知远网整理的初中数学教案(精选12篇),希望能帮助到大家,请阅读参考。
初中数学教案 篇1
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一 知识回顾
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二 问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2.设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三 解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四 巩固提高
1.第91页练习(1)(2)
2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1.学生在计算中可能出现的'错误。
2.x系数为分数时,可用乘的办法,化系数为1。
3.用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
初中数学教案 篇2
教学目标
1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2, 能区分两种不同意义的量,会用符号表示正数和负数;
3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程(师生活动) 设计理念
设置情境
引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的`问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习 教科书第5页练习
小结与作业
课堂小结 围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
初中数学教案 篇3
教学目标
1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1庇么数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2庇糜镅孕鹗龃数式2n+10的意义
3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容
二、师生共同研究代数式的值的意义
1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值
2苯岷仙鲜隼题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号
例2根据下面a,b的值,求代数式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值
2钡盿=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2
3钡眡=5,y=3时,求代数式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、师生共同小结
首先,请学生回答下面问题:
1北窘诳窝习了哪些内容?
2鼻蟠数式的值应分哪几步?
3痹“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
今天的内容就介绍到这里了。
初中数学教案 篇4
教学目标:
1、体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法法收集和整理数据。
2、初步认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。
3、通过身边有趣事例的的调查活动,激发学习的兴趣,培养学合作意识和实践能力。
教学重点:
体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用正字法收集和整理数据;认识条形统计图(1个格子表示两个单位)和统计表。
教学难点:
认识条形统计图(1个格子表示两个单位)和统计表,能根据统计图表中的数据提出并回答问题。
教学方法:
讨论法、观察法、情景法、分小组合作学习法
教具准备:
操行统计表、水彩笔
教学过程:
一、设情景问题置疑,引入新课。
师:同学们,六一儿童节就要来了,我们班上要出两个节目,大家觉得我们可以出什么呢?
生:唱歌、跳舞、绘画、走时装步。
师:不错,合唱、舞蹈、小品、乐器我们可以考虑一下,我们可以从这四类节目中选出两个,我们怎么决定出哪两个节目呢?这就要用到我们一年级时所学的统计知识。老师想让大家投票来决定,下面老师请每组讨论出两个节目,等会投票。板书课题:“统计”
二、探究新知(随时注意给表现突出的大组或个人加五星和红旗)
1、收集数据的过程
师:我们要知道哪两个节目的票数第一步就需要我们来收集数据。
板书“收集数据”
师:小组讨论收集数据的方法。(教师行间巡视,对方法收集好的小组和合作愉快的小组加五星)
师:下面请各小组汇报交流各种方法,并说说本小组认为最简单的记录方法,谈谈为什么?
师:老师今天给大家带来一个新的方法正字法,下面组长就把讨论结果在黑板上按“正”字的书写顺序画一笔画。(学生按大组顺序上台投票配上音乐伴奏曲)
2、整理数据的过程
师:请大家整理好每种节目的票数,再填到统计表中,我们数“正”字笔画的过程,就是我们整理数据的过程。(板书“整理数据”)
师:为了能够使每种节目的数目更直观的表示出来,让我们来共同制作统计图。(小组讨论汇报交流,老师根据学生的汇报在条形统计图下板书节目种类。)师:0是起点,如果1格表示1票,则数轴上依次应标的数字是1、2、3糟了,合唱的票数最多有8票,只有5格,不够涂该怎么办呢?
师:下面请小组一起讨论解决问题的方法
生:(汇报交流结果)一个格子不表示1票,而把它表示成两票刚好用4个半格子
师:大家觉得他的方法可行吗?没错,我们可以用一个格子表示2票。请大家分别在条形统计图上用这种方法表示出每种节目的票数。老师想请一位同学到黑板上来画一画。
师:一个格子表示几票要根据统计表中数量最多的项目和每竖行总共的格子数来确定。
3、描述、分析的过程
师:从黑板上的统计表和统计图中你看出了些什么?知道了什么,明白了什么?生:的票最多?的票最少?最多的比最少的多几票?知道了条形统计图中一个格子不但可以表示1个人或物,还可以根据具体的情况表示2个或3个甚至更多个人或物。
师:刚才大家的回答就是我们对统计表描述分析的过程(板书“描述、分析”)
三、联系生活
师:在我们的生活中有很多地方都要用到我们的统计知识,比如跟跟妈妈一起去超市购物回来,我们可以统计买的什么种类的商品最多;老师在班上要统计哪一组的五角星最多,哪一组的表现最优秀等等。回家后大家继续找一找能够用到统计的例子,下节课我们一起来说一说。
四、描述分析
这个案例能贴近学生生活,从学生感兴趣的事例中选取素材进行教学。案例中,教师创设良好的学习情境,让学生从熟悉有趣的“庆六一”开联欢会出节目出发。由于学生喜欢的节目很多,可是出2个节目,产生进行统计活动的需要,必须从同学们喜欢的节目中选取最多人喜欢的2个节目。只有通过统计才能确定出哪2个节目。让学生经历收集信息、处理信息的过程,逐步体会统计的必要性。在这样一个良好的情境中,学生积极主动地探索、合作、交流,课堂成了学生创造灵感的空间。
关于初中数学教案
作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写才合适呢?以下是小编帮大家整理的关于初中数学教案,欢迎阅读与收藏。
初中数学教案 篇5
教学目标:
1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)
2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)
3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)
教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题
教 具: 多媒体、棉线、三角板
教学过程:
情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描述我们所看到的现象?
教学过程:
1、 一段拉直的棉线可近似地看作线段
师生画线段
演示投影片1:①将线段向一个方向无限延长,就形成了______
学生画射线
②将线段向两个方向无限延长就形成了_______
学生画直线
2、 讨论小组交流:
① 生活中,还有哪些物体可以近似地看作线段、射线、直线?
(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)
②线段、射线、直线,有哪些不同之处, 有哪些相同之处?
(鼓励学生用自己的语言描述它们各自的特点)
3、 问题1:图中有几条线段?哪几条?
“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法: 用一个大写英文字母
线段的记法:①用两个端点的字母来表示
②用一个小写英文字母表示
自己想办法表示射线,让学生充分讨论,并比较如何表示合理
射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的.记法:
① 用直线上两个点来表示
② 用一个小写字母来表示
强调大写字母与小写字母来表示它们时的区别
(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)
练习1:读句画图(如图示)
(1) 连BC、AD
(2) 画射线AD
(3) 画直线AB、CD相交于E
(4) 延长线段BC,反向延长线段DA相交与F
(5) 连结AC、BD相交于O
练习2:右图中,有哪几条线段、射线、直线
4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?
学生通过画图,得出结论:过一点可以画无数条直线
经过两点有且只有一条直线
问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?
为什么?(学生通过操作,回答)
小组讨论交流:
你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?
适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。
5、 小结:
① 学生回忆今天这节课学过的内容
进一步清晰线段、射线、直线的概念
② 强调线段、射线、直线表示方法的掌握
6、 作业:①阅读“读一读” P121
②习题4的1、2、3。4作为思考题
初中数学教案 篇6
【学习目标】:
1.认识棱柱、圆锥等简单立体图形的展开图;能根据展开图判断立体图形。
2.通过观察和动手操作,经历平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。
【学习重点】:
一个立体图形按照不同方式展开可得到不同的平面展开图;能根据展开图判断立体图形。
【学习难点】:
判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形。
【导学指导】
注意:并非说所有的立体图形都可以展开成平面图形(如球体),但多面体一定能;反之并非说有的平面图形都能围成立体图形。
预习导学--不看不讲
一、知识链接
我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的棱适当剪开,可以展平成平面图形。这样的`平面图形叫做相应立体图形的展开图。你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?
二、自主探究
知识点一:立体图形的展开
1、动手做:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?
圆柱圆锥三棱柱长方体
思考:请你指出上面展开图各部分与几何体的哪一部分相对应?
归纳总结:(1)圆锥的侧面展开图是一个。其中扇形的弧长是。(2)圆柱的侧面展开图是一个。长等于圆柱的,宽等于。
2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,
初中数学教案 篇7
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的`图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,
点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。 教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。 2、调动学生丰富的联想,养成一种思考的习惯。 教学重难点:"扑克"与年月日、季度的联系。 教学过程: 一、谈话引入 师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢? 生:...... (教师补充,引发学生的好奇心。) 师: "扑克"还有一种作用,而且与数学有关! 生:...... 二、新课 1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬 2、大王=太阳 小王=月亮 红=白天 黑=夜晚 3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1 4、所有牌的和+小王=平年的天数 所有牌的和+小王+大王=闰年的天数 5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月 6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。 7、一种花色的和=一个季度的天数 一种花色有13张牌=一个季度有13个星期 三、小结 生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。 课 题:几何画板简介 教学目标:1)通过几何画板课件演示展示其魅力激起兴趣 2)了解几何画板初步操作 教学重点:让学生了解几何画板的工作界面 教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程: 一、概述几何画板 几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。 二、几何画板作品展示 三、几何画板简介 1)启动 开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、 画板。工具(从上到下) 选择 、画点、画圆 、画线、 文本 、对象信息、 脚本工具目录。 2)操作初步 1、文件 新画板 打开一个新的空白画板。 新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。 保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。 打印预览 打印 退出 2、 选择 几何画板的操作都是先选定,后操作。 选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。 选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。 功能:移动选定的目标按 平移/旋转/缩放 方式移动。 选一个目标 鼠标对准画板中的目标(点、线、圆等),指针变为横向箭头,单击。 选两个以上目标 法一 第二个及以后,Shift+单击。 选两个以上目标 法二 空白处拖曳→虚框;虚框中的目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。 从多个选中的目标中不选一个 Shift+单击。 选目标的父母和子女 选定,编辑|选择父母/或选择子女。 选所有 编辑|选择所有。 选画点/画圆...,编辑|选择所有点/圆...。 3、删除 删除目标 选目标;Del键(注:同时删除子女目标)。 复原一步 Ctrl+Z = 编辑|复原。 画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。 4、显示 线类型 设置选定的线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。 字号/字型 设置选定的标注、符号、测算等文字的字号和字型。 字体 设置选定的标注、符号、测算等文字的字体。 显示/隐藏 显示/隐藏 选定的目标(Ctrl+H)。 显示所有隐藏 显示所有的.隐藏目标。 显示符号 显示/隐藏 选定目标的符号。 符号选项 更改 符号/符号序列。 轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。 动画 根据选定的目标条件进行动画运动。 参数设置 角度、弧度、精确度等的设置。 5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。 6、快捷键 隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T当前目标可操作的内容右键。 (以上简略选讲1、2、3) 四、熟悉几何画板的界面,了解常用工具的用法, 五、把一个三角形分成四等份: 1)用画线工具画一个三形,2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。 3)选择“构造”,---“画中点” 六、验证面积相等: 1)按住shift键,选取点。 2)“构造”---“多边形内部”。 3)“测算”---“面积” 七、等分线段: 1)画射线作辅助线。 2)选取一段做标记向量。 3)“变换”---“平移”。 4)“作图”---“平行线”。 用平行线的性质等分线段。 八、画基本图形 1、画点 选画点,单击画板上一点。(并显示标签) 2、画圆 画圆的两种方法及区别。 (设置不同显示方式) 3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线 九、课后反思 在图中标注文本文字,用辅助线把一线段如何分为四等份 【教学目标】 1进一步认识方程及其解的概念。 2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。 【教学重点】 一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。 【教学难点】 用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。 【学习准备】 1.下面哪些式子是方程? (1)3 (2)1; (2)x31; (3)3x5; (4)2xy4; (5)x31; (6)3x14. 2.方程与等式有什么联系与区别? 方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。 【课本导学】 思考一阅读并解答课本第114页“合作学习”的三个问题,思考: 1.列方程就是根据问题中的相等关系,写出含有未知数的等式。 (1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢? (2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加 (3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示? 你是怎么理解“三人平均每人投进14个球”这句话的? 思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考: 1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。 2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习 1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点? 思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题: 1.(1)如果一个数是方程有什么关系? (2)如果一个数是方程350应该是多少? (3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12 14的`解,这个数代入方程的左边计算得到的值与14 3 1 x500的解,这个数代入方程的左边计算得到的值10 2x12 14进行尝试求解时,你认为x必须是整数吗 x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。 [练习]完成课本第115页课内练习 2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些? 2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】 【学习检测】 1.下列说法正确的是() (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程 2.下列式子中,属于一元一次方程的是()(a)5x 1 (b)ab8(c)1257(d)5x82x9 3 3.设某数为x,根据下列条件列出求该数的方程: (1)某数加上1,再乘以2,得6. (2)某数与7的和的2倍等于10. (3)某数的5倍比某数小3. 4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆? 设还需租用x辆,则可列出方程44x+64=328. (1)写出一个方程,使它的解是 2.【作业布置】略 【课后反思】 课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进: 1.忽略课堂“火花”,错失追问良机 在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】 师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程. 师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢? 不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什 一、课题 27.3 过三点的圆 二、教学目标 1.经历过一点、两点和不在同一直线上的三点作圆的过程. 2.. 知道过不在同一条直线上的三个点画圆的方法 3.了解三角形的外接圆和外心. 三、教学重点和难点 重点:经历过一点、两点和不在同一直线上的三点作圆的过程. 难点:知道过不在同一条直线上的三个点画圆的方法. 四、教学手段 现代课堂教学手段 五、教学方法 学生自己探索 六、教学过程设计 (一)、新授 1.过已知一个点A画圆,并考虑这样的圆有多少个? 2.过已知两个点A、B画圆,并考虑这样的圆有多少个? 3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个? 让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑. 得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个. 不在同一直线上的三个点确定一个圆. 给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心. 例:画已知三角形的外接圆. 让学生探索课本第15页习题1. 一起探究 八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套? 分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解. (二)、小结 七、练习设计 P15习题2、3 八、教学后记 后备练习: 1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 . 2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在() A.在AC,BC两边高线的交点处 B.在AC,BC两边中线的交点处 C.在AC,BC两边垂直平分线的交点处 D.在A,B两内角平分线的交点处 一、教学目标 1、知识与技能目标 掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。 2、能力与过程目标 经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 3、情感与态度目标 通过学生自己探索出法则,让学生获得成功的喜悦。 二、教学重点、难点 重点:运用有理数乘法法则正确进行计算。 难点:有理数乘法法则的探索过程,符号法则及对法则的理解。 三、教学过程 1、创设问题情景,激发学生的求知欲望,导入新课。 教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米? 学生:26米。 教师:能写出算式吗?学生:…… 教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题 2、小组探索、归纳法则 (1)教师出示以下问题,学生以组为单位探索。 以原点为起点,规定向东的`方向为正方向,向西的方向为负方向。 ① 2 ×3 2看作向东运动2米,×3看作向原方向运动3次。 结果:向运动米 2 ×3= ② —2 ×3 —2看作向西运动2米,×3看作向原方向运动3次。 结果:向运动米 —2 ×3= ③ 2 ×(—3) 2看作向东运动2米,×(—3)看作向反方向运动3次。 结果:向运动米 2 ×(—3)= ④(—2)×(—3) —2看作向西运动2米,×(—3)看作向反方向运动3次。 结果:向运动米 (—2)×(—3)= (2)学生归纳法则 ①符号:在上述4个式子中,我们只看符号,有什么规律? (+)×(+)=()同号得 (—)×(+)=()异号得 (+)×(—)=()异号得 (—)×(—)=()同号得 ②积的绝对值等于。 ③任何数与零相乘,积仍为。 (3)师生共同用文字叙述有理数乘法法则。 3、运用法则计算,巩固法则。 (1)教师按课本P75例1板书,要求学生述说每一步理由。 (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为。 (3)学生做练习,教师评析。 (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。初中数学教案 篇8
初中数学教案 篇9
初中数学教案 篇10
初中数学教案 篇11
初中数学教案 篇12