《倒数的认识》教学设计

知远网

2025-07-29教案

知远网整理的《倒数的认识》教学设计(精选15篇),希望能帮助到大家,请阅读参考。

《倒数的认识》教学设计 篇1

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的.倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

《倒数的认识》教学设计 篇2

教学内容:

教科书第50页例7及相应的练习

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、培养学生举例、观察、比较、抽象概括能力。

3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

一、口算导入

分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

二、教学新课

师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

(1)问:“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的.,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、求一个数的倒数

1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

自主探究

a四人为一小组,选择一种情况研究

b生交流汇报,师板书例子

c引导概括求倒数的方法

3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

4、归纳如何求一个数的倒数

求一个数的倒数(0除外),只要把它的分子、分母交换位置。

5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

展示,核对,强调互为倒数的两个数之间不能用“=”连接。

《倒数的认识》教学设计 篇3

教学内容:

数学第十一册19页----倒数的认识。

教学目标:

(1)知识目标:理解倒数的意义,掌握求倒数的方法。

(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

教学重点:

理解倒数的意义和怎样求一个数的倒数。

教学难点:

正确理解倒数的意义及0为何没有倒数。

一、游戏导入

教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

二、探究意义

1.找特点

师:请同学们观察黑板上四组数都有什么特点。

(生:分子、分母互相颠倒 )

师:请同学们把每一组中的两个数相乘,看乘积是多少?

(生:每一组中的两个数乘积都是1 )师及时板书

师:谁还能很快说出乘积是1的两个数吗?

(生回答)

师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

(生:两个数分子分母颠倒位置乘积是1)

师:那么乘积是1 的两个数数学给它起个什么名呢?

(生回答,师板书:乘积是1 的两个数叫互为倒数)

师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

重点讲解“互为”的意思,就是互相是的意思。例如:

3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

(指名叙述)

师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。

三、探究求倒数的方法。

师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

出示:3/5 7/2 8/6 5/12 10/4

(指名回答师板书)

师:你们是怎么找出每个数的倒数的?

(说自己的方法)

师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

出示:6 0.5 2 7/8 1

(生回答,师板书)并说说你是怎样求的?

师:是不是所有的数都有倒数呢?同桌讨论

0为什么没有倒数?(0和任何数相乘都不得1)

师:通过同学们的练习,谁来总结求一个数的倒数的方法?

(生总结,师板书)

四、小结并揭示课题

同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

五、巩固练习。

1、填空

1、乘积是()的两个数叫()倒数。

2、因为7/15 x 15/7 =1 所以7/15和15/7( )

3、 5的倒数是( )。 0.2的倒数是( )。

4、()的倒数是它本身。()没有倒数。

5、8×()=1 0.25×()= 1

()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

2、当把小医生。

1、得数是1的两个数叫互为倒数。()

2a是一个整数,它的倒数一定是 1/a 。()

3、因为2/3×3/2=1,所以2/3是倒数。()

4、1的倒数是1,所以0的倒数是0。()

5、真分数的倒数都大于1。()

6、2.5和0.4 互为倒数。()

7、任何真分数的倒数都是假分数。()

8、任何假分数的倒数都是真分数。()

3、面各数的倒数

2.5 4 1/8 2 6/7 0.12

4、列式计算

1、7/6加上它的倒数的和乘2/3,积是多少?

2、 1减去它的倒数后除以0.12,商是多少?

3、已知A×3/2=B×3/5,(A、B都是不为0的'数)

求A、B的大小

六、教学反思:

倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

《倒数的认识》教学设计精品

作为一位优秀的人民教师,常常要写一份优秀的教学设计,借助教学设计可以让教学工作更加有效地进行。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的《倒数的认识》教学设计精品,仅供参考,欢迎大家阅读。

《倒数的认识》教学设计 篇4

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

教学目标:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:

培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:

提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、课前谈话突破难点

1、谈话——蕴含“两个”,突破“互为”

师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

二、导入揭题,引导质疑

师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

预设:什么是倒数?怎样求倒数?……

这节课一起来探究这些问题?

三、创设活动情景,理解概念——“倒数是什么”

师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

1、在分类中理解“是什么”

①5/8×8/5②0。25×4③3/4+1/4

④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

计算后你有什么发现?

师:如果请你将这六个算式分成两类,你准备怎么分?

(学生汇报:乘积是1。)[适当处板书:乘积是1]

归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

师:这三个算式有什么共同的特征吗?

预设:乘积是1。

2、举例感悟“怎么做”

师:你还能举出这样的例子吗?

还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

5/8倒数是8/5,8/5倒数是5/8。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

②0。25×4这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

⑤13/7×7/13

3、在思辨中深入理解

师:能说3/4和1/4互为倒数吗?为什么?

师:能说3/2、6/5和5/9互为倒数吗?为什么?

四、运用概念,探究方法——“怎样求倒数”

过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

(投影,出示例2)

1、求下面各数的倒数

3/5267/20。610。250

学生尝试。

回报交流。

师:这组数中,你最喜欢求哪些数的倒数?为什么?

预设:

生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

师:这组数中,你最不喜欢哪个数的倒数?

预设:

生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

师:那你是怎样求26的倒数的呢?

你是怎样求一个小数的倒数的呢?

归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的.方法。

生1:求一个数的倒数,只要把分子分母调换位置。

2、强调书写格式

师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()

2/5的倒数是()10/3的倒数是()

4/7的倒数是()6/5的倒数是()

(3)1/3的倒数是()(4)3的倒数是()

1/10的倒数是()9的倒数是(

nbsp;1/13的倒数是()14的倒数是()

由学生说出各数的倒数。

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

预设:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。

3、填空:

7×()=15/2×()=()×0。25=0。17×()=1

《倒数的认识》教学设计 篇5

一、创设情境、导入新课。

1、课件出示:吞---吴干---士杏---呆。

2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

3、学生汇报。

4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

二、出示学习目标

1、能够理解和掌握倒数的意义。

2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

三、探究新知识

1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

2、小组汇报交流。(通过计算,发现每组两个数的'乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)

4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

5、强调“两个数”“乘积是1”

6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

7、随堂练习:判断:

(1)得数是1的两个数叫做互为倒数。

(2)因为10×1/10=1,所以10是倒数,1/10是倒数。

(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

9、以小组为单位进行讨论交流。

10、分组汇报:

第一种方法:看两个分数的乘积是不是1。

第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

哪一种方法比较快?

11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

1、真分数、假分数。

2、整数

3、小数

4、带分数(板书)

12、例2中还有哪些数没有找到倒数?

13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

四、巩固练习

我们现在应用今天学习的知识解决一些问题。

五、课堂总结。

板书设计成知识树。

《倒数的认识》教学设计 篇6

教学内容:

教科书第50页例7及相应的练习

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、培养学生举例、观察、比较、抽象概括能力。

3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

一、口算导入

分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

二、教学新课

师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

(1)问:“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、求一个数的倒数

1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

讨论到这里,你知道怎样求一个数的.倒数了吗?指名回答。大家同意吗?

好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

自主探究

a四人为一小组,选择一种情况研究

b生交流汇报,师板书例子

c引导概括求倒数的方法

3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

4、归纳如何求一个数的倒数

求一个数的倒数(0除外),只要把它的分子、分母交换位置。

5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

展示,核对,强调互为倒数的两个数之间不能用“=”连接。

《倒数的认识》教学设计 篇7

教学目标:

(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

教学准备:写有数的纸片。

教学过程:

一、导入新课。

请同学们观察下面两组字:杏–呆,吴–吞。

师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

学生:我们发现这两组字都是由相同的字构成的`,都是上下结构。上下两部份交换位置就成了另一个新字。

师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

二、新知探究。

(一)小组验证互为倒数的两个数的特点。

师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

师:你们刚才写的所有算式都有怎样的共同点?

学生:我们写的每组数的分子与分母的位置是调换了的。

师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

板书:第一组:3/2+2/3=9/6﹢4/6=13/6

6/5+5/6=36/30+25/30=61/30

第二组:3/2-2/3=9/6-4/6=5/6

6/5-5/6=36/30-25/30=11/30

第三组和第四组:3/2×2/3=16/5×5/6=1

师问:互为倒数的两个数相加、相减、相乘有何特点?

学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

2、试下面数的倒数。

2的倒数是0。2的倒数是0。25的倒数是

让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

(二)课堂练习:求一个数的倒数。

1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

2、师:完成教材P45“填一填”

5/87/462/310.8(补充)

让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

3、讨论:0有倒数吗?学生交流。

板书:0和任何数相乘都不能得到1,所以0没有倒数。

4、完成P47课堂活动的对口令。

汇报时让学生说一说谁是谁的倒数。

(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

5、出示判断:

(1)得数为1的两个数互为倒数。()

(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

(3)互为倒数的两个数乘积一定是1。()

(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

(5)a是1/a的倒数,1/a是a的倒数。()

(6)a/b是b/a的倒数,b/a是a/b的倒数。()

6、探索求真分数和假分数的倒数的特点。

学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

《倒数的认识》教学设计 篇8

教学内容

人教版六年制小学数学课本第十一册《倒数的认识》。

教学目标:

1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。

教学想法:

去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。

一、直接导入,展示目标。

1.出示课题:倒数的认识。

看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。

2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)

二、研究学习,到达目标。边学边练

1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。

把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)

2.概括“倒数”的意义。

下定义:乘积是1的两个数互为倒数。

尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。

3.怎样求一个数的倒数?

你能找出与这些数互为倒数的数吗?

4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。

小结方法:谁发现了求一个数的倒数的方法?

特例:0没有倒数?

5.作业指导。求一个数的倒数的过程。

求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?

小红:3/5=5/3

小明:3/5的倒数是5/3。

6.当堂作业:P24的做一做。P25的'第4题。做在书上。

三、拓展目标,巩固提高。

1.判断:(对的在括号里打“√”,错的打“×”)

2。开放性填空。(假定法)

四、自主小结,延伸目标。

谈谈自己的收获和学习体会。

教后反思:

1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。

2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。

3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。

《倒数的认识》教学设计 篇9

教学内容

教科书第28~29页例1、“做一做”及相关内容。

教学目标

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点

理解倒数的意义;求一个数的倒数。

教学难点

理解“互为倒数”的含义。

教学准备

教学课件、写算式的卡片。

教学过程

具体内容 修订

基本训练,强化巩固。(3分钟)

1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。(2分钟)

请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。(1分钟)

通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的`倒数。

学生自学,教师巡视。(6分钟)

1. 观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。(4分钟)

让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。(8分钟)

1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

4.探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

《倒数的认识》教学设计 篇10

教学目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

教学重点:

理解倒数的意义,掌握求倒数的方法。

教学难点 :

熟练写出一个数的倒数。

教具准备:

多媒体课件。

教学过程:

一、情境导入。

1、口算。

5/12x2/5 = 15/7 x7/5 = 11/8 x8/13 =

5/21x1/5 = 3/16 x7/3 = 8/21 x7/8 =

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3x3/2 = 2x1/2 = 11/8 x8/11 =

1/10x10= 7/9x9/7 = 1/7x7=

6/5x5/6 = 1/5x5 = 22/35x35/22 =

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的`自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】

2、强化概念理解。

你认为下面这两种说法是否正确?

(1) 2/3 是倒数。

(2) 得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】

《倒数的认识》教学设计 篇11

教学目标:

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、 探究讨论,深入理解。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

三、运用概念,探讨方法。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

分子、分母交换位置

例:3/55∕3 3∕5的倒数是5∕3

(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

分子、分母交换位置

例:6=1∕6 6的倒数是1∕6.

四、出示特例,深入理解

看一看。例2中的那些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为11=1,根据乘积是1的.两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置

也可以这样推导:1= 1∕1=1,1的倒数是1.

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

五、巩固练习

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

《倒数的认识》教学设计 篇12

教学目标:

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

教学重点:

理解倒数的意义,求一个数的倒数。

教学难点:

从本质上理解倒数的意义。

教学过程:

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4

2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×( )=1 ( )×9/7=1

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的`?

如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

2、会找了吗?你能找到下列数的倒数吗?

3/5 4/9 6 7/2 1 1.25 1.2 0

学生独立完成,然后交流。

《倒数的认识》教学设计 篇13

教学内容:

教科书第50页例7及相应的练习

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、培养学生举例、观察、比较、抽象概括能力。

3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

一、口算导入

分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1);

师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)

师:乘积是1的两个数到底存在什么样的.关系呢?请大家把书翻到第50页,自学。

指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)

二、教学新课

师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。

(1)问:“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、求一个数的倒数

1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7

2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

自主探究

a四人为一小组,选择一种情况研究

b生交流汇报,师板书例子

c引导概括求倒数的方法

3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)

那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)

4、归纳如何求一个数的倒数

求一个数的倒数(0除外),只要把它的分子、分母交换位置。

5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)

展示,核对,强调互为倒数的两个数之间不能用“=”连接。

《倒数的认识》教学设计 篇14

教学目标:

(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

教学准备:写有数的纸片。

教学过程:

一、导入新课。

请同学们观察下面两组字:杏–呆,吴–吞。

师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

师:这样的.两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

二、新知探究。

(一)小组验证互为倒数的两个数的特点。

师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

师:你们刚才写的所有算式都有怎样的共同点?

学生:我们写的每组数的分子与分母的位置是调换了的。

师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

板书:第一组:3/2+2/3=9/6﹢4/6=13/6

6/5+5/6=36/30+25/30=61/30

第二组:3/2-2/3=9/6-4/6=5/6

6/5-5/6=36/30-25/30=11/30

第三组和第四组:3/2×2/3=16/5×5/6=1

师问:互为倒数的两个数相加、相减、相乘有何特点?

学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

2、试下面数的倒数。

2的倒数是0。2的倒数是0。25的倒数是

让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

(二)课堂练习:求一个数的倒数。

1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

2、师:完成教材P45“填一填”

5/87/462/310。8(补充)

让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

3、讨论:0有倒数吗?学生交流。

板书:0和任何数相乘都不能得到1,所以0没有倒数。

4、完成P47课堂活动的对口令。

汇报时让学生说一说谁是谁的倒数。

(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

5、出示判断:

(1)得数为1的两个数互为倒数。()

(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

(3)互为倒数的两个数乘积一定是1。()

(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。()

(5)a是1/a的倒数,1/a是a的倒数。()

(6)a/b是b/a的倒数,b/a是a/b的倒数。()

6、探索求真分数和假分数的倒数的特点。

学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

《倒数的认识》教学设计 篇15

教材分析

倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。

学情分析

倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点

概括倒数的意义与求法。

教学难点

理解“互为”、“倒数”的含义。

教学过程:

一、谈话引入

师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?

生:握手

师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。

(师生共同表演握手的动作)

师:握手是几个人的事情呢?

生:两个人

师:通过今天的相处,我们互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?

生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。

师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)

、引导探究,掌握方法。

1、举例观察,讨论。(2/5的倒数)

师:怎样求一个数的倒数呢?

生:分子分母交换位置。

师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。

2、小组讨论,探究求整数的倒数的方法。

师:2的倒数怎么求呢?

生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。

(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)

、巩固练习,拓展外延。

1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。

2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。

3、1的.倒数是几?(1的倒数是1。)你是怎样计算的?

(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。

(2)因为1×1=1,所以1的倒数为1。

4、0也是整数,0的倒数是几呢?

(1)出示0×()=1。谁上来填一填?(没人举手)

师:0乘任何数都不得1,这说明了什么?

生:0没有倒数。

(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。

师:这样说可以吗?

生:不可以,因为0不以做分母。

5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?

(先把带分数化成假分数,再求它的倒数。)

6、小数有倒数吗?

(1)把小数化成分数,再求它的倒数。

(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。

四、深化练习,巩固提高。

1、填空。

(1)乘积是()的两个数互为倒数。

(2)()的倒数是它本身,()没有倒数。

(3)27/100的倒数是(),25/16的倒数是()。

(4)0.7的倒数是()。

六、全课小结。

同学们,今天这节课你有什么收获?

板书设计

倒数

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数,就是将分子、分母交换位置。

1的倒数是1;0没有倒数。

大家都在看