《体积单位》教学设计

知远网

2025-08-19教案

知远网整理的《体积单位》教学设计(精选14篇),希望能帮助到大家,请阅读参考。

《体积单位》教学设计 篇1

教学目标:

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

教学重点:体积单位进率和单位之间的互化。教学难点:复名数和单名数之间的转化。教学过程:

一、复习准备

1、教师提问

(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

2、口答填空,并说明算法和算理。

(1)4米=()分米=()厘米

(2)500厘米=()分米=()米

3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。

二、学习新课

(一)认识体积单位间的进率

1、认识立方分米和立方厘米的关系

(1)指导学生自学,出示自学提纲

A、棱长是l分米的正方体的体积是多少?

B、棱长是l0厘米的正方体的体积是多少?

C、1立方分米与1000立方厘米哪个大?为什么?

(2)学生分组汇报.教师演示动画“体积单位间的进率l”

2、推导立方米与立方分米的关系.

(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?

(2)棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。板书:l立方米=1000立方分米

(3)思考:1立方米等于多少立方厘米呢?

3、小结:相邻的两个体积单位间的进率是l000

4、完成书上想一想,填一填。

三、巩固反馈.

1、口答填空,说出计算过程

0.9立方米=()立方分米

540立方厘米=()立方分米

38立方分米=()立方米

4立方分米50立方厘米=()立方分米10.35立方米=()立方米()立方分米

2、判断正误,并说明理由.0.5立方米=500立方厘米()

2.6立方分米=2立方米60立方厘米()

四、课堂总结.

今天我们学习了什么内容?你还有什么不懂的地方吗?

设计意图:体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的.。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:1.重视学生的自主猜测、主动探究。在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。 2.重视转化、推算等方法。为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。

五、板书设计

体积单位的换算1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升

《体积单位》教学设计 篇2

教材分析:

本节课是在学生认识了体积和容积的意义后教学的。本节教材的主要内容是认识体积、容积单位。教材先呈现了长度单位1厘米,面积单位1平方厘米和体积单位1立方厘米,并指出常用的体积单位有立方米、立方分米、立方厘米。然后教材安排了做一做活动让学生通过实际操作活动,体会1立方厘米、1立方分米、1立方米的实际大小。再让学生通过说一说把体积单位与生活中熟悉的事物联系起来,感受1立方厘米、1立方分米、1立方米的实际意义。后面在认识体积单位的基础上认识容积单位。教材的的编写体现出三个方面的意图:一是把体积单位与学过的长度单位、面积单位联系起来,体会统一单位的重要性,同时对这三种单位有一个直观的区别;二是注重实际操作,获得大量的感性经验;三是紧密联系生活实际,感受体积单位的实际意义。我的教学设计也围绕着这三方面来进行,为了让学生有充分的活动时间,我把体积单位与容积单位分开教学,第一课时教学体积单位。

学生分析:

小学生思维是具象的,小学高年级学生的思维正处于具体运算阶段向形式运算阶段的过渡发展期。因此,小学阶段学习的几何是属于经验几何或实验几何,这些内容的学习都是建立在小学生的经验和活动基础上的。对于小学生的学习方法而言,他们对几何图形的认识是通过操作、实验而获得的,几何的相关概念与关系的获得也是以操作为基础的,学生从一年级就开始接触几何,到五年级他们对几何教学中的动手操作活动并不陌生,并有一定的动手操作能力和经验,但本班学生对操作活动中的自律性还不是很强,教学中应注意对操作活动时纪律的控制。

教学目标:

1、常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。

2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。

3、引导学生经历观察、类比、举例、等学习活动,积累数学活动的经验。

4、通过数学,增强空间观念,发展空间想象力。

教学重点:

帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积。

教学难点:

能联系已有知识正确区分长度单位、面积单位、体积单位,清楚各自含义。

教具、学具准备:

教师准备棱长1厘米和1分米的正方体各一个,1立方米演示模型架。学生准备棱长1厘米、1分米的正方体各一个,米尺1根。

教学媒体:

ppt课件

教学过程

一、复习引入

1、填单位:

老师身高155( ) 教室的面积为48( )

游泳池水深2( )占地面积250( )

师:这是我们以前学过的单位,它们是什么单位同学们还记得吗?

课件出示:长度单位 面积单位 1厘米的长度 1平方厘米的大小。

2、师:上节课我们认识了物体的体积,你们还记得什么是体积吗?那么体积的单位又是什么呢?

二、教学新课

师:常用的体积单位有立方厘米、立方分米、立方米。

1、认识1立方厘米

(1)出示1立方厘米模型:这就是1立方厘米,让学生拿出自己做的棱长是1厘米的正方体,看看和老师的1立方厘米是否一样大。

(2)分组观察﹑探究交流,然后汇报,你知道了什么?

操作要求:

看一看:1立方厘米的体积有多大?

量一量:1立方厘米正方体棱长是多少?

说一说:什么是1立方厘米?

想一想:体积是1立方厘米的物体有多大,把它印在头脑里。

举一举:生活中哪些物体体积约为1立方厘米(如蚕豆﹑玻珠、手指末节等)

拼一拼:2立方厘米、5立方厘米、10立方厘米

(3)汇报交流。

(4)教师小结:棱长是1厘米的正方体,体积是1立方厘米。板书记法。

2、认识1立方分米

(1)出示1立方分米模型,告诉学生这就是1立方分米。

(2)学生拿出学具分组观察、探究、汇报,你知道了什么?

看(大小) 量(长短) 说 (概念) 想(有多大)

举一举:(粉笔盒、菠萝等)

拼 (体积)

(3)汇报交流,教师小结并板书。

3、认识1立方米

(1)根据以上的体积单位推测,什么样的体积是1立方米(板书)

(2)我用三把米尺在墙角搭了一个体积是1立方米正方体框架,让学生估一估能容纳多少个学生,然后试一试。

(3)8个学生一组,用米尺搭一个1立方米的.空间,看一看,把一立方米的大小印在头脑里。

(4)哪些物体体积约为1立方米?(太阳能水塔、讲台等)

5、比较长度单位、面积单位、体积单位的不同

(1)课件在长度单位和面积单位的旁边出示1立方厘米的图形。

(2)让学生观察有什么不同。

(3)小结:长度单位表示距离大小,面积单位表示表面大小,体积单位表示空间大小。

三、巩固练习,提升理解

您现在正在阅读的《体积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积单位》教学设计1、完成练一练第1题。

2、选择适当的单位名称填在括号里。

(1)五(1)班教室占有空间约是150( )。

(2)一个成人鞋盒体积约是6( )。

(3)一块橡皮的体积约是8( )。

(4)一把椅子高90( )。

(5)一张单人床的面积约是2( )。

3、连线

一台洗衣机的体积约为 40立方厘米

书包的体积 0.3立方米

碳素墨水盒的体积 20立方分米

4、说说身边物体的体积

四、课堂小结:

说说本节课有哪些收获。

教后反思:

在本节课的教学中,我注重从小学生空间观念形成的心理特点方面手,做了以下尝试,取得了不错的效果。

1、注重新旧知识的联系与比较

教学初我让学生通过填单位回顾旧知,知道测量长度需要用长度单位,测量面积需要用面积单位。然后自然而然就引出测量体积就需要体积单位了。并在教学完体积单位后与长度单位、面积单位进行了比较,让学生从直观形象到内在含义真正理解体积单位。

2、充分利用直观教学,注重学生实践体验

学生空间观念的形成具有很强的直观性,比较感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、类比等学习活动,帮助学生并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲,让学生在活动中理解应用数学知识解决实际的。

3、注重学习方法的迁移

在三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,并学习1立方厘米。然后将主动权交给学生,让学生利用1立方厘米的方法在小组内自主活动,1立方分米,最后1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的兴趣。

4、注意学生身边的数学知识

在让学生感受每个体积单位有多大时,我让学生找一找身边哪些物体的体积大约是1立方厘米、1立方分米、1立方米,学生有的提到我的一个指头头大约是1立方厘米,我随机抓住这一教学资源,追问道:你们每个手指大约又是多少立方厘米呢?在例举1立方分米时,学生说粉笔盒的体积大约1立方分米,有一次我买的烤红薯大约1立方分米等等。在感受1立方米有多大时,我用三把米尺在墙角搭了一个体积是1立方米正方体框架,并让学生估一估能容纳多少名同学,然后亲自让同学们站到里边看一看,然后分组搭1立方米的框架。通过例举与体验,不但让学生体会到身边处处有数学,而且也有利于促进学生每个体积单位大小的建立。

《体积单位》教学设计 篇3

【通用】《体积单位》教学设计15篇

在教学工作者开展教学活动前,通常会被要求编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么你有了解过教学设计吗?以下是小编精心整理的《体积单位》教学设计,希望对大家有所帮助。

《体积单位》教学设计 篇4

教案背景:

本课面向五年级学生关于数学科的学习。课前准备:多媒体课件和有关的体积单位的模型。还要准备一些相关的物品。

教学课题:

1.使学生理解体积的概念,了解常用的体积单位,对体积单位的大小形成比较明确的表象。

2.培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。教材分析:

教材先通过“乌鸦喝水”的故事引入,让学生在讨论交流中感悟物体占用空间。然后通过实验,让学生观察和比较,说明不同的物体所占空间的大小不同,从而引入体积的概念。教材通过迁移类推引出物体的单位来的。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位,并介绍了这些体积单位的字母表示法。在此基础上,通过观察活动建立体积单位的表象。

教学方法:

对体积单位的认识可以通过模型观察,再建立表象。通过做一做进行区分。

教学过程:

一、认识体积

1.激趣引入。

师:同学们,你们听过乌鸦喝水的故事吗?

生:听过。

师:谁愿意来看着图给大家讲一讲。

指名学生看图讲故事。(课件出示插图)

师:乌鸦是怎么喝到水的?

生1:乌鸦把石头放进瓶子,瓶子里的水就升上来了,这样乌鸦就喝到水了。师:为什么把石头放进瓶子,瓶子里的水就升上来了?

引导学生说出石头占了水的空间,所以把水挤上来了。

2.实验证明。

师:石头真的占了水的空间吗?我们再来做个实验验证一下。

教师拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生看会出现什么情况,为什么?

生1:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。

3.揭示体积。

师:对,第二个杯子装不下第一个杯子的水,是由于石头占了水的空间。同学们请大家用手在书桌的抽屉里摸一摸,说说有什么感觉。

生摸并说感觉。

师:请把书包放进抽屉,再用手摸一摸,现在又有什么感觉?

生1:手在抽屉里活动起来不方便了。

生2:手要从书包缝里才能放进去。

师:这是为什么?

生3:因为书包把抽屉的空间占了。

师:对,刚才石头把水挤上来,书包把抽屉的空间变小了,都说明物体占有一定的空间。那你们知道石头和书包谁占的空间大吗?

生4:书包占的空间比石头大,因为书包大,石头小。

师出示下面的图,问:你们知道这些物体哪个占的空间大?

学生回答后,师说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书)

师:谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?

学生回答。

师:谁的体积大、谁的体积小呢?

生:电视机的体积最大,影碟机的体积第二大,手机的体积最小。师:你们是怎么知道的?

生:我是看出来的。

二、引出体积单位

师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?

生:不好比较。

教师用多媒体将它们分成大小相同的小正方体(如下图),问:现在你们能比较出它们的大小吗?

生1:能,左边的长方体比右边的体积大。

师:为什么?

生1:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。

师:左边的长方体和右边的长方体中的小正方体不一样大,行不行?为什么?生:不行。因为小正方体大小不同,就不好比较。

师:为什么分成小正方体前不能直接比大小,分成小正方体后就能比较呢?引导学生说出:因为分成的每个小正方体的大小相同,这样就好比较了。师:所以要比较物体的体积大小,需要有一个统一的体积单位。在学习体积单

位前,我们先回想一下,长度单位是用什么来表示的`?面积单位是用什么来表示的?

引导学生说出:长度单位是用线段来表示的,面积单位是用什么正方形来表示的。

师:体积单位应该用什么来表示呢?

学生讨论后,回答:应该用正方体来表示。

师:对,体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)

三、认识体积单位

师:请你们猜一猜1 cm3、1 dm3,是多大的正方体?

学生讨论后回答:我们想棱长是1 cm的正方体,体积是1 cm3;棱长是1 dm的正方体,体积是1 dm3。

师:这个猜想对吗?看看书上是怎样说的。

学生看书,证实自己的猜想是对的。

师:请同学们在自己的学具中找出1 cm3的正方体。

学生找到后,说一说自己是怎样找到的。

生:我是用尺量的,量出棱长是1 cm的正方体,它的体积就是1 cm3。师:请你们找找,周围有哪些物体的体积接近1 cm3。

生1:一个手指尖的体积近似于1 cm3。

生2:计算机键盘的按钮的体积近似于1 cm3。

师:请找出1 dm3的正方体,与1 cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1 dm3吗?

生3:一个拳头的体积大约是1 dm3。

生4:一个粉笔盒的体积大约是1 dm3。

师:1 m3有多大?

生:是棱长1 m的正方体。

师:你能想像出1 m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1 m3有多大,它和你想像的大小一样吗?师:大家估计一下,它大约能容纳几个同学?

生1:6个。

生2:10个。

验证(前排的12个同学钻到了正方体里。)

师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1 m3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?

生:4 cm3。

师:为什么?

生1:因为它是由4个体积是1 cm3的小正方体摆成的。

师:(从粉笔盒的纸盒中拿出2盒粉笔)你能估计这个纸盒的体积是多少立方分米吗?

生:大约是2 dm3。

师:为什么?

生:因为刚才你从这个纸盒里拿出了两盒粉笔,而每盒粉笔大约是1 dm3,2盒粉笔就是2 dm3。

四、巩固练习

指导学生做第40页“做一做”的第1、2题。

五、小结(略)

六、课堂作业

指导学生完成练习七的第1~4题。

教学反思:

体积对学生来说是一个新概念。由平面图形到立体图形,是学生空间概念的一次发展,要通过表象建立深化认识,变抽象为形象。

《体积单位》教学设计 篇5

一、教学内容:人教版小学数学五年级下册教材38—39页。

二、教学目标:

知识与技能:学会用体积单位来描述物体的大小;能合理估计物体体积的大小。过程与方法:通过学生的观察思考、交流探究等学习活动,让学生经历物体体积概念的形成过程,体验和感悟空间观念。

情感态度与价值观:让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

三、教学重难点:

教学重点:形成体积的概念和掌握常用的体积单位。

教学难点:初步建立1立方厘米、1立方分米、1立方米的空间观念。

四、教学准备:

玻璃杯,里面盛五分之二体积的水,若干石块;1立方分米和1立方厘米的正方体模型;

五、教学过程:

(一)创设问题情境。

根据以前学过的知识,我们知道线有长短,面有大小;线的长短叫长度,面的大小叫面积;那么体有大小吗?体的大小是指什么?体积的单位是怎样规定的?这些问题你了解吗?能说一说吗?在此基础上引入课题。(板书课题:体积和体积单位)

(二)探究体积概念。

1、由教材的《乌鸦喝水》的故事引入,提问:乌鸦是怎样喝到水的?

演示:拿出一个盛有2/5杯水的透明杯,再拿出准备好的小石块若干,请一名同学上台演示乌鸦喝到水的过程。其他同学仔细观察,当石子放入水中后,水面会有什么变化?

讨论:水面为什么会上升?(因为石头把水推上去了,为什么能推上去?因为石头把下面的位置占了,那个位置叫什么?用一个准确的词来表示是?-----空间)

2、什么是空间呢?(老师拿出一个长方形和一个长方体,对比两种图形。)

师:请同学们观察,长方形放在地上,它占了地的什么?(面积)长方体呢?(面积)长方体除了占地的面积以外还占了什么?(地面上空的大小)对了,除了地面的大小以外还有空中的这一部分,那么这一部分就是我们所说的----空间。

(设计意图:在这里我的设计是不急于把空间两个字说出来,要一步一步地按照学生的.思路说出来,因为对于空间两个字的理解学生有一定的困难)

3、引出体积概念。

通过刚才的比较,我们发现,物体都会占空间,大家举例说一说物体占空间的现象。同学们举的这些例子中老师取出两个楼房和桌子,大家比较一下这两个物体所占的空间有什么不同?(一个大一个小)不错,这也就是说物体所占的空间有大小之分,我们把这种物体所占空间的大小就叫做物体的体积。

请同学重复一遍体积的概念,请一名同学板书:物体所占空间的大小叫做物体的体积。

4、进一步强化体积的概念师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”

师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”

〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕

〔设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理。以学生天每天接触的抽屉、书包为学习素材,让学生学习亲切,最这样容易让学生理解和体会学习的内容和学习方法。〕

(三)探索学习常用的体积单位。

1、比较两种体积大小差异大的物体。

师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”

师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

2、引出体积单位。

师:你们知道他们的书包有多大了吗?字典具体是多大吗?刚才这两种体积非常近似的物体他们的体积大小又怎么表示呢?还有高大的楼房、山脉,细小的黄豆粒等,所有物体的体积大小的区分除了数字的大小以外,还有一个很重要和关键的量,是什么?------体积单位。

(1)、认识立方厘米(cm)

A:出示一立方厘米的正方体模型,让大家观察、感知1立方厘米的体积有多大。B:从书本中找到描述1立方厘米的话,画出来再读一遍。C:估一估自己的橡皮有多少立方厘米、香皂的体积。(2)、认识立方分米(dm)老师拿出1立方分米的正方体教具,方法同上,先让学生从书本中划出概念,再读一读,接着举出身边近似于1立方分米的物体,用手比划一下1立方分米有多大。

(3)认识立方米(m)通过前面两种体积单位的学习,大家能不看书用自己的话说一说怎么样的体积是1立方米的体积吗?(变长为1米的正方体的体积为1立方米)大家说的很好,那么老师这里有一些一米长的线段,谁能帮老师搭建一个正方体?

师拿出三条长为1米的教具条,拼接在一起,组成一个三维的图形,请同学搭建在教室的墙角,组成一个体积为1立方米的正方体,全体同学观察、感知1立方米的大小。

(4)、初步区分二维和三维,进一步区分和巩固面积单位与体积单位的联系与区别

师:通过刚才的演示,大家发现,立体图形的构成是由不在同一个平面的几条线段围成的,如这个三条线段的框架,我们把立体图形就叫三维图形,因此它的单位都是在长度单位的基础上加立方两个字,它的简写也就是在字母的右上角写一个3,而平面图形它的构成是由几条在同一个面的线段围成的,它的搭建最简单的是需要两条线和别的一围,就可以组成,因此它是二维的,所以它的单位是在长度单位的前面加上平方两个字,它的简写是在字母的右上角写一个2。因此,大家说一说,体积单位都是什么?(都是立方什么、立方什么)(设计意图:通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。

(5)试一试估计身边物体的大小。”

学生交流尝试用体积单位描述身边物体的大小。

(四)引导学生反思整理,形成体积概念。

师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?

(设计意图:引导学生进行反思性学习应该引起教师的关注,反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕

(五)启发课后观察操作,深化巩固课堂知识。

师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”

师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”

(设计意图:将学生的学习从课堂引到课外,由理论引向实践,培养学生的应用意识。)

六、板书设计

体积和体积单位

物体所占空间的大小叫做物体的体积

立方厘米立方分米立方米cm dm m

七、教学反思:

在课堂中,我觉得我上课的语言不够生动,关注学生的情感不够,对学生的回答未能作出适当的评价。我这方面做得还不够,以后一定要在这方面加倍努力争取进步。同时,上了这节课,让我深深体会到,在教学几何类概念课过程中要多以观察、比较、动手操作量一量、摸一摸等活动,为学生建立情感,形成表象。学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是很有必要的。

《体积单位》教学设计 篇6

教学目标:

1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

2、在观察、操作中,发展空间观念。

3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

教学重点、难点:

观察、操作中会进行体积、容积单位之间的换算。教学准备:

体积是1cm的小正方体,容积是1dm的小正方体,多媒体课件按照课前准备要求摆放好学习用品,然后坐端正,准备上课。请学生把正方体放在小组桌子中间、其它学习用品放在左上角教学过程:

一、复习回顾,导入新课

师:上课,同学们,马老师了解到咱们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。

师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)师:(读题提问)常用的体积单位有哪些?(生齐答)师:(继续提问)容器内的液体量一般使用哪些单位?

33(生齐答)师:还有补充吗?(生思考后①回答正确,师,表扬,思考真全面,重复说;②回答不出来,师提示:如果液体的量比较大,比如游泳池、蓄水池中的水?)

师:(读题,举例说明1m,1dm,1cm分别有多大)

生:举例说明,(每个举例两、三个)师:这个例子很恰当,你真聪明,直接拿了桌面上的物体

师:我们接着来看填一填的答案。师读题生:10cm、10dm。

师:也就是说,相邻长度单位间的进率是()生:10

师:接着来看,应该填多少生:100

师:相邻面积单位间的进率是()生:100

那么,在猜一猜中,你填的是多少?生:1000

师:确定吗?生:确定

师:没有猜不是1000的吗?生:没有

师:那它们间的进率是不是1000呢,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。到此大约6分钟

二、自主探究,获取新知师:同桌两人合作,一起观察、分析课前准备的正方体,怎样能够说明1立方分米=1000立方厘米,听明白要求了吗?开始吧(音乐播放,学生探索大约5分钟)

师:哪位同学来说说你们探索的结果?生举手师:进率是1000吗生:是

师:说说你的理由,生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,可以放入1000,所以1立方分米=1000立方厘米。

师:能不能说说可以怎样放?

生:一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,所以就有1000个,师:听明白了吗?

哪位同学再来说一说,还有同学不明白,谁再来说一遍,生复述

师:由于受时间和条件的限制,我们不能一个个摆,所以老师用课件演示一遍摆的过程,老师操作,大家一起来数一数。

师:进率是1000吗,生:是师:说说你的理由

生1:(师提示,拿着手中的正方体)棱长1分米的正方体,体积是1分米×1分米×1分米=1立方分米;棱长10厘米的正方体体积是10厘米×10厘米×10厘米=1000立方厘米。由于1分米等于10厘米,所以1立方分米和1000立方厘米只不过是单位不同,表示的正方体的大小是相同的。生2:1分米等于10厘米,所以这两个正方体是一样的,师,能不能说的完整一些,生3:……生4:……

师:你分析得真棒,听明白的举手,再请一位同学来复述一遍。(如果没有师逐步提示)这两个正方体的什么是一样的生:棱长是一样的,师:所以体积也是相等的,棱长1分米的正方体体积怎么计算生;1×1×1=1立方分米;

师:棱长10厘米的正方体,体积怎么计算生:10×10×10=1000立方厘米

而他们的体积又是相等的,所以1立方分米等于1000立方厘米。师:我们也可以通过计算分析的方法来研究它们之间的进率,明白了吗?师:还有别的方法来说明进率是1000吗?此过程5分钟

师:这是1立方厘米的正方体,这是容积是1立方分米的正方体,我们现在来摆一摆。

师生一起数:1、2、3……10

师:现在是1排共10个了,我们接着摆师生一起数:20、30、40……100

师:现在是一层一共100个了,我们接着摆师生一起数:200、300……1000

师:正好1000个,这样就验证了大家的猜想是正确的。师:马老师有一个问题,在前面的学习中我们学习了升和立方厘米的关系,毫升和立方厘米的关系,现在你知道升和毫升的关系吗?

生:1000,师:说说你的想法

生:1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升。

师:你的逻辑推理能力真厉害,大家同意吗?

师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000还有哪一个体积单位我们还没有研究呢?生:立方米

师:好的这一个问题就交给你自己来解决了,请你独立解决课堂学习卡中的第二项,独立探索

(学生独立探索)

老师看大部分同学都完成了,我们一起来回答吧,师读题,生填空

师:这样大家得出了立方米和立方分米之间的进率,太棒了下面我们来小结一下

也就是说相邻的体积单位间的进率都是1000,一定是相邻的体积单位,还有升和毫升的进率也是1000,下面请你根据所掌握的.知识完成课堂学习卡的第三项,填表

生:汇报答案

师:这就是我们这节课要掌握的第一个知识,体积单位间的进率,具备了这一知识,我们就可以进行体积单位间的换算,板书(的换算)。

三、巩固练习,应用新知请大家独立完成师读题,生汇报

生5000,师:怎样得到5000的生:5×1000生1350,师:怎样得到1350的,生:1.35×1000生1200或者1200000,师:到底是多少呢?生讨论得出1200000

生2.8,师:怎样得到2.8,生:2800÷1000生0.72,32.5师:怎样得到

师:能不能用自己的话总结一下单位换算到额规律生尝试总结,汇报

师:展示小结,建立认知结构

师:看来同学们掌握的真不错,还有没有不明白的?师:我们来解决一个生活中的实际问题先猜一猜,买哪种瓶装的比较划算?生:大瓶的,师:说说你猜测的依据

到底是不是呢?请你在练习本上来具体算一算,再进行比较生:列算式进行比较

师巡视,寻找不同方法的同学,到前面进行展示。师:哪位同学看明白了这种方法,点名来讲一讲生讲解、不能讲解的师逐步提示讲解。师:老师把以上几种方法中常用的两种总结如下,我们一起来看一看方法1:比较每毫升牛奶的价钱方法二比较每元钱可以买牛奶的量

四、课堂小结,回顾新知

通过今天的学习,你有哪些收获,谈一谈生:进率,体积单位的换算

师:有关今天的学习还有什么疑问吗?五,布置作业

老师这里有一个问题留给大家思考。

电视机包装箱的长是60米、60分米,还是60厘米?宽和高呢?箱子的体积是多少?

好今天这节课我们就学习到这里,下课!

《体积单位》教学设计 篇7

教材分析:

这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

教学目标:

1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

教学准备:

棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

教学过程:

一、 复习导入

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

(3)我们认识的体积单位有哪些?

板书:立方米 立方分米 立方厘米

提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

二、自主探索 验证猜测

1、教学例11。

(1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

(2) 提问:这两个正方体的体积是否相等?你是怎样想的?

(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

(3) 用图中给出的数据分别计算它们的体积。

学生分别算一算,然后在班内交流:

棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

(4) 根据它们的`体积相等,可以得出怎样的结论?

1立方分米=1000立方厘米(板书:=)

(5) 谁来说一说,为什么1立方分米=1000立方厘米?

2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

学生在小组里讨论。(板书:立方米=1000立方分米)

班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?

引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

三、巩固深化

1、 出示书第30页的“练一练”。

学生先独立完成。

交流你是怎样想的。

小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】

2、 出示练习七第1题。

学生独立完成表格。

班内交流:说说长度、面积和体积单位有什么联系?

而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

3、 出示练习七的第2题。

学生先独立完成。

交流:你是怎样想的。

指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

4、 出示练习七的第3题。

学生独立完成。

交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

5、 出示练习七的第4题。

学生独立完成后集体交流。

【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

四、课堂总结。

通过这节课的学习,你有什么收获?

【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计 篇8

教学内容:

义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。

教学目标:

1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;学会用体积单位来描述物体的大小;能合理估计物体的体积的大小。

2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。

3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

教学重点:

形成体积的概念和掌握常用的体积单位。

教学难点:

形成体积概念。

教学准备:

两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。

教学过程:

课前谈话:同学们,在我们的生活中,有很多看似平常的事物,如果我们细心去观察和思考,总能发现一些不寻常的知识,这节课你们愿不愿意和老师一起去观察和思考?

一、抓住体积概念本质,就地取材,创设生活情境。

师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”

师:“估计一下,你们现在的抽屉还能放些什么?能放多少?”

师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”

〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕

师:“抽屉没塞满说明抽屉还有空间,如果东西放满了,也就没有空间。从有空地儿到没有空间说明什么?”

师:“在你们的抽屉里再放一个书包或一些书,能让你的抽屉变得满满的,也就是说书包能占抽屉的空间。发挥你们的想象,你们抽屉的那点儿空地或者说空间能放哪些物品?

师:“书包可以把抽屉的空间占了,几十本书也能把抽屉的空间占了,放上一箱的酸奶同样也可以把抽屉的空间占了。……说明什么?”

物体都会占空间,大家举例说一说物体占空间的现象。

〔设计意图:通过交流和想象,让学生理解物体是可以把空间给占了的,也就是说物体是要占一定的空间的。〕

师:“物体都会占空间,是不是物体所占空间都一样呢?”

师:“物体所占的空间大小不一样,有的物体占空间大些,有的物体占空间小些,物体所占空间的大小叫做物体的体积。”

教师板书:物体所占空间的大小叫做物体的体积。

〔设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。以学生天天相见,日日接触的抽屉、书包为学习素材,学生学习亲切,又好奇。熟而不能再熟的身边事物也有值得讨论和学习的问题,自然这样的学习是学生最愿接受学习方式,也最易让学生理解和体会学习的内容和学习方法。〕

二、找准学生的学习起点,创设精准的问题情境,探索学习常用体积单位,深化理解物体的体积概念。

师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”

师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”

学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

师:“你们知道他们的书包有多大了吗?”

师:“谁能用打电话的形式告诉我,他们的书包有多大?”

师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39面,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”

设计意图:其一、问题情境是引导学生有效学习的保证,从学生的知识起点创设出学生的问题情境能较好的激发学生的探究学习的动力。学生在认识了体积概念后,用直观形式来描述物体体积应该说是不成问题的,用手势比划一个物体的大小,对五年级的学生来说经验是非常丰富的,而用电话的形式来告诉老师物体的体积,对没有学习体积单位的学生来说是一个挑战。描述物体的体积需要个标准,而这个标准便是体积单位,因为学生没有这个标准,所以学生完不成用电话的形式告诉别人物体的体积,也因为需要,学生的探究欲也越强,此时让学生自主学习课本会收到较好的学习效果。其二、学生的学习目的不仅是从教师那得到解决问题的结果,他们需要的是形成学习的动力和学习的方法,指导阅读教材,学会自主学习也是课堂教学的一个重要教学目标。这一环节的设计体现了教学对学生学习的兴趣的鼓动性和对学习方法的指导性。

通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。〕

师:“在我们的生活中要用到体积单位,如立方厘米、立方分米、立方米,它们都是描述物体大小的体积单位。书上是怎样规定1立方厘米、1立方分米和1立方米的?找出来,并说一说。”

观察1立方分米和1立方厘米的`正方体模型,然后再用手势比划一下它们的大小。同一小组的同学可以互相进行学习。

学生自由活动,探索和体验1立方厘米、1立方分米、1立方米的大小。

全班交流自己探索学习的情况。

师:“1立方厘米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方厘米?”

师:“1立方分米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方分米?”

师:“1立方米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方米?”

师:“1立方米,大家比划起来有一定的困难,我们可以一起来做。我这儿有三把米尺,我让几个同学和我一起,用这几把尺借助教室的一个墙角共同来做一个1立方米的空间。”

师:“1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”

师:“大家不站不知道,现在我们的同学进去了,发现没有,1立方米的空间还真不小,整整一个小组的人都能挤进去,大家明白1立方米了吗?现在大家再估一估1立方米的空间可放多少物品?”

设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是必要的。〕

师:“你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”

学生交流尝试用体积单位描述身边物体的大小。

三、引导学生反思整理,形成体积概念。

师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?你还想知道有关体积的哪些知识?在今天的学习中,你最感兴趣的学习活动是什么?”

设计意图:引导学生进行反思性学习应该引起教师的关注,在教学过程中,除了让学生经历探索新知的过程,还应关学生对自己学习过程中的回顾和反思,这一环节缺失的课是不完整的课。反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕

四、启发课后观察操作,深化巩固课堂知识,培养学生自主学习意识和能力。

师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”

师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”

设计意图:将学生的学习从课堂引到课外,由他主学习转到自主学习应该是教师教学的一种境界,是教师终身追求的目标。有效的教学需要我们在设计中去预设,在实践中去尝试。

《体积单位》教学设计 篇9

教学目标:

1、通过实践操作,使学生理解体积的含义,建立体积的概念。

2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。

3、通过学生的动手实践,加强学生的空间观念。

教学重点:形成体积的概念和掌握常用的体积单位。

教学过程:

一、依据预习提纲,自主学习。

1.什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)

3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?

4.长方体的体积公式是什么?

5.正方体的体积公式是什么?

6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

7.讨论长方体和正方体的体积计算方法是否相同.

二、探索研究,交流展示。

1.故事引入:出示主题图:乌鸦喝水的故事。

自由汇报:乌鸦是怎样喝到水的?为什么?

2.学生实验:

取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)

3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?

不同的物体所占空间的大小不同。

4.体积概念的.引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)

加深理解:

三、体积单位的认识:(学生先看书自学,再汇报交流。)

1.我们已经学过哪些长度单位和面积单位?

2.出示两个长方体:怎样比较这两个长方体体积的大小呢?

3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。

4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。

我们规定:棱长是1厘米的正方体的体积是1立方厘米。

1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。

②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)

1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)

1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。

我们生活中,哪些物体的体积大约1立方米?

5.练习:

(1)完成P40“做一做”T1。

说一说分别是用来计量什么的单位,它们有什么不同?

长度单位、面积单位、体积单位的联系与区别。

(2)完成P40“做一做”T2。

让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。

三、反馈检测

1.

2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

教学设计:

体积和体积单位

常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。

棱长是1厘米的正方体的体积是1立方厘米。

课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。

《体积单位》教学设计 篇10

教材分析:

这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

教学目标:

1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

教学准备:

棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

教学过程:

一、 复习导入

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

(3)我们认识的体积单位有哪些?

板书:立方米 立方分米 立方厘米

提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

二、自主探索 验证猜测

1、教学例11。

(1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

(2) 提问:这两个正方体的体积是否相等?你是怎样想的?

(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

(3) 用图中给出的数据分别计算它们的体积。

学生分别算一算,然后在班内交流:

棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

(4) 根据它们的体积相等,可以得出怎样的结论?

1立方分米=1000立方厘米(板书:=)

(5) 谁来说一说,为什么1立方分米=1000立方厘米?

2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

学生在小组里讨论。(板书:立方米=1000立方分米)

班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的`?

引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

三、巩固深化

1、 出示书第30页的“练一练”。

学生先独立完成。

交流你是怎样想的。

小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】

2、 出示练习七第1题。

学生独立完成表格。

班内交流:说说长度、面积和体积单位有什么联系?

而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

3、 出示练习七的第2题。

学生先独立完成。

交流:你是怎样想的。

指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

4、 出示练习七的第3题。

学生独立完成。

交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

5、 出示练习七的第4题。

学生独立完成后集体交流。

【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

四、课堂总结。

通过这节课的学习,你有什么收获?

【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计 篇11

教学目标:

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

教学重点:体积单位进率和单位之间的互化。教学难点:复名数和单名数之间的转化。教学过程:

一、复习准备

1、教师提问

(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

2、口答填空,并说明算法和算理。

(1)4米=()分米=()厘米

(2)500厘米=()分米=()米

3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的'体积单位间的进率和单位之间的转化。

二、学习新课

(一)认识体积单位间的进率

1、认识立方分米和立方厘米的关系

(1)指导学生自学,出示自学提纲

A、棱长是l分米的正方体的体积是多少?

B、棱长是l0厘米的正方体的体积是多少?

C、1立方分米与1000立方厘米哪个大?为什么?

(2)学生分组汇报.教师演示动画“体积单位间的进率l”

2、推导立方米与立方分米的关系.

(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?

(2)棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。板书:l立方米=1000立方分米

(3)思考:1立方米等于多少立方厘米呢?

3、小结:相邻的两个体积单位间的进率是l000

4、完成书上想一想,填一填。

三、巩固反馈.

1、口答填空,说出计算过程

0.9立方米=()立方分米

540立方厘米=()立方分米

38立方分米=()立方米

4立方分米50立方厘米=()立方分米10.35立方米=()立方米()立方分米

2、判断正误,并说明理由.0.5立方米=500立方厘米()

2.6立方分米=2立方米60立方厘米()

四、课堂总结.

今天我们学习了什么内容?你还有什么不懂的地方吗?

设计意图:体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:1.重视学生的自主猜测、主动探究。在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。 2.重视转化、推算等方法。为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。

五、板书设计

体积单位的换算1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升

《体积单位》教学设计 篇12

教材分析:

这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

教学目标:

1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

教学准备:

棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

教学过程:

一、 复习导入

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

(3)我们认识的体积单位有哪些?

板书:立方米 立方分米 立方厘米

提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

二、自主探索 验证猜测

1、教学例11。

(1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

(2) 提问:这两个正方体的体积是否相等?你是怎样想的?

(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

(3) 用图中给出的数据分别计算它们的体积。

学生分别算一算,然后在班内交流:

棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

(4) 根据它们的体积相等,可以得出怎样的结论?

1立方分米=1000立方厘米(板书:=)

(5) 谁来说一说,为什么1立方分米=1000立方厘米?

2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

学生在小组里讨论。(板书:立方米=1000立方分米)

班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?

引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

三、巩固深化

1、 出示书第30页的“练一练”。

学生先独立完成。

交流你是怎样想的。

小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的'基础上概括出解题的一般方法。】

2、 出示练习七第1题。

学生独立完成表格。

班内交流:说说长度、面积和体积单位有什么联系?

而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

3、 出示练习七的第2题。

学生先独立完成。

交流:你是怎样想的。

指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

4、 出示练习七的第3题。

学生独立完成。

交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

5、 出示练习七的第4题。

学生独立完成后集体交流。

【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

四、课堂总结。

通过这节课的学习,你有什么收获?

【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计 篇13

教学目标

知识目标

使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。

能力目标

能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。

情感目标

培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。

重点

体积单位的进率。

难点

体积单位的进率的化聚。

教学过程

一、复习引入

1.填空:

①长方体体积=();

②正方体体积=()。

③常用的体积单位有()、()、();

师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

合作探究

二、课程内容

1.体积单位间的进率。

(1)出示:1个棱长是1分米的正方体木块。

图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?

提问:

①当正方体的棱长是1分米时,它的体积是多少?

②当正方体的棱长是10厘米时,它的体积是多少?

③而1分米是多少厘米?1立方分米等于多少立方厘米?

小组合作填表:

《体积单位间的`进率》教学设计

小组汇报结论:1立方分米=1000立方厘米

同理得出:1立方米=1000立方分米

小结:相邻两个体积单位之间的进率都是1000。

(2)将长度单位、面积单位、体积单位加以比较:

先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

(3)学习体积单位名数的改写。

思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?

写成如下形式:

3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米

⒊出示例4:看见你得到哪些信息?

⑴这个包装箱的体积是多少?

V=50×30×40

=60000cm3

=60dm3

=0.06m3

⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

如果出现这样答,你必须选择那个答案?

答:这个牛奶包装箱的体积是m3。

⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。

拓展应用

一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

总结

小结今天学习的内容。

作业布置

在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

板书设计

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

《体积单位》教学设计 篇14

教学目标:

1、结合具体事例,经历认识体积单位之间进率的过程。

2、知道1立方分米=1000立方厘米、1立方米=1000立方分米,会进行简单的体积单位换算。

3、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。

教学重点和难点:

体积单位进率和单位之间的互化。

教学过程:

一、教学体积单位间的进率

1、复习相关旧知1平方分米=100平方厘米的推导过程

(1)提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上。”

学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程。

(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来。

2、推导1立方分米=1000立方厘米

(1)提问:“1立方分米等于多少立方厘米?你们能应用类似的方法推导出来吗?”要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来。

学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。

(2)展示推导过程

请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米。

(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。

3、推导1立方米=1000立方分米

(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”

(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?

(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米

4、总结相邻两个体积单位间的进率.

(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

(2)引导学生观察:1立方分米=1000立方厘米

1立方米=1000立方分米

并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。

5、构建长度、面积和体积单位的计量系统。

(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?

(长度单位是用来计量物体长度的';面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的。)

(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第119页上的表格填完整。

二、练一练1。

(1)引导学生认真审题:将6立方米、8000立方分米改写成多少立方分米,也就是要将高级体积单位的名数改写成低级体积单位的名数。

(2)放手让学生自己思考解题的方法.

(3)引导学生归纳将高级体积单位的名数改写成相邻的低级体积单位的名数的一般方法(师板书):

高级体积单位的名数×1000=相邻的低级体积单位的名数

三、练一练2

四、小结

引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。这样,学生一般能概括:本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写,在解决实际问题时能正确应用。

板书设计:

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

高级体积单位的名数相邻的低级体积单位的名数

大家都在看