知远网整理的找次品教学设计(精选15篇),希望能帮助到大家,请阅读参考。
找次品教学设计 篇1
一、教学内容
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
二、教学教材
“找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的`有效性,感受到数学的魅力。
仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的最优策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是最优方案”教材没有涉及,学生的疑惑是否会更多呢?
基于上述考虑,我把教学目标定位在:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、通过观察多个待测物品时,让学生体会到最优化策论的成因。
三、教学法
在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。
四、教学设计
(一)课前游戏。
课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。
(二)情景导入,激发兴趣。
(设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)
(三)自主探索用天平找次品的基本方法。(安排了3个层次)
首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)
紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔)
最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。
(四)尝试解决实际问题,寻找最优方法。
首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现最佳方法。教师引领学生如果是3的倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对最佳策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。
(五)留与悬念,课余激发探索兴趣。
这里主要探索非3倍数的最佳策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是最优的方法
(六)学习反思:
对全课进行输理,回顾找次品的方法和最佳策略。
五、教学体会
教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于最佳策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!
找次品教学设计 篇2
教学内容:人教版小学数学五年级下册“数学广角”
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点和难点
教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备
学生4人一组;多媒体课件;立体图形。
教学流程
一、创设情境、导入新课。
在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)1、师:请找出不同类的一项
2、师:为什么我们找不到不同类的项?对因为这个物品的形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?
(用手掂一掂、用称称)
3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)
4、师:好今天老师就跟大家一起学习利用天平找次品的方法。
板书:找次品
二、初步感知、寻找方法。
师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?
【学情预设:学生根据自己的实践情况,会出现两种方案:①是把零件一个一个的称,需要称2次;②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的探究做好铺垫。】
物品个数怎么分称完第一次确定几个正品称几次一定找到次品
53(2、2、1)32
55(1、1、1、1、1)22
二、初步感知、寻找方法。
1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。
2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)
【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】
三、自主探究、方法多样。
1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?
我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?
3(1、1、1)一次,3(1、2)行吗?
2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)
3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。
物品个数怎么分称第一次确定几个正品称几次一定找到次品
99(1、1、1、1、1、1、1、1、1)24
94(2、2、2、2、1)43
93(4、4、1)53
93(3、3、3)62
4、师:请观察这几种方法,你认为那一种方法最好?
5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?
【学情预设:学生可能提出:⑴因为方法4第一次就排除6个正品,它排除的个数最多。⑵把物品平均分成3份。】
6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的物品平均分成3份是最好的。
7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。
我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?
27(9、9、9)9(3、3、3)3(1、1、1)
8、81个球能至少秤几次能保证找出次品球?
【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】
四、拓展提高,优化方案。
1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)
2、师:请把你设计的.方案写在表格中。
(独立完成,口头汇报设计方案。)
生反馈设计方案。
【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】
3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?
物品个数怎么分称第一次确定几个正品称几次一定找到次品
88(4、4、0)43
88(3、3、2)62
4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。
【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】
五、巩固发展:
用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)
找次品教学设计 篇3
教学内容:
人教版数学五年级下册第134-135页的内容。
教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:
观察归纳“找次品”这类问题的最优策略。
教学过程:
一、谈话引入昨天晚上老师买来三瓶糖,谁知有一瓶给我儿子偷吃了两颗。像这样的商品比标准的`商品轻了些,我们就把这商品叫“次品”,这节课我们就作为小小质检员,一起想办法找出这些次品,好不好?(板书课题:找次品)
二、初步探究(教学例1)
1、自主探索。
(1)刚才老师手上的三瓶糖,其中有一瓶是次品,有什么办法帮忙将它找出来吗?
生:用天平称来称。
师:对,我们可以用天平称来帮忙找出次品。
师:用天平称来称,至少要称多少次保证可以找出次品?
(2)请同学上台演示操作过程。
根据学生回答板书:3(1,1,1)1次
小结:从三瓶里找出一瓶次品,至少要称多少次?(1次)
2、设置悬念,激发欲望。
如果不是三瓶,而是2187瓶,至少要称多少次才能保证找出来呢?
(1)请同学们猜一猜,大胆说出猜想结果。
(2)小结:看来大家的答案并不统一,接下来我们要好好研究这个问题,但是2187瓶数量太大了,我们先从简单的数量研究开始。先研究5瓶吧。
3、组织探究
出示例1,老师又拿来了两盒口香糖,一共是5瓶,你还能用天平称将那盒次品找出来吗?至少要称多少次?
1、小组讨论:
①你把待测物品分成几份?每份是多少?
②假如天平平衡,次品在哪里?
③假如天平不平衡,次品又在哪里?
④至少称几次就一定能找出次品来?
小组里互相讨论,小声说一说。
2、学生一边演示,一边讲解操作过程。
师据生回答板书:5(2,2,1)2次
5(1,1,1,1,1)2次
师:为什么不把5瓶分成2份,一份是2瓶,一份是3瓶呢?
小结:用天平找次品时,操作过程,天平两边放的数量要相等,否则称了也是白称。
三、拓展提高,优化方案(教学例2)
谈话:5瓶研究过了,但是离我们的2187瓶还相差很远,接下来我们研究9瓶怎么样?
1、明确题目要求。
课件出示例2,有9口香糖,其中有一个是次品(次品轻一些),用天平称,至少称几次就一定能找出次品来?
让生自己明确问题,并找出重点、关键的词语,并指出重点词语:次品轻、至少、一定保证。
2、组织讨论。
①你把待测物品分成几份?每份是多少?
②假如天平平衡,次品在哪里?
③假如天平不平衡,次品又在哪里?
然后让生说说方法,师据生回答完成表格:
口香糖个数
分成的份数
保证能找出次品的次数
9
9(1,1,1,1,1,1,1,1,1)
4次
9
9(2,2,2,2,1)2(1,1)
3次
9
9(4,4,1)(2,2)(1,1)
3次
9
3(3,3,3)3(1,1,1)
2次
3、观察分析,寻找规律。
师:“为什么有些同学的次数是4次,有同学是2次,他的方法高明之处是什么?”
师:“请同学们观察表格,你发现了什么”
师“那这种方法我们分成几份?是怎么分的?”
然后再让学生小组讨论:
1、找次品的最好方法是怎样?
2、把待测物品分成几份?
据生回答出示:最好方是把待测物品平均分成三份。(板书)
4、验证刚得到的策略:
如果零件是12个,你认为怎样分最好?
如果不是平均分,又是多少次呢?
五、回顾课前的设疑:
师:从2187瓶里找出次品,真要2186次吗?
生:不用。
师:要多少次呢?
生:7次。
师:原来7次就保证找到了次品。
六、小结
师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?
找次品教学设计 篇4
教学内容:人教版小学数学五年级下册“数学广角”
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点和难点
教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备
学生4人一组;多媒体课件;立体图形。
教学流程
一、创设情境、导入新课。
在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)1、师:请找出不同类的一项
2、师:为什么我们找不到不同类的项?对因为这个物品的形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?
(用手掂一掂、用称称)
3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)
4、师:好今天老师就跟大家一起学习利用天平找次品的方法。
板书:找次品
二、初步感知、寻找方法。
师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?
【学情预设:学生根据自己的实践情况,会出现两种方案:①是把零件一个一个的称,需要称2次;②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的探究做好铺垫。】
物品个数怎么分称完第一次确定几个正品称几次一定找到次品
53(2、2、1)32
55(1、1、1、1、1)22
二、初步感知、寻找方法。
1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。
2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)
【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】
三、自主探究、方法多样。
1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?
我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?
3(1、1、1)一次,3(1、2)行吗?
2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)
3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。
物品个数怎么分称第一次确定几个正品称几次一定找到次品
99(1、1、1、1、1、1、1、1、1)24
94(2、2、2、2、1)43
93(4、4、1)53
93(3、3、3)62
4、师:请观察这几种方法,你认为那一种方法最好?
5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?
【学情预设:学生可能提出:⑴因为方法4第一次就排除6个正品,它排除的个数最多。⑵把物品平均分成3份。】
6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的'物品平均分成3份是最好的。
7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。
我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?
27(9、9、9)9(3、3、3)3(1、1、1)
8、81个球能至少秤几次能保证找出次品球?
【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】
四、拓展提高,优化方案。
1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)
2、师:请把你设计的方案写在表格中。
(独立完成,口头汇报设计方案。)
生反馈设计方案。
【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】
3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?
物品个数怎么分称第一次确定几个正品称几次一定找到次品
88(4、4、0)43
88(3、3、2)62
4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。
【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】
五、巩固发展:
用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)
找次品教学设计 篇5
【课前思考】
“找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。
“找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。
本课的教学内容比较多,学习这些内容需要比较高的思维水平。如何让学生正在地参与课堂的探究活动、解决问题并在此过程中感悟发现规律呢?我做了如下的教学设计进行实践探索。
【教学目标】
1、通过观察与操作,猜想验证和推理,体验找次品方法的多样化和最优化,发现和理解“把物品总数平均分成三份来称,保证找出次品的'次数会最少”。
2、通过找次品的探究活动,渗透“化归”和“优化”的数学思想,培养合情推理能力,提高表达交流的能力,养成全面思考的习惯。
3、经历由直观演示操作逐步到逻辑推理抽象概括,体会数学的简洁美和神奇魅力,激发学习数学的兴趣。
【教学重点】
探索出找次品方法的多样化和最优化方法,理解和体会最优方案的特点。
【教学难点】
1、能够用简明的方法记录找次品的思维过程。
2、在观察、比较中初步体会找次品最优方案的特点。
【课前准备】
纸质天平、棋子、操作记录单、课件
【课前游戏】
摸奖游戏
1、课件:从8个笑脸中摸一个奖品(从8个中摸中一个真不容易)
师:要使中奖容易些,你会增加笑脸的个数,还是减少笑脸的个数?
2、从4个笑脸中摸奖(体会更容易中奖)。
3、从2个笑脸中摸奖(体会“保证”意义)。
师:要保证中奖,我们得摸几次?
【设计意图:数学教学要考虑学生的认知发展水平和已有的经验。逐步逼近缩小范围的数学思想是有生活原型的,通过这个游戏,激活了学生生活经验,同时调动了学生上课的积极性。】
【教学过程】
一、情境导入
师:你知道3月15日是什么日子吗?(消费者权益保护日)
师:在315晚会上老师看到这样一则新闻:(课件出示)
一些不法商人往黄金里加金属铱冒充千足金来销售,加铱后的黄金用肉眼无法辨别,但重量会增加。
(你了解了哪些信息?)
【设计意图:用生活情境引出学习课题,感受数学源自生活。】
过渡:像这种不合格的产品,我们称之为次品,数学中有一类经典的智力问题叫“找次品”,这节课我们就一起来学习找次品。(板书课题)
二、新知探究
1、在2个物品中找次品
(课件出示题目)现在有2个外形和颜色一样的金元宝,其中有一个是加了金属铱的次品(次品重一些),现在请你当黄金检测师,你有什么办法找出这个次品?
(预设:用天平称,天平左右各放1个,往下沉的那个就是次品。)
师:(课件出示天平)能根据重量的轻重,用天平来找次品。在2个金元宝中找一个次品,只要称1次就能找出次品。
【设计意图:明确用天平来找可在重量方面检测出次品的问题。】
2、在3个物品中找次品
(课件出示题目)现在有3个这样的金元宝,有一个是次品(次品重一些),你也会用天平找出这个次品吗?需要称几次?
预设1:需要2次,我在天平两边各放1个,如果平衡,拿下一个再换另外一个,就会下沉,下沉的那个就是次品。
预设2:需要1次,我在天平两边各放1个,如果不平衡,下沉的那个就是次品;如果平衡,那没称的那个就是次品。
(1)你会更欣赏谁的方法?为什么?
【设计意图:感受检测出次品需称的次数可以尽可能少。】
(2)统一记录方法
为了便于交流和记录,我们可以这样记(结合操作步骤):
3个物品,可以用一根横线来表示天平,(板书:)
可以先在天平两边任意各放1个,(板书:1,1),剩下1个在天平外面。(补充板书:3(1,l,1))
这时天平可能会平衡,也可能不平衡(板书:平不平),如果是平衡,天平外那个就是次品,需称一次就找出了次品;如果不平衡,次品就是下沉的那一个,也只需要称一次就找出了次品。3(1,1,1)<平1次1次不平1次。
【设计意图:能够用简明的方法记录找次品的思维过程。】
3、在5个物品找次品
(1)想一想:5个金元宝中找一个次品(次品重一些),需要称几次才能找出这个次品?你会怎么称?
(2)小组合作,把称的方法记下来。
(3)小组汇报称法
预设1:在天平的左盘放1个,其余4个逐个放在右盘,直到找到次品为止。
预设2:在天平的左右两边各放2个,如果平衡剩下那个就是次品,1次找出了次品;如果不平衡,次品就在较重的那2个里面,再把较重的那2个放在天平的左右两边再称一次,这样2次就找出次品了。
记录:5(2,2,1)<平1次
不平2(1,1)2次
预设3:5(1,1,3)<平3(1,1,1)2次
不平1次
直观演示:课件演示称法
(4)理解“保证”“至少”的意义:我们找出了多种称法。要保证找出这个次品,至少要称几次?
天平有平衡和不平衡两种情况,我们不能保证一定衡,所以要保证找出我们就要考虑不平衡的情况,也就要做最坏的打算。并且在能保证找出次品的情况下,称的次数可以尽可能的少。
(板书擦出不能保证,也不是最少次数的情况,写上“保证找出,至少2次”)
【设计意图:感知称法的多样化,理解“保证”“至少”的意义。】
4、在8个物品中找次品
(1)想一想:8个中有1个次品(次品重一些),有几种称法?至少要称几次才能保证找到次品?
(2)猜一猜:
①猜一猜,会有哪些称法?
(4,4)(2,2,2,2)(1,1,6)(2,2,4)(3,3,2)
②猜一猜:哪种称法保证找出次品的次数会最少。
(3)同桌合作合作验证猜想。
(4)汇报交流
(5)优化选择:多种称法,如果让你来选择,你会选择哪种称法?为什么?
(3,3,2)(保证找出次品的次数最少)
(6)反思:是不是分的组越多就越好?或者越少就越好?
【设计意图:优化称法。】
5、在9、10个物品中找次品
学生自主选择从“9个中找一个次品(次品重一些)”或“10个中找一个次品(次品重一些)”进行再次实践。
预设:学生能较快找到具体的答案9个(3,3,3)称2次;10个(3,3,4)或(2,2,6)(4,4,2)均为称3次。
【设计意图:较为开放的环节,学生按照自己的认识和理解自主选择方法,从而更好地引导学生发现规律】
6、发现规律,发现数理
(1)观察思考:结合几次称量的情况进行对比,这些不同的情况之中有什么共同之处吗?
预设:都是分成三组,每组中的数据都很接近,而且都有两个以上的数据是相同的。
(2)继续观察:称8个、9个的最佳办法都是唯一的,而称10个出现了三种分三组的办法,再观察,这三种方法哪一种和称8个、9个的办法更相似?
(3)发现规律:你认为以后不管遇到怎样的数,怎样称就能很快找到答案?
预设:只要尽可能平均分三组就行了。
为什么每次不多不少总是分三组好?
【设计意图:发现规律,总结方法,形成解决问题的策略。】
三、规律应用
有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
【设计意图:巩固理解,体验成功。】
四、总结
(1)都说数学都思维的体操,相信这节课同学都有收获说说你都收获了什么?
(2)你还有什么疑问吗?(可看书质疑)
找次品教学设计 篇6
一、教学目标
(一)知识与技能
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
二、教学重难点
教学重点:探究解决“找次品”问题的最优策略。
教学难点:用图示或文字表示找次品的过程。
三、教学准备
天平,多媒体课件。
四、教学过程
(一)创设情境,引入原理
1.情境导入,揭示课题。
(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?
(2)理解题意。
学生可能会说:倒出来数一数,或掂一掂、称一称……
教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。
如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。
【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。
2.合情推理,理解原理。
(1)了解天平的使用方法。
教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?
学生回答:天平的左边高,右边低。因为数学书比粉笔重。
教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?
学生回答:天平会平衡,因为左右两边一样重!
教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。
【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。
(2)如何利用天平找次品?
如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?
学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。
教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。
【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。
3.交流图示,掌握方法。
你能想办法把用天平找次品的过程,清楚地表示出来吗?
(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。
(2)为了方便,还可以给每瓶钙片加上编号。
学生完成后,将作品通过实物投影仪进行展示交流。
【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。
(二)探索规律,优化策略
1.理解题意。
(1)课件出示例2。
8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
(2)大胆猜测。
教师:至少称几次能保证找出次品?
学生:如果运气好一次就能找到次品,所以至少一次。
学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。
学生:每次称2个零件,4次保证找出次品。
教师:“至少称几次能保证找出次品”是什么意思?
学生:既要保证找出次品,又要次数最少。
【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。
2.探索规律。
(1)分组探究,并将探索的情况填入下表。
(2)全班交流。
①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。
②每次每边称1个的小组为什么需要的次数比较多?
学生:每次称的零件数量太少。
③每次每边称4个的小组为什么反而不如每次每边称3个的.小组完成得快?
学生:每次每边称3个,称一次就可以将次品确定在更小的范围内。
【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的那一部分做出判断。
(3)概括最优化策略。
①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?
学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。
②你发现什么规律?
学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。
③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?
先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。
【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。
(三)应用知识,解决问题
1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。
2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?
教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。
3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。
【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。
(四)课堂小结,拓展延伸
1.课堂小结。
(1)今天研究了什么问题?
(2)找次品的最优化策略是什么?
2.知识拓展。
今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。
【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。
找次品教学设计 篇7
教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程.
2.以“找次品”为载体,让学生通过学习观察、猜想、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:用数学方法来解决实际生活中的简单问题。
教具准备:多媒体课件、5盒口香糖
学具准备:9个正方体
教学过程:
一、情境导入
电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品
二、初步认识“找次品”的基本原理
1、自主探索。
A出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
电脑出示:同桌说说:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?
B学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1)1次
2、老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?
A出示:小组讨论:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?
让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。
B学生在投影上演示,边演示边讲。
师据生回答板:5(2,2,1)2次
5(1,1,1,1,1)2次
三、从多种方法中,寻找“找次品”的最佳方案“9”
“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的'次品是比是重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、
一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数分成的份数保证能找出次品的次数
93(4,4,1)平
不平4(2,2)不平2(1,1)3次
93(3,3,3)平3(1,1,1)
不平3(1,1,1)2次
95(2,2,2,2,1)平(2,2)平不平2(1,1)
不平2(1,1)3次
99(1,1,1,1,1,1,1,1,1)4次
3、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)
找次品教学设计 篇8
教学内容:人教版小学数学五年级下册“数学广角”
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点和难点
教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备
学生4人一组;多媒体课件;立体图形。
教学流程
一、创设情境、导入新课。
在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)1、师:请找出不同类的一项
2、师:为什么我们找不到不同类的项?对因为这个物品的形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?
(用手掂一掂、用称称)
3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)
4、师:好今天老师就跟大家一起学习利用天平找次品的方法。
板书:找次品
二、初步感知、寻找方法。
师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?
【学情预设:学生根据自己的实践情况,会出现两种方案:①是把零件一个一个的称,需要称2次;②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的探究做好铺垫。】
物品个数怎么分称完第一次确定几个正品称几次一定找到次品
53(2、2、1)32
55(1、1、1、1、1)22
二、初步感知、寻找方法。
1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。
2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)
【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】
三、自主探究、方法多样。
1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?
我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?
3(1、1、1)一次,3(1、2)行吗?
2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)
3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。
物品个数怎么分称第一次确定几个正品称几次一定找到次品
99(1、1、1、1、1、1、1、1、1)24
94(2、2、2、2、1)43
93(4、4、1)53
93(3、3、3)62
4、师:请观察这几种方法,你认为那一种方法最好?
5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?
【学情预设:学生可能提出:⑴因为方法4第一次就排除6个正品,它排除的个数最多。⑵把物品平均分成3份。】
6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的物品平均分成3份是最好的。
7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。
我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?
27(9、9、9)9(3、3、3)3(1、1、1)
8、81个球能至少秤几次能保证找出次品球?
【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】
四、拓展提高,优化方案。
1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)
2、师:请把你设计的`方案写在表格中。
(独立完成,口头汇报设计方案。)
生反馈设计方案。
【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】
3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?
物品个数怎么分称第一次确定几个正品称几次一定找到次品
88(4、4、0)43
88(3、3、2)62
4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。
【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】
五、巩固发展:
用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)
找次品教学设计 篇9
【课前思考】
“找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。
“找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。
本课的教学内容比较多,学习这些内容需要比较高的思维水平。如何让学生正在地参与课堂的探究活动、解决问题并在此过程中感悟发现规律呢?我做了如下的教学设计进行实践探索。
【教学目标】
1.通过观察与操作,猜想验证和推理,体验找次品方法的多样化和最优化,发现和理解“把物品总数平均分成三份来称,保证找出次品的次数会最少”。
2.通过找次品的探究活动,渗透“化归”和“优化”的数学思想,培养合情推理能力,提高表达交流的能力,养成全面思考的习惯。
3.经历由直观演示操作逐步到逻辑推理抽象概括,体会数学的简洁美和神奇魅力,激发学习数学的兴趣。
【教学重点】
探索出找次品方法的多样化和最优化方法,理解和体会最优方案的特点。
【教学难点】
1.能够用简明的方法记录找次品的思维过程。
2.在观察、比较中初步体会找次品最优方案的特点。
【课前准备】
纸质天平、棋子、操作记录单、课件
【课前游戏】
摸奖游戏
1.课件:从8个笑脸中摸一个奖品(从8个中摸中一个真不容易)
师:要使中奖容易些,你会增加笑脸的个数,还是减少笑脸的个数?
2.从4个笑脸中摸奖(体会更容易中奖)。
3.从2个笑脸中摸奖(体会“保证”意义)。
师:要保证中奖,我们得摸几次?
【设计意图:数学教学要考虑学生的.认知发展水平和已有的经验。逐步逼近缩小范围的数学思想是有生活原型的,通过这个游戏,激活了学生生活经验,同时调动了学生上课的积极性。】
【教学过程】
一、情境导入
师:你知道3月15日是什么日子吗?(消费者权益保护日)
师:在315晚会上老师看到这样一则新闻:(课件出示)
一些不法商人往黄金里加金属铱冒充千足金来销售,加铱后的黄金用肉眼无法辨别,但重量会增加。
(你了解了哪些信息?)
【设计意图:用生活情境引出学习课题,感受数学源自生活。】
过渡:像这种不合格的产品,我们称之为次品,数学中有一类经典的智力问题叫“找次品”,这节课我们就一起来学习找次品。(板书课题)
二、新知探究
1.在2个物品中找次品
(课件出示题目)现在有2个外形和颜色一样的金元宝,其中有一个是加了金属铱的次品(次品重一些),现在请你当黄金检测师,你有什么办法找出这个次品?
(预设:用天平称,天平左右各放1个,往下沉的那个就是次品。)
师:(课件出示天平)能根据重量的轻重,用天平来找次品。在2个金元宝中找一个次品,只要称1次就能找出次品。
【设计意图:明确用天平来找可在重量方面检测出次品的问题。】
2.在3个物品中找次品
(课件出示题目)现在有3个这样的金元宝,有一个是次品(次品重一些),你也会用天平找出这个次品吗?需要称几次?
预设1:需要2次,我在天平两边各放1个,如果平衡,拿下一个再换另外一个,就会下沉,下沉的那个就是次品。
预设2:需要1次,我在天平两边各放1个,如果不平衡,下沉的那个就是次品;如果平衡,那没称的那个就是次品。
(1)你会更欣赏谁的方法?为什么?
【设计意图:感受检测出次品需称的次数可以尽可能少。】
(2)统一记录方法
为了便于交流和记录,我们可以这样记(结合操作步骤):
?3个物品,可以用一根横线来表示天平,(板书:)
可以先在天平两边任意各放1个,(板书:1,1),
剩下1个在天平外面。(补充板书:3(1,l,1))
?这时天平可能会平衡,也可能不平衡(板书:平不平),如果是平衡,天平外那个就是次品,需称一次就找出了次品;如果不平衡,次品就是下沉的那一个,也只需要称一次就找出了次品。3(1,1,1)
不平1次
【设计意图:能够用简明的方法记录找次品的思维过程。】
3.在5个物品找次品
(1)想一想:5个金元宝中找一个次品(次品重一些),需要称几次才能找出这个次品?你会怎么称?
(2)小组合作,把称的方法记下来。
(3)小组汇报称法
预设1:在天平的左盘放1个,其余4个逐个放在右盘,直到找到次品为止。
预设2:在天平的左右两边各放2个,如果平衡剩下那个就是次品,1次找出了次品;如果不平衡,次品就在较重的那2个里面,再把较重的那2个放在天平的左右两边再称一次,这样2次就找出次品了。
记录:5(2,2,1)
不平2(1,1)2次
预设3:5(1,1,3)
不平1次
直观演示:课件演示称法
(4)理解“保证”“至少”的意义:我们找出了多种称法。要保证找出这个次品,至少要称几次?
天平有平衡和不平衡两种情况,我们不能保证一定衡,所以要保证找出我们就要考虑不平衡的情况,也就要做最坏的打算。并且在能保证找出次品的情况下,称的次数可以尽可能的少。
(板书擦出不能保证,也不是最少次数的情况,写上“保证找出,至少2次”)
【设计意图:感知称法的多样化,理解“保证”“至少”的意义。】
4.在8个物品中找次品
(1)想一想:8个中有1个次品(次品重一些),有几种称法?至少要称几次才能保证找到次品?(2)猜一猜:
①猜一猜,会有哪些称法?
(4,4)(2,2,2,2)(1,1,6)(2,2,4)(3,3,2)
②猜一猜:哪种称法保证找出次品的次数会最少。
(3)同桌合作合作验证猜想。
(4)汇报交流
(5)优化选择:多种称法,如果让你来选择,你会选择哪种称法?为什么?
(3,3,2)(保证找出次品的次数最少)
(6)反思:是不是分的组越多就越好?或者越少就越好?
【设计意图:优化称法。】
5.在9、10个物品中找次品
学生自主选择从“9个中找一个次品(次品重一些)”或“10个中找一个次品(次品重一些)”进行再次实践。
预设:学生能较快找到具体的答案9个(3,3,3)称2次;10个(3,3,4)或(2,2,6)(4,4,2)均为称3次。
【设计意图:较为开放的环节,学生按照自己的认识和理解自主选择方法,从而更好地引导学生发现规律】
6.发现规律,发现数理
(1)观察思考:结合几次称量的情况进行对比,这些不同的情况之中有什么共同之处吗?
预设:都是分成三组,每组中的数据都很接近,而且都有两个以上的数据是相同的。
(2)继续观察:称8个、9个的最佳办法都是唯一的,而称10个出现了三种分三组的办法,再观察,这三种方法哪一种和称8个、9个的办法更相似?
(3)发现规律:你认为以后不管遇到怎样的数,怎样称就能很快找到答案?
预设:只要尽可能平均分三组就行了。
为什么每次不多不少总是分三组好?
【设计意图:发现规律,总结方法,形成解决问题的策略。】
三、规律应用
有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
【设计意图:巩固理解,体验成功。】
四、总结
(1)都说数学都思维的体操,相信这节课同学都有收获说说你都收获了什么?
(2)你还有什么疑问吗?(可看书质疑)
板书设计:
找次品
3(1,1,1)
不平1次8(1,1,6)8(2,2,4)
8(3,3,2)2次
5(2,2,1)
不平2(1,1)2次9(3,3,3)2次
5(1,1,3)五年级下找次品教学心得体会共2
在一批产品中,有16个零件,其中有一个是次品,用一架天平来检查出那个次品,最少用3次可以称出,为什么?
满意回答
找次品的问题是有规律的。
一般都是分成aab三份。b可以等于a。b也可可能等于a+1或者a到1,根据总数决定。
把两个a放在天平两端,如果天平平衡,次品就在b里头,如果天平不平衡,则根据次品和正品的差别找出次品在哪一份。找到之后继续往下分三份。
这样一次就能排除掉三分之二,是最快的。1到3个,一次就可以搞定。4到9个,需要两次。10到27个。需要3次。28到814次82到243
5次
244到729
6次
16个的话第一次分成5个5个6个
可以找出是在某5个还是在某6个再找两次就保证找出了
找次品教学设计 篇10
教学目标
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2.以“找次品”为载体,让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点
能够借助纸笔对“找次品”问题进行分析。
教学难点
解决问题策略的.多样性及运用优化的方法解决问题的有效性。
教学过程
(一)情境导入、激发兴趣。
1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的观察力和分析能力怎么样?
出示3组图片,前两组图中有一个次品,找出来,说根据。
2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)
(二)初步认识“找次品”基本原理。
1.出示木糖醇,提出问题:这里有3 瓶木糖醇,其中有一瓶少了3粒,你能用什么办法把它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
2.让生根据讨论题同桌互相说说方法。
3.学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1) 1次
(三)初步认识“找次品”的基本解决方法。
1.老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒少了两粒的口香糖找出来吗?
小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
2.老师在投影上演示,边演示边讲。
(四)从多种方法中,寻找“找次品”的最佳方案。
“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比较重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、让学生分析讨论。
(1)让学生以四人为一小组,讨论,然后把结果填在表中。 零件个数 分成的份数 保证能找出次品的次数
(2)汇报交流。
(五)拓展应用
1.有7 瓶药片,其中1 瓶中少2 片,你能设法把它找出来吗?
2.有15 盒巧克力派,其中1 盒中少3 块,设法把它找出来。
(六)总结
这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。
(七)作业布置
找次品教学设计 篇11
教学目标
知识目标
能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
能力目标
让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
重点能够借助纸笔对“找次品”问题进行分析。绿色圃中小学教育网
难点解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学过程
目标导学、复习激趣、目标导学、自主合作、汇报交流、变式训练
创境激疑
(一)情境导入、激发兴趣。
1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的观察力和分析能力怎么样?
出示3组图片,前两组图中有一个次品,找出来,说根据。
2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)
合作探究
(二)初步认识“找次品”基本原理。
1.出示钙片提出问题:这里有3瓶钙片,其中有一瓶少了3粒,你能用什么办法把它找出来吗?师:对,我们可以用天平来帮忙找出次品。
2.让生根据讨论题同桌互相说说方法。3.学生汇报方案并上台边讲边在天平演示。师据生回答板:3(1,1,1)1次
(三)初步认识“找次品”的基本解决方法。
1.老师又拿来了两瓶钙片,和前面的三盒混在一起,你还能用天平将那盒少了两粒的钙片找出来吗?小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
2.老师在投影上演示,边演示边讲。
(四)从多种方法中,寻找“找次品”的最佳方案。
“刚才大家都很聪明,都能在几盒钙片里找出轻的那盒次品来,那如果有的'次品是比较重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有8个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、让学生分析讨论。
(1)让学生以四人为一小组,讨论,然后把结果填在表中。零件个数分成的份数保证能找出次品的次数
(2)汇报交流。
总结这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。
作业布置第113页练习二十七,第1题、第2题、第4题。
第114页练习二十七,第5题、第6题。
板书设计数学广角
找次品最好方法:
一是把待测物品分成三份;
二是要分得尽量平均。
找次品教学设计 篇12
一、教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
二、教学重难点:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.观察归纳“找次品”这类问题的最优策略。
三、教学准备:
课件、圆片(三角形)
四、教学过程:
(一)游戏导入,引出新课
师:上课之前,老师想和大家做一个游戏,考考大家的眼力,你们愿
意吗?
生:愿意。
师:(课件出示图片)请找出下面两幅图的不同。
学生汇报
生1:第一幅图C处不同。
生2:第二幅图C处不同。
师:同学们可真厉害!这么快就找到了两幅图中的不同之处。现在有
两瓶口香糖(课件出示),可是有一瓶被一名调皮的学生吃了两颗,这两瓶口香糖的外观都一样,你能帮帮老师怎样找出那瓶少了两颗的口香糖吗?
学生讨论,汇报
生:可以用天平称一称,少了两颗口香糖的那瓶应该略轻一些,把这
两瓶口香糖分别放在天平的左右两边,天平向上的一面就是少了两颗口香糖的那瓶。
师:你说的很好!在生活中常常有这样的情况,在一些看似完全相同
的物品中混着一个质量不同(轻一些或是重一些)的物品,需要用天平把它找出来,像这一类问题我们把它叫做找次品。这节课我们就来研究《找次品》(板书课题)
(二)探究新知
1.从三瓶中找到次品
师:刚才同学们很快的从两瓶中找到了次品,如果老师这儿有三盒口
盒糖,其中有一盒是少了两粒的,你有什么办法帮忙将它找出来吗?
生:用天平找。
师:不错,依然用天平来帮助我们找到次品。提示:(1)你把待测物
品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
生:可以把待测物品分成3份,每份有1个。假如天平平衡,剩下的
就是次品,如果天平不平衡,天平上升的一侧是次品。
根据学生的汇报教师课件演示。
2.从五瓶中找到次品
师:同学们太厉害了。老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?(课件出示)
同桌合作完成,汇报
生1:可以把这5瓶口香糖分成5份,每份是1瓶,分别标上1~5号,
先拿出1号和2号称,如果天平不平衡,轻的一侧就是次品;如果天平平衡,称3号和4号,同样,如果天平不平衡,轻的一侧是次品;如果天平平衡,那么5号是次品。
师:你说的很完整。如果按照你这样称,至少需要称几次?生1:至少需要称2次。
师:还有没有不同的方法?
生2:我们把这5瓶口香糖分成3份,有两份中有两瓶,一份中有一
瓶。现在天平的左边和右边分别放上2瓶口香糖,如果天平平衡,则剩下的那瓶就是次品;如果天平不平衡,看哪一面轻,把轻的这侧的.两瓶口香糖再分别放入天平的两侧,轻的一侧就是次品。至少需要称2次。
3.探究从多种方法中“找次品”的最佳方案。
师:这两个同学的方法都很好,,都能在几盒口香糖里找出轻的那盒
次品来,那如果有的次品是比是重一些的,那你又能不能把它找
出来呢?请同学们一小组为单位探讨,(课件出示例2)有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
根据学生的回答,课件演示
师:在9个物体中,我们要找到次品就有4种方法,如果待测物体更
多,方法也就越多。我们每一次都这么找会很麻烦,有没有什么规律呢?请同学们观察屏幕中的表格,看一看哪种方法我们称的最快?
生:第三种方法最快,只称了两次就找到了次品。
师:这种方法我们是分成了几份?怎么分的?
生:平均分成了3份。
师:是否所有的次品都可以平均分成3份吗?如果不是怎么办?生:不能平均分成3份的时候,要分得尽量平均。
师:很好,就像前面我们从5个产品中找次品一样,可以把它分成三
份,并且要尽量分得平均。
(三)巩固练习
1.如果零件是10个,你认为怎样分最好?学生思考后回答,10(3,3,4)如果零件是11个呢?11(4,4,3)
2.数学书136页第2题。
(四)总结
师:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?(课件出示)“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
找次品教学设计 篇13
教学目标:
1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程.
2.以“找次品”为载体,让学生通过学习观察、猜想、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:用数学方法来解决实际生活中的简单问题。
教具准备:多媒体课件、5盒口香糖
学具准备:9个正方体
教学过程:
一、情境导入
电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品
二、初步认识“找次品”的基本原理
1、自主探索。
A出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
电脑出示:同桌说说:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?
B学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1)1次
2、老师又拿来了两盒口香糖,和前面的三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?
A出示:小组讨论:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?
让生根据讨论题在学习小组讨论交流,把自己的.想法说给小组其他成员听。
B学生在投影上演示,边演示边讲。
师据生回答板:5(2,2,1)2次
5(1,1,1,1,1)2次
三、从多种方法中,寻找“找次品”的最佳方案“9”
“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、
一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数分成的份数保证能找出次品的次数
93(4,4,1)平
不平4(2,2)不平2(1,1)3次
93(3,3,3)平3(1,1,1)
不平3(1,1,1)2次
95(2,2,2,2,1)平(2,2)平不平2(1,1)
不平2(1,1)3次
99(1,1,1,1,1,1,1,1,1)4次
3、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)
找次品教学设计3篇
作为一名为他人授业解惑的教育工作者,通常会被要求编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。如何把教学设计做到重点突出呢?以下是小编为大家整理的找次品教学设计,希望能够帮助到大家。
找次品教学设计 篇14
教学内容:
人教版小学数学五年级下册“数学广角”
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点和难点
教学重点:
让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:
观察归纳“找次品”这类问题的最优策略。
教学准备
学生4人一组;多媒体课件;立体图形。
教学流程
一、创设情境、导入新课。
在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)
1、师:请找出不同类的一项
2、师:为什么我们找不到不同类的项?对因为这个物品的形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?
(用手掂一掂、用称称)
3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)
4、师:好今天老师就跟大家一起学习利用天平找次品的方法。
板书:找次品
二、初步感知、寻找方法。
师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?
【学情预设:学生根据自己的实践情况,会出现两种方案:
①是把零件一个一个的称,需要称2次;
②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的`探究做好铺垫。】
物品个数怎么分称完第一次确定几个正品称几次一定找到次品
53(2、2、1)32
55(1、1、1、1、1)22
二、初步感知、寻找方法。
1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。
2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)
【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】
三、自主探究、方法多样。
1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?
我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?
3(1、1、1)一次,3(1、2)行吗?
2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)
3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。
物品个数怎么分称第一次确定几个正品称几次一定找到次品
99(1、1、1、1、1、1、1、1、1)24
94(2、2、2、2、1)43
93(4、4、1)53
93(3、3、3)62
4、师:请观察这几种方法,你认为那一种方法最好?
5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?
【学情预设:学生可能提出:⑴因为方法4第一次就排除6个正品,它排除的个数最多。⑵把物品平均分成3份。】
6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的物品平均分成3份是最好的。
7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。
我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?
27(9、9、9)9(3、3、3)3(1、1、1)
8、81个球能至少秤几次能保证找出次品球?
【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】
四、拓展提高,优化方案。
1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)
2、师:请把你设计的方案写在表格中。
(独立完成,口头汇报设计方案。)
生反馈设计方案。
【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】
3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?
物品个数怎么分称第一次确定几个正品称几次一定找到次品
88(4、4、0)43
88(3、3、2)62
4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。
【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】
五、巩固发展:
用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)
找次品教学设计 篇15
一、教学目标
(一)知识与技能
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
二、教学重难点
教学重点:探究解决“找次品”问题的最优策略。
教学难点:用图示或文字表示找次品的过程。
三、教学准备
天平,多媒体课件。
四、教学过程
(一)创设情境,引入原理
1.情境导入,揭示课题。
(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?
(2)理解题意。
学生可能会说:倒出来数一数,或掂一掂、称一称……
教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。
如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。
【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。
2.合情推理,理解原理。
(1)了解天平的使用方法。
教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?
学生回答:天平的左边高,右边低。因为数学书比粉笔重。
教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?
学生回答:天平会平衡,因为左右两边一样重!
教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。
【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。
(2)如何利用天平找次品?
如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?
学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。
教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。
【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。
3.交流图示,掌握方法。
你能想办法把用天平找次品的过程,清楚地表示出来吗?
(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。
(2)为了方便,还可以给每瓶钙片加上编号。
学生完成后,将作品通过实物投影仪进行展示交流。
【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。
(二)探索规律,优化策略
1.理解题意。
(1)课件出示例2。
8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
(2)大胆猜测。
教师:至少称几次能保证找出次品?
学生:如果运气好一次就能找到次品,所以至少一次。
学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。
学生:每次称2个零件,4次保证找出次品。
教师:“至少称几次能保证找出次品”是什么意思?
学生:既要保证找出次品,又要次数最少。
【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。
2.探索规律。
(1)分组探究,并将探索的情况填入下表。
(2)全班交流。
①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。
②每次每边称1个的小组为什么需要的次数比较多?
学生:每次称的零件数量太少。
③每次每边称4个的小组为什么反而不如每次每边称3个的小组完成得快?
学生:每次每边称3个,称一次就可以将次品确定在更小的范围内。
【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的'那一部分做出判断。
(3)概括最优化策略。
①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?
学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。
②你发现什么规律?
学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。
③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?
先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。
【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。
(三)应用知识,解决问题
1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。
2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?
教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。
3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。
【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。
(四)课堂小结,拓展延伸
1.课堂小结。
(1)今天研究了什么问题?
(2)找次品的最优化策略是什么?
2.知识拓展。
今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。
【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。