八年级数学说课稿

知远网

2025-08-09教案

知远网整理的八年级数学说课稿(精选14篇),希望能帮助到大家,请阅读参考。

八年级数学说课稿 篇1

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)2001×1999(2)998×1002

导入新课:计算下列多项式的`积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级数学说课稿 篇2

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材

1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、 教学目标

知识目标:(1)、理解分式的乘除运算法则

(2)、会进行简单的分式的乘除法运算

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。

(2)、能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。

(2)、培养学生的创新意识和应用意识。

(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的`,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。

2、合作学习。

四、说教学程序

1、类比学习,探索法则。(约3分钟)

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)

复习:分数的乘除法法则(抽一学生口答)

猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)

活动目的:

让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

(2)符号表述

× = ;

÷ = × = .

活动目的:

两种形式巩固对法则的理解。

教学效果:

理解法则,进一步发展学生的符号感。

3、应用:(约20分钟)

(1)牛刀小试

教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。

例1 计算

(1) ;

(2)

活动目的:

抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

教学效果:

有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。

例2.计算:

(1)3xy2÷ ;

(2) ÷

活动目的:

让学生进一步理解类比的学习方法,分式的除法先转化为乘法。

教学效果:

因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。

(2)“西瓜问题”

活动目的:

能解决一些与分式有关的简单的实际问题。能有条理的进行表达。

教学效果:

通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)

4、随堂练习。(约5分钟)

76页第一题,共3个小题。

教学效果:

在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。

5、数学理解(约5分钟)

教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。

补充例3 计算(xy-x2)÷

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)

先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)

教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)

五.说板书设计

主板书采用纲要式,一目了然。

一、 分式的基本性质

1、 文字叙述

2、 符号表述

二、应用

最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。

八年级数学说课稿 篇3

一、教材分析

1、教材的地位和作用

本课位于苏科版义务教育课程标准实验教科书八年级下册第十章第四节第一课时。主要内容是探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似,它是三角形的重要基础知识,学习本节内容,既巩固了前面学习的三角形全等和相似三角形的性质,又为后面学习三角形相似的其他方法打下了坚实的“基石”,起到了承上启下的作用。

2、教学目标

(1)知识目标:探索探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似。

(2)能力目标:通过通过观察、思考探索,小组合作等活动归纳出有两个角对应相等的两个三角形相似,培养宪政“转化”的数学思想方法,提高学生动手和解决实际问题的能力。

(3)情感目:让学生感受数学与生活的`紧密联系,体会数学的价值,培养学生敢想、敢说、敢做的学习习惯和团队协作,勇于创新的精神。

3、教学重、难点

重点:通过探索活动归纳出三角形相似的条件,并运用条件解决实际问题。

难点:三角形相似的探索,特别“对应”的理解。

二、教学方法

根据新课标的要求以及八年级学生的认知水平,贯穿于本节课教学环节的主线是:观察---探究-----讨论----归纳-----巩固展示,采用启发式和师生互动式教学方式,同时利用课件辅助教学来突破重难点。

三、学法指导

(1)八年级学生已经学习了三角形全等和多边形相似,在学习本节内容时,对“相似”和“全等”易混淆,在教学过程中要简单明白、深入浅出的分析。

(2)八年级学生总体较好动,且喜欢表达自己的观点,所以在教学过程中要想方设法将学生的注意力集中到课堂中来,更多地创造条件和机会让学生发表自己的见解,充分发挥学生的主体作用。

四、教学流程

1、创设问题,引入新课 (5分钟)

问题:课本第94页,思考……………….

在这一环节中老师应注重:(1)复习:三角形全等的条件 (2)多边形相似的条件,强调边对应,角对应。

(3)相似三角形的性质;对应角相等,对应边成比例。

2、学生活动,探究新知 (10分钟)

学生活动1:课本第94页,思考:(1)如何画出三个三角形(2)三角形(1)与三角形(2)全等吗?由学生表述并书写。

学生活动2:(1)师提问:根据多边形相似的条件,你能判断三角形(1)与三角形(3)相似吗?引导学生从对应角相等、对应边成比例这两方面思考

(2)学生测量、计算、思考、探究……………………

(3)学生回答…………………

师生共同归纳本节课知识点1:

如果说一个三角形与另一个三角形有两个角对应相等,那么这两个三角形相似

数学语言:在△A“B”C“与△ABC中,若∠A“=∠A,∠B”=∠B,

则△A“B”C“∽△ABC

在这一环节中教师应注重:(1)学生对“对应”的把握 (2)不断激发学生思考和回答问题的积极性,并适当运用“不错”“很好”等话语来激励学生。 (3)学生的合作交流、讨论的能力和质量如何。

3、例题分析、讲解 (10分钟)

例1:课本第94页:例1 例2:课本第95页:例2

在这一环节中教师应注重:(1)在已知题知中如何寻找两个对应角相等 (2)进行规范的板书

学生活动3:课本第95页:思考:……………..

此环节由学生分析并书写出规范的推理过程

师生共同归纳本节课知识点2:平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似

4、趁热打铁,巩固新知 (10分钟)

本环节设计4小题,为课本第95页到96页练习1—4题,由学生单独思考并书写推理过程

在这一环节中,教师应注重:

(1)深入学生中,观察学生的分析过程是否合理,书写是否规范

(2)帮助学习能力较差的学生,并适时表扬书写规范,说理清楚的学生,通过肯定学生让学生感受到成功的喜悦。

5、学生成果展示 (6分钟)

展示内容与方法:巩固练习的4小题,在展台上进行分析过程并强调如何规范书写,教师和其他学生进行适当补充和肯定。

6、总结新知,强调数学思想方法 (3分钟)

设问法,学习了本节课你有什么收获?

在这一环节中,教师应注重:(1)学习小结的知识内容 (2)在能力和情感方面有什么提高和体会,这与“三维目标”相呼应。(3)教师强调数学思想方法:转化,将陌生的知识转化为熟悉的,将未知的转化为已知的。

7、布置作业(1分钟)

作业在讲学稿上,分为必做题和选做题,体现分层教学和分层作业的理念。

8、板书设计

(1)两个三角形相似的条件:文字语言和数学语言

(2)例题讲解 例1: 例2:

(3)平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似

【精选】八年级数学说课稿四篇

在教学工作者实际的教学活动中,时常要开展说课稿准备工作,写说课稿能有效帮助我们总结和提升讲课技巧。说课稿应该怎么写呢?下面是小编整理的八年级数学说课稿4篇,仅供参考,大家一起来看看吧。

八年级数学说课稿 篇4

一、教材分析:

(一)教材的地位及作用:

梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识.本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节.

(二)教学目标;

根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:

1、知识与技能目标:

(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。

(2)培养学生初步应用等腰梯形的性质解决问题的能力。

2、过程与方法目标:

(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。

(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。

3、情感、态度与价值观目标:

(1)在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。

(2)体会探索发现的乐趣,增强学习数学的自信心。

(三)教学重点、难点:

本着课程标准,在钻研教材的基础上,我确定:

1、本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。

2、教学难点:梯形有关计算和推理中的常用策略.

二、教法分析:

针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法。

三、学法指导:

《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式.为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥。

四、教学过程:

(一)创设情境,导入课题。

让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形? 学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况。

学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。

设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究。

(二)动手操作,合作探究。

探究一、梯形的相关概念。

由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。

紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,2010年上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美。接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形。设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系.为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。

待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:

1、梯形是平行四边形吗

2、一组对边平行这组对边不相等的四边形是梯形吗?

设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支,探究二、特殊梯形

为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?

让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的`是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形, 什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。

(四)总结反思,纳入系统。

1、通过本节课的学习你得到了哪些新知识?

2、解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。

(五)布置作业,拓展思维。

学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:

1、基础性作业:课本121面习题4.8节1、2、3题。

2、拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:

(1)等腰梯形。

(2)直角梯形。

要求:所拼成的图形互不重叠且不留空隙。设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念。同时为下节课的学习埋下伏笔。

五、板书设计。

六、教学评价。

本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。

学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题。

八年级数学说课稿 篇5

大家好!

今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。

一、教材分析

(一)教学内容的地位

本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。

(二)教学重点、难点:

三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。

另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。

突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。

二.教学目标

基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。

(一)知识与技能目标:

会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

(二)过程与方法目标:

经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。

(三)情感、态度价值观目标:

通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的'联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。

三、学情分析

七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。

四、教学方法与学法指导:

根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。

五.教学活动程序:(设计为六个环节:)

我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。 定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5. ‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。

六.设计说明与教学反思

本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观 ,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。

本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点 ,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。

新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:1、关注学生探索结论、分析思路和方法的过程。2、关注学生说理的能力和水平。3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。

以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!

八年级数学说课稿 篇6

各位领导、老师们:

大家好!

今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

一、教材分析

1、教材的地位与作用:

本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:

知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

3、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形性质的推理证明。

二、教法设计:

教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

三、学法设计:

在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

四、教学过程:

根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

1、创设情景:

首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

2、动手操作,大胆猜想:

①拿出课下制作的.等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

③分组讨论。(看哪一组气氛最活跃,结论又对又多.)

然后小组代表发言,交流讨论结果。

④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

(教师引导学生进行总结归纳得出性质1,2)

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

3、证明猜想,形成定理:

你能证明等腰三角形的性质吗?

对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)

(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

(1)作顶角∠BAC的平分线,

(2)作底边BC的中线,

(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。

(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)

(4)你能用符号语言表示性质1和性质2吗?

(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——

4、性质的应用:

例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

变式练习:

1、在等腰中,∠A=50°,则 ∠B=___,∠C=___

2、在等腰中,∠A=100°,则∠B=___,∠C=___

设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如

例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。

例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______

变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______

(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

例四:

在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

5、巩固提高

(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

(3)课本本章数学活动三“等腰三角形中相等的线段”

设计意图:

(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

7、布置作业:

P55练习1、2、3题

P56习题1、4、6,(选做7,8题)

八年级数学说课稿 篇7

一、说教材

(一)教材的地位和作用

今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。《生活中的平移》对图形变换的学习具有承上启下的作用。

(二)教学目标

根据上述教材分析,以及新课程标准,考虑到学生已有的认知结构、心理特征,制定如下教学目标

知识目标:

通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

能力目标:

通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力.

情感目标:

经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.

(三)教学重点与难点

平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。

平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的.难度,因此本课的难点是平移特征的探索及理解。

上面是对教材的地位与作用、教学目标以及教学重难点的分析,接下来我将说说学情:

二、说学情

1.学生已经学习学习了轴对称及轴对称图形,对图形的变换已经有了了解,有了一定的学习基础。

2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。

下面为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

三、说教法与学法

基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

1.遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、类比、归纳、学习。

2.借用多媒体课件与实物辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生许学习几何方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。

四、说教学过程

课堂结构:(一)创景引趣 (二)探究归纳 (三)反馈练习 (四)实际运用 (五)感情点滴 (六)布置作业六个部分.

(一)创景引趣

课开始,我先由学生很熟悉的生活经历引入,让学生在轻松,愉快的心情下开始学习。如问同学们,你们小时候去过游乐园吗,在游乐园中你们玩过哪些游乐项目,在玩这些游乐项目时你们想过什么,你们想过它里面蕴含着数学知识吗?现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的 (课件展示),观看游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯等等,引导学生发现这些项目有什么特征,从而引出本节课研究内容:生活中的平移。

(二)探究归纳

在引入的基础上,探索新知,出示课件观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。

分小组讨论以上几种运动现象有什么共同特点,鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角, 把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。

(三)反馈练习

学生对所学知识是否掌握了呢 为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。

(四)知识拓展

为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活.这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。

(五)及时总结

可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如“我发现了什么……我学会了什么……我能解决什么……”等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力.

(六)布置作业

结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题让“不同的人在数学上得到不同的发展”。

五、说板书设计

本节课我将采用重点式的板书。重点式的板书将教材内容中最关键的知识加以概括、归纳,列成条文,按一定顺序板书,这种板书,条理清楚,重点一目了然。

八年级数学说课稿 篇8

各位专家评委,您们好!

今天我说课的内容是人教版义务教育课程标准实验教科书《数学》八年级下册第十九章《四边形》第三节的第一课时《梯形(一)》.下面我就从教学背景分析、教学目标设计、教学手段及方法、教学程序设计、教学评价设计这五个方面把我的理解和认识作一个说明.

一、教学背景分析:

(一)关于教学内容和要求的分析:我们所使用的教材是新课程标准指导下的新版人教教材,本章的内容分为四节:平行四边形;特殊的平行四边形;梯形;课题学习:重心.梯形这一节分为两课时,第一课时介绍的主要内容是梯形的相关概念、等腰梯形的性质及应用;第二课时介绍的主要内容是等腰梯形的判定方法及其应用.在本节学习过程中渗透了数学转化思想和数学建模思想.本节课通过对梯形相关概念及性质的学习,尤其重点研究了等腰梯形的性质和应用,不仅使学生掌握了新知,还帮助学生加深对平行四边形及特殊的平行四边形相关知识的理解,从而使四边形知识点及研究方法系统化,还为继续学习等腰梯形的判定等知识打下基础,因此本节课的学习具有承上启下的作用.

(二)学生情况分析:日坛中学是一所市级示范校,学生的基础较好,求知欲强,思维活跃,有较好的动手操作能力,八年级的学生能够较为有条理的思考.学生在小学时初步学习了梯形的定义,认识了等腰梯形、直角梯形,会求梯形面积.通过本章前面两节的学习,学生对于研究四边形的基本思路已有一定程度的认识.但对梯形与平行四边形、三角形间的内在联系认识还需提高,因此这也成为这节课的难点.

二、教学目标设计:

(一)教学目标的制定:根据数学课程标准(实验)的要求和教学内容的特点,以及学生的认知水平,确定本节课三维教学目标如下:

1.知识与能力:⑴探索并掌握梯形的相关概念⑵了解等腰梯形的性质⑶能够运用梯形有关概念和性质进行证明和计算

⑷探索解决梯形问题的基本方法:如何正确添加辅助线

2.思维与方法:⑴在探索相关概念、性质的过程中,经历观察、实验、归纳、类比等获得猜想,并进一步寻求证据、给出证明,发展学生逻辑思维能力和几何直觉⑵通过梯形与平行四边形和三角形之间的动态转化,使学生认识知识间的内在联系.⑶在教学过程中培养学生分析问题、解决问题的能力.

3.情感与价值观:⑴在探索、应用过程中感受数学美⑵在证明过程中培养学生良好的学习、思维习惯,以及不畏困难的钻研精神⑶使学生形成初步的辩证唯物主义的世界观

(二)教学重点、难点的确定: 重点:等腰梯形的性质及其应用.难点:是解决梯形问题的基本方法——通过添加适当的辅助线,将梯形问题转化为平行四边形和三角形问题来解决富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务.

三、教学手段及方法:

(一)教学媒体设计:本节课注重运用计算机辅助教学,特别是几何画板的运用,更加直观的展示图形的运动变化过程,向学生提供了一个数学实验的平台,使学生清晰的感受数学之美,几何之妙.把现代信息技术作为学生学习数学和解决问题的强有力的工具,有利于改变学生的学习方式,使学生愿意投入到探索性的数学活动中去.

(二)教学方法的.选择:兴趣是最好的老师,为了激发学生学习兴趣,使其发自内心的愿意和老师一起探究本节课的数学知识、方法,我采用了启发探究式的教学方法.在整个教学过程中,在老师的引领关注下,学生能够适时适量的进行自主探究,从而充分发挥教师的主导作用和学生的主体地位.在整体结构上力求突出观察、实验、归纳、类比、猜想、论证、小结等环节,这也正是数学发现的过程,并且把形象思维、直觉思维、逻辑思维的训练与培养结合起来.

四、教学程序设计:

(一)课堂结构设计

下面我给大家一个三角形,你能将三角形变成一个梯形吗?学生可能会说切掉一个角,这时教师用几何画板进行演示(如图),并询问“这样切行不行?”,学生会说不行,“那应该怎样切?”必须使上下底平行.还有没有其他方法?下面我们一起看屏幕,(用几何画板演示)平移一般三角形一边得到的是一个梯形;如果给一个等腰三角形,用同样方法平移一腰得到什么图形?等腰梯形.它的特点是什么,两腰相等,从而得到等腰梯形定义;如果给的是一个直角三角形又会得到什么图形呢?直角梯形,它的特点是有一个角是直角,从而得到直角梯形定义.上述探究过程,即动态演示了梯形的形成过程,还使学生明确梯形可由平行四边形和三角形构成,从而为后面学习添加辅助线解决相关问题埋下伏笔.

第二阶段:探究新知阶段

1.观察与实验:在掌握上述概念的基础上,下面我们主要研究等腰梯形的性质.让学生拿出一张事先准备好的矩形纸片,提出问题:你能用一剪刀剪出一个等腰梯形吗?通过探究学生将这样折叠,剪裁.学生在剪裁的过程中会发现:等腰梯形是轴对称图形;对称轴是等腰梯形上下底中点的连线;同时还会发现等腰梯形边、角之间的一些数量关系.将猜想结论用文字语言表述,即得到命题1:等腰梯形同一底边上的两个角相等.通过对本章前两节的学习,学生对研究四边形性质的程序较为熟悉,知道从四边形的边、角、对角线、对称性这几方面入手.通过观察等腰梯形,猜想其对角线间的数量关系,学生会说相等,教师用几何画板进行验证,发现刚刚的猜想是正确的.将猜想结论用文字语言表述,即得到命题2:等腰梯形的两条对角线相等.在掌握等腰梯形的性质时,学生容易遗漏其对称性,在这里要着重强调以加深学生的印象.

2.探索与证明:命题1、2是我们经过实验归纳的猜想结果,为了使学生认识知识之间的联系以及培养学生的推理和逻辑思维能力,要对两个性质进行论证.虽然学生不是第一次接触命题证明,但掌握得并不熟练,因此首先教师引导学生将文字语言转化为符号语言.

等腰梯形同一底边上的两个角相等

已知:如图,在梯形ABCD中,AD∥BC,AB=CD.求证:∠B=∠C;∠A=∠D.

下面是学生活动,刚才经过三角形边的平移生成了梯形,那么反过来也可以将梯形转化为三角形和平行四边形的问题解决.由学生总结出证明等腰梯形的命题1的添加辅助线的2种方法:平移腰、作高.之后教师带领学生完成这个命题的证明过程,从而得到等腰梯形性质1.

证:方法一(平移腰)过点D作DE∥AB交BC于E,

∵AD∥BC,∴四边形ABED是平行四边形.∴DE=AB,∠B=∠DEC.

∵AB=DC,∴DE=DC.∴∠C=∠DEC.∴∠B=∠C.∴∠A=∠D.

等腰梯形的两条对角线相等

已知:如图,在梯形ABCD中,AD∥BC,AB=CD,连接AC、BD.求证:AC=BD.

在证明了性质1后,可以直接将其作为结论应用于命题2的证明,只需证明两个三角形全等即可.证明过程由学生独立完成.从而得到等腰梯形性质2.

证:∵AD∥BC,AB=CD,∴∠ABC=∠DCB.在△ABC和△DBC中

AB=CD,

∠ABC=∠DCB,

BC=BC, ∴△ABC≌△DBC(SAS).∴AC=BD.

等腰梯形性质2:等腰梯形同一底边上的两个角相等.

其应用格式为:∵AD∥BC,AB=CD,∴AC=BD.

等腰梯形的性质,为我们提供了一种新的证明线段相等、角相等的方法.

第三阶段:例题与练习

(一)例题

例1、已知:在梯形ABCD中,AD∥BC,AB=CD,AD=4,BC=12,∠C=60°,求AB的长.

本道例题的设计目的是为了让学生进一步探究解决梯形问题的方法,并练习应用等腰梯形的性质解题,从而进一步掌握本节课新知,体会其简洁性.

首先让学生仔细审题,接着引导学生分析:求AB的长要把它放在三角形或平行四边形中解决,再结合已知中∠C=60°的条件,可以利用等边三角形、或有一个角是60°的直角三角形的相关结论解题.下面是学生活动,由学生自行写出解题过程,再请学生代表进行展示,教师规范格式.

解:方法一(平移腰)过点D作DE∥AB交BC于E,∵AD∥BC,∴四边形ABED是平行四边形.

∴AD=BE=4.∴EC=BC-BE=8.∵AB=CD,∴DE=DC.∴∠C=60°.∴EC=DE=DE=8.∴AB=8.

方法二(延腰)延长BA、CD交于点E,∵AD∥BC,AB=CD,∠C=60°,∴∠B=∠C=60°

∴Rt△ABE≌Rt△DFC(HL).∴BE=FC.∴2CF=BC-EF=12-4=8.

∴CF=4.∵∠C=60°,∴∠CDF=30°.在Rt△DFC中,DC=2CF=8.∴AB=8.

(二)练习

1.在梯形ABCD中,已知AD∥BC,∠B=50o,∠C=80o,AD=5cm,BC=8cm,则DC=.

2.直角梯形的高是6cm,有一个角是30o,则这个梯形的两腰分别是和.

在例题之后我配备了两道填空题作为课堂练习,由学生独立完成,在学生解题过程中教师要关注其将数学语言转化为图形语言的能力.通过这两道题目的练习,使学生体会梯形辅助线的添加不仅局限于等腰梯形,还适用于任意梯形,进一步熟练梯形性质在解题过程中的应用.

第四阶段:归纳小结、回顾反思例题和练习之后,师生共同对本节课进行教学总结.

知识与能力:1.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形.

2.等腰梯形的性质:⑴边:一组对边平行,另一组对边不平行;两腰相等⑵角:等腰梯形同一底上的两个角相等⑶对角线:等腰梯形对角线相等⑷对称性:是轴对称图形,对称轴是等腰梯形上下底中点的连线

3.解决梯形问题中添加辅助线的方法(教师用几何画板演示,使学生更加直观生动地认识辅助线添加的作用):

⑴平移腰:作梯形一腰的平行线,可以把梯形分为一个平行四边形和一个三角形

⑵延长两腰交于一点:延长两腰可将梯形问题转化为三角形问题

⑶作高:作底边的两条高可以构造直角三角形

这几种辅助线只是解决梯形问题方法中的一部分,在接下来的学习中我们将陆续介绍其他的添加方法.

思维与方法:通过本节课的学习,学生进一步认识体验数学建模思想、转化思想等数学思想方法,并在解题过程中提高了计算能力、逻辑思维能力,增强了几何直觉.通过对本节课学习的回顾小结,可以使学生的知识体系系统化,有助于学生数学学习方法和习惯的养成,有利于日后学习.

第五阶段:课后巩固练习最后从不同层次布置了3项作业:1.看书:P117——118.(目的:让学生养成复习的好习惯).

五、教学评价设计:

本节课对学生的评价是多角度的,在教学过程中,从学生学习积极性、动手操作能力、语言表达能力、数学素养、克服困难的钻研精神等多方面对其学习过程和学习效果进行评价;课后通过作业练习将这种评价延续.教师要根据不同学生的不同程度发现闪光点,及时予以肯定,同时及时发现学生在学习探究过程中遇到的问题,给与指导和帮助,从而为保护学生的学习积极性.学生之间的互相评价也是激发学生学习潜能的有效手段.同伴间的互动可以使学生虚心求学、互相促进.以上是我对《梯形(一)》这节课的一些设想,还有很多不足之处,恳请各位专家多多批评指正,谢谢!

八年级数学说课稿 篇9

一次函数说课稿各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

一、 说教材

(一)本节内容在教材中的地位和作用

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

数学思考:

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、说教法学法

1、教学方法

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的`是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、 说教学程序设计

(一)、创设情境,导入新课

活动1:观察:

展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

八年级数学说课稿 篇10

一、说教材

(一)本节内容在教材中的地位和作用

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

数学思考:

1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、说教法学法

1、教学方法

依据当前素质教育的'要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、说教学程序设计

(一)、创设情境,导入新课

活动1:观察:

展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

八年级数学说课稿 篇11

一、说教材

“数据的分段整理”是苏教版小学数学四年级上册第九单元《统计与可能性》中的内容。分段整理数据是基本的统计活动,在第一学段,学生已经能够按统计对象的某些属性,如品种、形状、颜色、用途……进行分类统计。本单元继续教学把一组数据按大小分成若干段进行统计,并把统计获得的数据填入相应的统计表里。本课时是初步教学分段统计数据,所以例题和习题都明确了数据以及各段的数值范围,不要求学生独立设计分段。 本课时内容主要是数据的分段整理。 教材通过创设学校准备为鼓号队员购买服装,想请全体学生出谋划策的教学情境,引出怎样购买鼓号服这一学习任务。 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据,完成统计表,分析整理后的数据,根据分析结果解决实际问题。

《数学课程标准》指出,教师不应只做教材忠实的实施者,而应该做教材的开发者和建设者,要学会创造性地使用教材。为了更加贴近每个学生生活经历,让学生有话可说,我对教材进行了重新开发,把购买鼓号队服改为购买校服。围绕购买校服而产生的一系列问题,引导学生经历“收集数据——分段整理——制作统计表—— 分析数据”的.全过程,而学习重点放在分段整理数据上,整理的方法采用 多种方法,在交流比较的过程中逐步优化,突出 画“正”字的方法 ,得到的数据仍然采用单式统计表描述。所以教学中应突出数据分段的必要性、分段方法以及如何分段整理,使学生在活动中掌握这部分知识,形成相关的统计技能。为今后更进一步学习统计图表、概率等知识打好基础。

二、说学情

四年级的学生由于在第一学段中对数据统计过程已有所体验,并学会了一些简单的收集,整理和描述数据的方法,能根据统计结果回答一些简单的问题。在此基础上,再次经历统计过程,让学生进一步体会收集和整理数据的必要性,感受统计是解决问题的方法之一。

根据小学儿童好动、注意力容易分散、求知欲强等心理特征,在教学中,我注重创设与学生生活的环境、知识背景密切相关的,又是学生感兴趣的学习情境。从学生熟悉的事物出发,有效地组织、引导学生进行观察、交流、反思等活动,并使全体学生参与到实践活动之中。

三、说教法与学法

《数学课程标准》指出,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。传统的严格意义上的教师教和学生学,应该不断让位于师生互教互学,彼此形成一个“学习共同体”。

根据教材内容的特点,结合学生实际,在教学中我灵活采用谈话法、观察法、讨论法、练习法等多种教学方法。引导学生通过搜集全班同学的身高数据、根据服装型号分段、用画“正“字等方法整理、绘制统计表、利用统计数据到服装厂定做校服等。用统计方法解决问题。学生在迫切完成任务和强烈的探究兴趣驱动下, 对本来枯燥的统计知识产生一种新鲜感和真实感,每个学生都能自觉地参与到学习中。学生能自然而然地根据已有的生活经验,通过调查访问、探究尝试、合作商讨、交流反思等多种学习方法,真实经历用统计解决问题的全过程 ,特别是学会了分段整理的方法,从而获得了成功的愉悦体验。

A、重视激活学生的生活经验

本课的导入,给学生做校服的情境, 使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据。学生经历了统计的全过程,感受到统计表与身边的人和事是息息相关的。最后,布置学生写一份建议书,也是深有教育价值的。

B、重视引导学生进行分析

数据统计的全过程有数据收集,数据整理,统计制表,分析数据,得出结论五个环节,其中分析数据是重要的环节,也是课程标准中强调的内容。在“女生1分钟跳绳检测”一题中,我引导学生尝试分析“你 看了这张统计表,你知道了什么?”在“空气质量”一题中,我让学生说“ 看了这些数据,你觉得常州市的空气质量情况如何?为什么?作为一个常州的小市民,你觉得能为改善常州的环境做些什么?”学生的分析是推己及人,丰富多彩的,是符合孩子心理实际的。设计这样的分析,我认为是统计中必不可少的环节,也是对学生进行行为习惯教育的良好载体。

关于八年级数学说课稿范文合集六篇

作为一位无私奉献的人民教师,常常要写一份优秀的说课稿,认真拟定说课稿,我们该怎么去写说课稿呢?以下是小编帮大家整理的八年级数学说课稿6篇,仅供参考,大家一起来看看吧。

八年级数学说课稿 篇12

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的'形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)

3、若x2—y2=30,x—y=—5求x+y。

八年级数学说课稿 篇13

一、教学目标

1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算.

2.会进行简单的二次根式的乘法运算.

3.使学生能联系几何课中学习的勾股定理解决实际问题.

二、教学重点和难点

1.重点:会利用积的算术平方根的性质化简二次根式.

2.难点:二次根式的乘法与积的算术平方根的关系及应用.

重点难点分析:

本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简.积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.

本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足.

三、教学方法

从特殊到一般总结归纳的'方法,类比的方法,讲授与练习结合法.

1. 由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2. 积的算术平方根的性质和 ( )及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要

的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段

利用投影仪.

五、教学过程

(一)引入新课 观察例子得到结果

类似地可以得到:

由上一节知道一般地,有=(a,b)

通过上面的例子,大家会发现 =(a,b) 也成立

(二)新课

积的算术平方根.

由前面所举特殊的例子,引导学生总结出:一般地,有 (a≥0,b≥0). 积的算术平方根,等于积中各因式的算术平方根的积.

要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0.在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积.根据这个性质可以对二次根式进行恒等变形。 化简,使被开方数不含完全平方的因数(或因式):

1、 2、 3、

说明:1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。

2、 (a≥0,b≥0)可以推广为 (a≥0,b≥0,c≥0)

化简二次根式的步骤

1、将被开方数尽可能分解出平方数;

2、应用=(a,b)

3、将平方项利用=化简

小结:1、积的算术平方根与二次根式的乘法的互逆性;

2、灵活应用他们进行二次根式的乘法运算及化简二次根式

作业;由于本节课后习题较少,可适当补充紧贴教材的课外习题

八年级数学说课稿 篇14

一、说教材

1。本课在在教材中的地位和作用 《分式的加减》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同 分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质, 这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好 必备的知识储备。

2。教学目标

①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;

②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;

3。情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。

(3)重点、难点

①重点:掌握分式的加减运算

②难点:异分母的分式加减运算及简单的分式混合运算

二、说教法

本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终, 通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。

三、说学法

根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。 四、说教学过程

(一)创设情境,导入新知

第一环节:提出问题

问题 1: 甲工程队完成一项工程需 n 天,乙工程队要比甲队多用 3 天才能完成这项工程,两队共同工作一天完 成这项工程的几分之几?

问题 2:20xx 年,20xx 年,20xx 年某地的森林面积(单位:公顷)分别是 S1,S2,S3,20xx 年与 20xx 年相比, 森林面积增长率提高了多少?

老师活动:组织学生分组讨论,再共同研究 学生活动:小组讨论、探究、发言 设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经 历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。

第二环节:同分母分式相加减

想一想:(1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3; (2)思考:类比分数的加减法则,你能归纳出分式的加减法则吗? 老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则 学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。 在学生通过交流得到猜想的基础上出示做一做: 做一做:(1)1/a+2/a=_____________ 2 (2)x /(x—2) – 4/(x—2)=___________ (3)(x+2)/(x+1) –(x—1)/(x+1)+(x—3)/(x+1)=___________ 教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法 则:同分母的分式相加减,分母不变,把分子相加减 老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则 学生活动:通过个体练习,领悟规律,再小组交流,形成法则 设计意图:引导学生通过类比分数运算方法,大胆猜想分式的'加减法则

(二)主动探究,拓展延伸

第三环节:异分母的分式相加减 想一想:(1)异分母的分数如何相加减?如:1/2+2/3=?:1/2—2/3=?。 (2)你认为异分母的分式应该如何加减?如:1/a+2/b=? 老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法 学生活动:参与交流、讨论、归纳异分母分式加减的方法 设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同 分母分式的方法,培养学生的转化思想,为下节课做好准备

(三)例题教学

第四环节:解决问题

(1)回到开始提出的两个问题: s3 ? s 2 s 2 ? s1 1 1 ? 问题一: ( ? ) s2 s1 n n ?3 问题二:

(2)例题 1:计算(课本 P81 页) 老师活动:出示习题,巡视、引导、纠正 学生活动:自主完成

设计意图:进一步提高学生对异分母分式的加减运算能力

(四)随堂练习

第五环节:巩固深化

老师活动:巡视、引导 学生活动:个体练习、板演 设计意图:检验学生是否掌握分式的加减运算方法 (五)课堂小结 第六环节:提高认识 老师活动:本节课我们学了哪些知识?在运用过程中需要注意些什么?你有什么收获? 学生活动

归纳总结

(1)同分母分式加减法则

(2)简单异分母分式的加减 设计意图:锻炼学生及时总结的良好习惯和归纳能力 (六)作业布置 第七环节:反思提炼 课本 P27 第 1、2 题 五、板书设计

八年级数学说课稿模板汇编五篇

作为一名人民教师,时常要开展说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。那么什么样的说课稿才是好的呢?下面是小编帮大家整理的八年级数学说课稿5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

大家都在看