知远网整理的《组合图形的面积》教案(精选12篇),希望能帮助到大家,请阅读参考。
《组合图形的面积》教案 篇1
教材简析:
“组合图形的面积”是五年级上册的内容,是小学阶段平面几何直线型内容的最后章节。学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容的呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点,让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。
学情分析:
学生已经学习了基本图形的计算方法,有了一定的经验基础,尤其是第二单元转化思想的渗透,所有这些知识储备都会使学生学习的难度相对减少。学生在探索组合图形面积的计算方法时,由于思考问题的角度不同,他们在解答问题的过程中会产生不同的思考方法,对于方法的交流、借鉴、反思需要教师的有效组织。五年级学生已经具有了独立思考、与人交流的习惯和能力,思维上也有了一定的深度,但如何让每个学生都积极地参与到探索的活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
教学目标:
1、认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、能利用所学的知识解决生活中组合图形的实际问题,培养学生独立思考与合作交流的习惯。
3、让学生感觉到数学与生活的密切联系,获得成功的学习体验。
4、进一步渗透转化的数学思想。
教学重点:
认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
教学难点:
让学生感觉到数学与生活的密切联系,获得成功的学习体验。
教学过程:
一、复习铺垫,唤醒旧知
1、师:同学们,我们学过的平面图形有什么呢?它们的面积你们会计算吗?
2、计算各种基本图形的面积。
3、师:这些都是我们以前学过的一些基本图形(板书:基本图形)
师:看来这些基本图形的面积是难不倒你们了!
设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。
二、自主探索,合作交流
1、情境引入、估算图形。
师:小华家新买了房子,这是装修效果图,他计划在客厅铺地板,客厅的形状是这样的。这是我们以前学过的图形吗?(它是一个不规则的图形)
师:请你们估一估它的面积大约是多少平方米?(估计值记录下来)
设计意图:在探索策略前,先安排估算的环节能起到培养学生估算意识的作用,同时又能让学生在估算的时候,潜移默化地运用添补和分割的转化思想。
2、独立探索、寻求方法。
师:到底它的面积是多少平方米呢?老师已经为大家准备了一张学习卡,请你们独立思考一下该怎么做,也可以和同学互相讨论,还不明白的话也可以举手请老师帮忙。
(学生活动,教师巡视,了解学生情况,指导帮助个别学生)
师:老师发现大家都很会思考,现在把你的方法说给你小组的同学听一听,看看你们小组有几种不同的方法。
设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。
3、赏析思路、分享方法。
学生可能出现以下几种方法。
(1)分割法。
①分成一个长方形和一个正方形。
师:谁来汇报你的想法?
师:这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线。
师:那你是怎么计算它的面积的?6-3求出的是哪一段?12 21表示什么?(把长方形的面积加上正方形的面积)
师:这位同学用一条辅助线把这个不规则图形分成了一个长方形和一个正方形,其他同学有类似的方法吗?
②分成两个长方形。
③分成两个梯形。
师:其他同学还有不同的方法吗?
(2)添补法。
师:你为什么要补上这一块呢?
师:那你是怎么计算的?刚才这几种方法,最后一步都是用加法,而你这里为什么用减法呢?(把补上的这一块的面积减掉)
(3)割补法。
师:老师在自己学校上课,发现有个孩子是这样画,你们看行得通吗?
师:割下来的这部分能正好拼上吗?
设计意图:帮助学生理解多样化的方法,使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的`快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。
4、明晰方法,渗透思想。
师:刚才我们用了这么多的方法来计算这个不规则图形的面积,如果让你把这些方法分一分,你打算怎么分?(学生分类)
师:第一类方法,用辅助线把不规则图形分割成我们学过的基本图形,在数学上我们称为分割法。(板书:分割法)用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:求和)
师:这类方法叫做添补法(板书),用添补法计算,记得把添上的这部分面积减去。(板书:求差)
师:这种方法,既有分割,又有添补,它就叫——割补法。(板书:割补法)
师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?(不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。板书:转化)
师:像这样由几个基本图形拼成的图形,我们把它叫做组合图形(板书:组合图形)现在你们会计算组合图形的面积了吗?(补充:面积)
师:其实在我们身边就有很多组合图形,一起来看看。(课件展示生活中的组合图形)
师:这是房子的平面图,它可以由哪些图形拼成呢?中队旗?
设计意图:让学生找方法的共同点,水到渠成地由学生揭示出转化思想,进而把转化思想根植于学生心中;欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的存在,加强数学与生活的密切联系。
三、应用练习,提升认识
出示田地平面图。
师:如果要把它转化成尽量少的基本图形,你能想出几种方法?
师:同学们想出的方法可真多,现在请你们选择自己的喜欢的方法,计算出它的面积,看谁算得又对又快。(重点交流缺少数据的方法)
师小结:看来,虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活选择合理、简便的方法进行计算。(板书:合理 简便)
设计意图:在尊重编者意图的基础上进行了改动,主要是进一步培养学生能根据组合图形的条件,有效地选择计算方法并进行正确的解答。
四、畅谈收获,总结提升
师:通过这节课的学习,大家有哪些新的收获?
师:转化是一种重要的数学思想,对于我们数学学习有很大的帮助,其实在我们前面的学习中,也经常运用转化来学习新知识,看,在学习这些图形的面积时,我们都是把它转化成了我们学过的图形,在学习除数是小数的除法时,也把它转化成了除数是整数的除法,在今后的学习中,我们也会经常利用它学习新知识!
设计意图:使每个学生在回顾中学会整理、归纳、反思,提高自我学习的能力,获得成功学习的体验。同时引导学生在总结中有所提升,不仅仅在知识方面,重要的还有数学方法和数学思想方面的交流。
《组合图形的面积》教案 篇2
教学内容:92和93页练习十八
教学目标:明确组合图形的意义;
知道求组合图形的面积就是求几个图形面积的和(或差);
能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
教学过程:
一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab
“第二个图形呢?”
......
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.
教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形
1、让学生指出92页页的四幅图有哪些图形?
2、引导学生把下面的图形,组合成多边形(展示台上拼)
对学生的拼出的图形,有选择地出示其中的几个。(如下所示)
分别说出这些图形是由哪几个简单的图形组合而成。
师:怎样计算这些组合图形的面积呢?(板题)
二、组合图形面积的计算。
1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)
订正,讨论第一图的两种方法。
5×5+5×6÷2[5+(5+6)]×5÷2
=25+15=16×5÷2
=40(平方厘米)=40(平方厘米)
2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状。
它的面积是多少平方米?
如果不分割能直接算出这个图形的面积吗?(引讨横虚线的`作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)
5×5+5×2÷2
还能用其他的划分方法求出它的面积吗?(分组讨论)
汇报讨论结果。可能有下面情况。
[5+(2+5)]×(5÷2)÷2×2
小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)
三、巩固初步
1.做一做/书93页
2.练习十八/第1题
3.练习十八/第2题
(1)由中队旗引入
(2)算出它的面积。(单位:厘米)--可能有下面几种情况
S总=S梯×2S总=S长-S三
5.练习十八/第3、4题
四、拓展练习
练习十八8*
课后记:
《组合图形的面积》教案 篇3
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”
教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学准备:
课件、图片等。
教学过程:
一、 创设情境,引导探索
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】
二、探索活动,寻求新知
师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。……
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积 = 三角形面积+长方形面积-正方形面积
图二:是由两个三角形组成的。
面积 = 三角形面积+ 三角形面积
图三:作辅助线使它分成一个大梯形和一个三角形。
方法一:是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计
(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?
方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
方法三:作辅助线使它分成一个大梯形和一个三角形。
(课件分别演示这三种方法)
分割法 添补法
师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转
变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。
板书:分割法或添补法(转化):分解成简单图形。
师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。……
这节课我们重点学习组合图形的面积。
【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】
三、探讨例题,学习新知
师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)
例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
师:怎样才能计算出这个组合图形的面积呢?
先让学生思考,再动手计算。
交流汇报
方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。
指名学生找相应的条件。
在实物投影仪上展出示学生的答案
①5×5=25 (平方米)
②5×2÷2=5(平方米)
③25+5=30 (平方米)
答:房子侧面墙的`面积是30平方米。
(注意检查做错的同学,找出错的原因。)
师:除了这种方法,还有同学用别的方法吗?
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。
师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案
长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2
=35-5 =30(平方米)
答:房子侧面墙的面积是30平方米。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。
展示学生的答案
(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。
让学生发表意见。
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)
师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生
对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】
四、利用新知,解决生活中的问题。
做一做
刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。
方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)
方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)
第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4
7×6-3×3 =42-9 =33(cm2)
让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。
练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?
现在你能帮工人叔叔算算这
个指示路牌的面积吗?
【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】
五、课堂评价
师:这节课你学到了什么?
结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。
【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】
课堂检测A
1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?
现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要
2500元。如果让你决定,你会选择哪家公司?
2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!
课堂检测B
1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?
答案:课堂检测A
1、50×33+35×12÷2
=1650+210
=1860(厘米)
2、33×26-26×13÷2
=758+169
=927(厘米)
课堂检测B
1、(40+70)×30÷2-30×15
=1650-450
=1200(厘米)
2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)
《组合图形的面积》教案 篇4
“创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。”培养学生的创新能力是素质教育的重要目标,也是新课程改革的核心问题之一。我们在教学中,要为学生提供充分的时间和空间,鼓励学生用多种方法、多种思路解决数学问题,促进学生创新能力的提高。
案例:求组合图形的面积
导入新课后,老师出示例题:
求下面组合图形的面积?(单位:厘米)
师:分四人小组互相讨论,再派代表发言。(学生大约讨论六分钟左右进行反馈)
师:大家来汇报一下,你是怎样算的?
生1:我是把它分成一个长方形和一个梯形来算的。先算出长方形的面积是48平方厘米,梯形的面积是40平方厘米,再把它们加起来,结果是88平方厘米。
评:这位同学的回答思路清楚、语言精炼,同时也很清楚地把他的分析过程“怎样分”展示出来,使学生一看便一目了然。
生2:我是把它分成一个梯形和一个三角形来算的`。梯形的面积是(6+10)×8÷2=64(平方厘米),三角形的面积是12×(10-6)÷2=24(平方厘米),再把两个面积加起来也是88平方厘米。
评:这位同学的回答相当不错,思路也很清楚,经他这样把原来的一个图形分成两个我们熟悉的图形的这种计算方法,使学生看了后也能掌握。
生3:我 先算长方形的面积是80平方厘米,三角形的面积是8平方厘米,再把两个面积加起来也是88平方厘米。
评:这位同学又有了新的计算方法,思路也很清楚,也是一种最佳的计算方法,分成的方法一看就能掌握。
生4:可以补上一个梯形,使它成为一个长方形,再用长方形的面积减去梯形的面积就可以了。如图:
生5:还可以把它分成一个长方形和两个三角形来计算。先算出长方形的面积是48平方厘米,再算出两个三角形的面积分别是16平方厘米和24平方厘米,最后把这三个面积加起来是88平方厘米。
这一例题的教学就这样在“创新”中开始,又在“创新”中结束了,从整个过程来看,一开始课堂上可以明显地观察到不少学生一脸疑惑,渐渐地注意力出现涣散,到最后一种方法也不会的学生估计不存在,如有也是个别的。课堂教学面对的是一个班级的学生,他们的知识、智力水平存在差异。在初次接触组合图形,没有进行引导的情况下,让学生自行探究,获得成功的只是部分同学。在汇报解法时,要让学生充分展示解题思路、探究历程,引导全班同学进行分析、认同,进一步明确思路。有了多种方法,还应通过比较,懂得各种方法的繁简优劣。
随着新课程改革的不断推向高潮,对如何实施新理念,弥补传统数学的缺陷,解决传统数学教学问题,发扬传统数学教学的优点需要我们不断地去探索、去实践。“陷于生活、方向不明、放任自流”绝不应该成为新课程理念的本意,“联系实际、明确目标、自主探究、体验成功”菜是我们要追求的目标。
《组合图形的面积》教案 篇5
教学内容:
课本第21页。
教学目标:
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的组合及分解方法。
教学准备:
课件
教学过程:
一、创设情境,激趣导入。
1、同学们,我们已经学习了哪些多平面图形?
导学要点:
请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的'图形,我们就把它们叫做组合图形。
2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。
板书:组合图形的面积
二、小组合作探究
1、出示前置性作业小组交流
复习
(1)说说你学过哪些平面图形?
(2)说说这些图形的面积计算公式?
2、自学21页的例10
(1)导学单
1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的?
2)尝试计算每个图形的面积。
3)思考:组合图形的面积是怎样计算出来的?
导学要点:
(1)分割法:将整体分成几个基本图形,求出它们的面积和。
(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
(2)小组交流
1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?
2)由于方法不同,我们计算组合图形的方法有什么不同?
3)求组合图形面积时关键是做什么?
导学要点:
(1)要根据原来图形的特点进行思考。
(2)要便于利用已知条件计算简单图形的面积。
(3)可以用不同的方法进行割补。
(3)全班交流
1)学生举例并解答(前置作业我的例子)
2)结合学生自己举的例子解答讲解。
三、应用新知,解决问题
1、课本第21页练一练
(1)生独立计算。
(2)生展示思路。
点拨:
计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。
2、课本第23页练习四第1题前两题。
点拨:
(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?
(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?
3、课本第23页练习四第二题
点拨:
引导说说组合图形面积的计算方法。
四、课堂总结
通过这节课的学习,你学到了什么知识呢?
教学反思:
《组合图形的面积》教案 篇6
教学目标:
1、使学生掌握计算环形的面积的方法,并能准确掌握和计算其他一些简单组合图形的面积。
2、进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。
教学过程:
一、教学例10。
1、出示圆环图形,这是什么图形?你知道吗?
2、出示例10题目,读题。
师:这是由两个同心圆组合成的圆环,要计算它的.面积,你有什么好的方法?独立思考。
小组讨论,确立解题思路。
交流:(1)求出外圆的面积(2)求出内圆的面积(3)计算圆环的面积
3、学生独立操作计算。
4、组织交流解题方法,提问:有更简便的计算方法吗?
小结:求圆环的面积一般是把外圆的面积减去内圆的面积,还可以利用乘法分配率进行简便计算。
二、“试一试”
1、出示题目和图形,学生读题。
师:(1)这个组合图形是有哪些基本图形组合而成的?
(2)半圆和正方形有什么相关联的地方?确:正方形的边长就是半圆的直径。
(3)思考一下,半圆的面积该怎样计算?
2、学生独立计算。
3、交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。
小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的。
三、巩固练习。
1、“练一练”。
思考:(1)求涂色部分的面积,需要计算哪些基本图形的面积?
(2)计算这些基本图形的面积分别需要哪些条件?
(3)第一个图形,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
学生独立完成,并全班反馈交流。
2、练习十九第6~9题。
(1)第6题。先学生独立完成,再交流。
交流重点:
a、每个组合图形需要测量图中哪些线段的长度?
b、求每个图色部分面积时,方法是怎样的?
c、计算中有没有注意运用简便的方法。
(2)第7题。学生根据图形作出直观的判断,并说说直观判断的方法。然后通过计算检验所作出的判断。
(3)第8题。学生读题,观察示意图。
提:
a、要求小路的面积实际求求什么?
b、求圆环的面积,必须知道什么条件?
c、题目中告诉了我们哪些条件?还有什么条件是要我们求的?
学生独立解答,并全班交流。
(4)第9题。
通过画辅导线的方法,来估计每种花卉所占圆形面积的几分之几,在让学生计算每种花卉的种植面积。
(5)思考题。学生先充分思考,再组织交流。
四、读一读“你知道吗?”,并算一算。
《组合图形的面积》教案 篇7
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的.组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
《组合图形的面积》教案 篇8
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的'面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
《组合图形的面积》教案 篇9
教学目标
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重难点
教学重点:探索组合图形面积的计算方法。
教学难点:根据组合图形的条件,有效地选择计算方法。
教学过程
一、复习:课件出示:
师:下面这些物体里有哪些图形?
说一说生活中哪些地方有组合图形。生畅所欲言。
师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?
师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。
二引入新课。
1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?
师:这个问题,能用你学过的知识想办法解决吗?
小华家新买了住房,计划在客厅铺地板(客厅形状如图)。请你估计他家至少要买多大面积的地板,再实际算一算。
布置自主探索任务:
明确探索的要求;(把想法画在图上,并试着求出地板的面积)
交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。
提示:实在有困难的'同学,可以与同桌进行合作。
2、生独立尝试,师巡视,并发现典型。
3、反馈:
师:谁来展示你的解决办法?
(实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)
补充的知识有:用虚线画辅助线;将学生的“割”明确为“分”(画辅助线)。
可能出现的答案有:
将你的想法画在图形上,并试着求出图形的面积对于出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。
出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。
4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。
师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)
今天,我们学的是组合图形的面积。(板书:的面积)。
师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?
(生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)
师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。
三、练习。
过渡:所以,我们在解决这类问题时,可以考虑要尽量的(简单些)好,下面我们带着这样的想法,来看这个问题。课件出示:
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
等生读明白题意后,布置练习纸。生独立尝试,师巡视,收集典型。反馈:将学生的典型作品,投影展示。可能的情况有
可能出现的其它问题有:请你来评价一下这两种方法。
(分成了不是已学过的图形)
(分得过细,数量上过多)
将下面图形分成我们已学过的图形
过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
做一面中队旗用多少布?
在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?
有一块正方形空心地砖,它实际占地面积是多少?
学校校园里有一块长方形的地,想种上红花、黄花和绿草。一种设计方案如下图。你能分别算出红花、黄花、绿草的种植面积吗?
请你也设计一种方案,用上我们学过的图形,并求一求每种植物的种植面积。
师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。
四:总结。
1、学习了这一课,你学会了什么?
2、最后,我们来轻松一下。
《组合图形的面积》教案 篇10
【教学内容】
义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。
【教学目标】
1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。
2、能运用所学的知识解决生活中的组合图形的实际问题。
3、培养学生动手操作能力,合作交流能力和空间想象能力。
【教学重点】
初步掌握组合图形面积的计算方法。
【教学难点】
正确、灵活地把组合图形转化为所学过的基本图形。
【教学准备】
多媒体课件、学生准备各种图形的卡片。
一、
展示汇报,建立概念。
(一)拼图游戏,初步感知组合图形。
师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?
生:自由汇报。
师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图
说它们分别是由哪几个简单图形组合而成的。
结合学生拼出图形有针对性的展示几组组合图形,预设下图:
师:四人小组互相看一看、说一说,你们拼的`这个图形分别是由哪些图形拼成的?
师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)
(二)找一找,说一说。
师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?
同桌互相说一说。
师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?
生认真观察后并指名回答。
师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?
学生畅所欲言......
师:这节课我们重点学习组合图形的面积。(板书:面积)
(一)小组活动,自主探索。
师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。
为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。
二、
在探索过程中,寻求计算方法。
主题图中房子的侧面墙的图?(课件出示例题)
师:如何求这个组合图形的面积呢?先独立想想再小组交流。
小组讨论:
①这个图形有哪些简单图形组合而成的?
②求这个组合图形的面积就是求哪几个图形的面积?
③怎样求?
小组讨论,教师巡视并指导。
小组汇报:
小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)
=S三+S正
小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)
=S梯×2
(二)引导学生总结方法。
师:想想我们刚才是怎么求这个组合图形的面积的?
学生自由回答。
师:你认为哪种方法简单呢?
学生说自己的想法。
对于例题的教学,由于学生有了新课伊始的拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。
引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。
三、
利用新知,解决生问题。
师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。
师:请同学们打开数学书把例题补充完整。
(三)质疑
师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?
学生根据自己的想法回答。
以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。
A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)
B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)
(先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)
C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)
D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。
鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。
以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。
《组合图形的面积》教案 篇11
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的'各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
《组合图形的面积》教案 篇12
教学目标
1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点
能根据条件求组合图形的面积。
教学难点
理解分解图形时简单图形的差较难分解。
教具、学具
教师指导与教学过程
学生学习活动过程
设计意图
一、试一试
教师引导学生读题,理解题意。
二、练一练第1题
1、请学生任意分割,后说说分割的是什么已经学过的图形
2、老师要求再分割
3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,
再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程
学生学习活动过程
设计意图
三、练一练第3题
学生看书上的图。教师读题,
要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?
四、作业
完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的'两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
书设计: 图形的面积