判断练习:
1、打折后的商品一定比原价便宜()
2、打折后商家所卖出的商品一定赔钱了。()
3、折扣越低越便宜。
4、同一种商品,折扣越低,越便宜。()
六、真假辩论
这则广告欺骗消费者了吗?
问题:东方家电城将每台进价为1800元的电视机按如下广告销售:“原价3000元,7折优惠,亏本大甩卖。”该家电城是否真亏本,若未亏本,每台利润是多少?
教师小结。
七、出示其它促销广告
八、拓展练习
1、同一种伊利幼儿配方奶粉,甲超市买三送一,乙超市八折出售,李阿姨要买4罐奶粉,在哪家超市买实惠?
2、设计广告。
《折扣》教学设计 篇12
教学目标
1、让学生在商品打折销售的情境中理解折扣的意义。
2.学生在掌握求一个数的百分之几是多少这种问题的基础上自主解决问题,培养学生解决实际问题的能力。
3.养成独立思考、认真审题的学习习惯。
教学重点:
理解折扣的意义。
教学过程
教学设计备注
活动一、创设情景理解折扣的意义
师:利用课件或挂图出示商场店庆、商品打折的情境。
问:打折是什么意思?八五折、九折表示什么?
生:结合实际了解到的信息进行思考和交流,再阅读课本进行对照分析。
小结:商店降价出售商品叫做折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。
问:七五折表示什么?五折表示什么?
活动二、自主探索解决问题的.方法
1、出示例4
2、让学生独立解答
3、集体汇报时请学生说说自己的解题思路,并且两个问题加以比较
板书:(1)18085%=153(元)
(2)160(1-90%)=16(元)
师生共同总结解题方法
活动三、实践应用
1、第97页做一做
学生独立完成并说出各折扣表示的意思
2、第101页第1、2、3
活动四、课堂总结
学生谈谈学习本课有什么新的收获。
板书设计:(1)18085%=153(元)
(2)160(1-90%)=16(元)
《折扣》教学设计 篇13
教学内容:
苏教版义务教育教科书六年级下册第99页例
9、“练一练”,第100页练习十六第7-10题。
教学目标:
1.使学生联系百分数的意义认识折扣的含义,学会列方程解答百分数的实际问题,理解不同形式的折扣实际问题之间的联系,会解答关于折扣的实际问题。
2.使学生在具体情境中加深理解百分数的实际问题的数量关系,进一步体会列方程解答实际问题的价值和意义,体会模型思想;培养分析、综合和简单的推理能力,提高解决实际问题的能力。
3.使学生在探索解决问题的过程中,感受折扣是百分数在日常生活中的应用;进一步培养学生独立思考、主动与他人合作交流、自觉检验的习惯;体验成功的乐趣,增强学生学好数学的信心。
教学重点:
理解折扣含义,学会列方程解答简单的百分数实际问题。
教学难点:
理解现价、原价、折扣三者之间的关系,灵活运用数量关系来解决不同的实际问题。
教学过程:
一、创设情景,引入新课
谈话:节假日到了,平时忙于工作、学习的人们终于有时间放松放松,出门旅旅游、购购物了,精明的商家们都看准时机,搞出形式各样的促销活动,来吸引大家购物。你见过商家的哪些促销手段呢?
全班交流,说说如降价、打折、买一送一、送货上门等促销手段。 刚才同学们提到过“打折”这种促销手段。它的广告上一般写些什么?
举个例子说说,如
学生回答后,出售商场打折销售的图片。
揭题:这节课我们就一起来学—折扣问题。(板书课题:折扣问题)
二、自学新知,理解打折。
1.理解“打折”。
(1)谈话:打折是什么意思?你用自己的话解释解释吗?学生回答。
(2)自学教材第99页的底注,适当画一画。
解决以下问题:
A什么叫折扣?
B举例说明:几折如何用百分数表示呢?
(3)小组合作完成“小试牛刀”。
小试牛刀:(口答)
① 二折是百分之( );表示( )是( )的( )%。
半折是百分之( );表示( )是( )的( )%。 七五是百分之( );表示( )是( )的( )%。
② 说说下面各种商品是打几折出售。
一台电视机按原价的70%出售; ( )折 一架钢琴按原价的95%出售; ( )折 一件衣服按原价的68%出售。 ( )折
(4)全班交流,小组开火车说出答案。
(5)通过两组的交流,我发现大家的自学效果还是相当好的。
出示折扣的介绍,尤其是十分之几。
3.谈话 :现在大家都理解了打折的含义,接下来我们来尝试解决有关打折的实际问题。
三、应用新知,解决实际问题
1.分析、理解题意 (出示例题图9)
观察主题图,收集信息,回答问题。
(1)题目中的已知条件有哪些?要解决什么问题?
(2)谈话:“打八折”在题目中表示什么意思?
80%在题中表示哪个数量相当于哪个数量的80%? 是把什么看做单位“1”的?
你能数量关系式表示原价和实际售价的关系吗? 数量关系式中哪些是已知的量,哪些是未知的`量? 应该选择什么方法解答。
请个人在练习纸上完整的列方程解答。
2.学生书写完整的解答过程。指名板演。
3.全班交流:说明百分数的计算是怎样处理的?
4.引导检验,沟通联系。
(1)求出的结果是否正确?你会检验吗?
同桌之间互相说说、
(2)全班交流,明确
①可以把结果代入原方程检验。
②也可以把结果代入原题目检验。
(3)选择一种方法检验,并完成答语。
(4)集体校对。
5.回顾反思,提升认识。
回顾解题的过程,你有什么心得体会?
①这道题我们学习了什么新的知识?解决问题的关键是什么?
②我们是用什么方法解决的?解决时要注意些什么?
小结:折扣问题是实际售价相当于原价的百分之几,它实际上是百分数的实际问题。解题关键是先找准单位 “1”,用单位 “1”的量×百分率=分率对应的量。在折扣问题中就是原价×折扣=实际售价。(板书出数量关系)然后分析已知的量和未知的量,确定对应的解题方法。
(二)过渡:带着我们的收获,你能帮小洪算算《成语故事》原价又是多少元呢?
学生独立解答,指名一人板演。
交流:《成语故事》的实际售价与原价有什么关系?为什么选择用方程解答?
指明:解决这类问题,可以先确定数量关系式,分析哪些量已知,哪些量未知。当单位“1”未知时,一般列方程解答,如果单位“1”已知,则直接列式计算。
四、灵活运用,巩固提升
1.数学书100页第8题
2.数学书100页第9题
五、课堂小结。
今天这节课,我们主要学习了什么知识?谈谈你的收获?
小结:“打折”这一现象在生活中太普遍了,因此学习这一知识对于我们非常有必要。大家回去了解一下,你的生活当中还有哪些和打折有关的信息,收集起来,我们下节课交流。
板书设计:
折扣问题
原价 × 80%=实际售价
?
√
√ 12元
解:设《趣味数学》的原价是x元。
X×80%=12 X=12÷0.8
X=15
检验:把X=15代入原方程, 左边=15×80%=15×0.8=12,
左边=右边, 所以是原方程的解。 答:《趣味数学》的原价是15元。
《折扣》教学设计 篇14
教学目标:
1.理解“打折”的含义,会解答有关“打折”的问题。
2.体验百分数在现实生活中的广泛应用,获得用数学解决问题的成功体验,丰富学生的生活体验。
教学重点:
在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的.几分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:
能应用“折扣”这个知识解决生活中的相关问题,培养学生与日常生活的密切联系,体会到数学的应用价值。
教法:
启发引导法
学法:
自主探究法、合作交流法
教具:
课件。
教学过程:
一、定向导学(5分)
(一)导入:
1、同学们春节刚刚过去,三八妇女节马上又要到了,一些商家为了招揽顾客,经常采用一些促销手段。(请看大屏幕)你知道他们都采用了哪些促销手段?
2、同学们提到了打折,打折是商家常用的一种促销手段,也是一种商业用语,那么什么是打折?打折后商品的售价比原价便宜了还是贵了呢?同样的商品,打一折便宜还是打九折便宜呢?今天这节课,我们就来研究和打折有关的数学知识。
师板书:打折
(二)出示学习目标
1、理解“打折“的含义。
2、能用“折扣”知识解决生活中的实际问题。
二、自主学习(8分)
1、自学内容:书上第8页内容
2、自学时间:8分
3、自学方法:先独立学习,然后完成下面的问题:
(1)什么叫“打折”?几折表示什么?三折、六折、五五折、八八折、一折、九五折各表示什么?
(2)例1中,打八五折出售是什么意思?怎样求“买这辆车用多少钱?”
(3)怎样求“比原价便宜多少钱?”
(4)尝试独立解答例1中的2个小题
三、合作交流(10分)
先小组交流,再派代表上台交流
1、现价=原价×折扣
便宜的钱数=原价×(1-折扣)
2、完成书上第8页做一做。
四、质疑探究(2分)
通过这节课的学习,你还有什么疑问,请提出来。
五、小结检测(15分)
(一)小结:同学们通过这节课的学习,你有什么收获?
你们今天的表现都很出色,其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个生活的有心人。
(二)检测:
填空。
(1)五折就是十分之( ),写成百分数就是( )%。
(2)某商品打七折销售,就表示现价是原价的( )%, 现价比原价降低了( )%。
(3)某商品售价降低到原价的83%销售,就是打( )折。
判断。
a.商品打折扣都是以商品原价格为单位“1”的。( )
b.一件上衣现在打八折销售,就是比原价降低80%。(
c.一种游戏卡先提价15%,后来又按八五折出售,现价与原价相等。( )
3、完成书上第13页1、2、3题。
4(选做题)小林在商店买了一个书包,打了八五折花了68元。如果打七五折,需要多少钱?
板书设计:
折 扣
例1:180×85%=153(元)
160-160×90%=16(元)
160×(1-90%)=16(元)
方法:原价×折扣=现价
便宜的钱数=原价×(1-折扣)