比应用教学设计

知远网

2025-07-29教案

知远网整理的比应用教学设计(精选10篇),希望能帮助到大家,请阅读参考。

比应用教学设计 篇1

教学内容:小学数学人教版第十一册第49页~51页的内容,练习十三的第1~6题。

教学目标:

1、使学生理解按比例分配的意义。

2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

教学重点:掌握按比例分配应用题的解题方法。

教学难点:按比例分配应用题的实际应用。

教学准备:小黑板

教学过程:

一、复习引入:

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)女生人数占全班人数的( ),女生人数和全班人数的比是( ) 2.口答

(1)把6 个苹果平均分给两个小朋友,每人分几个?

(2)六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务. 六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

(3)六一班参加午餐的有60人,六二班有50人。现在午餐部把110 个平均分给这两个班,你认为合理吗?你认为怎样分合理?

在日常生活中,很多分配问题都不能平均分配,刚才你们说的按人数的比去分,就是我们今天要学习的比的应用,也可以说是按比例分配。板书课题:(比的应用)

指出:按比例分配就是把一个数量按照一定的比来分配。

二、讲授新课

出示例2:某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少? 读题后,问1:4什么意思?浓缩液的体积占这瓶清洁剂的几分之几?水的体积占这瓶清洁剂的几分之几?

你会怎样做这道题?

提问:多找学生说说,要求说出每步算出来的是什么

学生回答后,老师板书:

这道题做得对不对呢?我们怎么检验? 提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

老师总结并强调计算方法 :首先看清题里的条件 给的是哪几个量的比 再看题中给的量是否是这几个量的和 ,而后在选择合适的计算方法。并养成验算的好习惯。

三、出示练习题(49页 做一做)

(1)某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50。上月新生男女婴儿各有多少人?

(2)学校把栽70棵树的任务,按六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵? 读题后,学生独立做,二人板演

老师集体订正,要求说出每步算出的是什么。

拓展练习

怎样分配最合理?(有的说平均分,有的说按出资多少去分)

2.本期彩票小张出资200元,小王出资300元。小李出资400元,他们三人各应分得奖金多少元?

四、布置作业:练习十二1—4题

五、板书设计:

比的应用

解法

1、每份是 500÷5=100(毫升)

浓缩液有 100×1=100(毫升)

水有 100×4=400(毫升)

解法

2、总份数?1+4=5? 浓缩液有:500×1/5=100(毫升)

水有: 500×4/5=400 (毫升)

答:浓缩液有100毫升,水有400毫升

六、教学反思

《比的应用》是十一册教材的内容,与前面学的比的知识,尤其是分数应用题密切相关。如果没有一个良好的基础,这节课想顺利的进行真的很难。因此在教学前面的知识的时候,我踏踏实实走好每一步,不让每一个学生掉队,因此在进行本节课的时候就会水道渠成。

一、情境引入,切入课题:

好的.课题导入能引起学生的知识冲突,打破学生的心理平衡,激发学生的学习兴趣、好奇和求知欲,能引人入胜,辉映全堂。新课导入的艺术之一在于能把生活中的问题作为例题,使学生切实体会到学习数

学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出了最好根据人数比来分。根据题目当中所提供的比,让学生估计一下,哪个班级会分的多,说出你估算的根据。这位后面的计算奠定了基础。

二.学生是课堂的主人。

新课程改革的一个核心任务就是要改变学生原有的单纯接受式的学习方式,向自主探究的学习方式转变.充分调动、发挥学生的主体性。从这节课的教学过程来看,学生在教师引导下讨论、交流、真正实现了学习方式的转变。每一个问题的提出,教师都给予学生充分的时间和空间,让学生亲自交流合作,然后再观察比较,最后得出结论。整个过程,对培养学生自主学习的能力是至关重要的。

三、体现了教师是教材创造者的理念。

在如何使用教材这个问题上,我们应该摒弃过去那种“教教科书”的传统思想,充分挖掘新课知识点,整合课堂内容,优化课堂结构,真正实现“用教科书教”。本节课我充分利用例题,将此例题先后做了三次改变,将按比例分配应用题的各种类型全部展示出来。同时在比较中使学生认识到解决按比例分配应用题的关键。打破了学生解题的模式,因此做每一道题目的时候,都必须认认真真地思考,分析。真真正正地培养了学生的能力。

四、多角度分析问题,提高能力

在解答应用题的时候,教师通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中。培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系、让学生死记硬背的做法,让学生充分实践体验,在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

比应用教学设计 篇2

教学内容:

人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。

学情分析:

1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。

2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

教学目标:

1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。

3、使学生在学习分数的意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。

教学重难点:

重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。

难点:从分母和分子的意义这一角度理解“整体”与“部分”的'关系。 教学准备:

多媒体课件,答题纸,小棒。

教学过程:

师:你想到的这个数表示什么意思?

(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)

二、探究新知。

1、初步感受整体由“1个”变“多个”

(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?

(2)、现在你又想到了哪个数?它表示什么意思?

(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?

(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?

2.理解部分与整体的关系。

(1)课件出示六个苹果,动态演示平均分的过程。

学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)

(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)

3、回顾建模。

课件出示:

引导学生回顾总

结:我们不仅可以把一个完整的物体

或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。

三、动手操作,加深认识。

1、“均匀地分”。

(1)提出要求:老师给大家准备了12个苹果,

请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。

(2)生独立思考,动手操作。

(3)、汇报交流。

(4)对比提升。

课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。

2、“创新地画”。

(2)生独立思考,动手操作。

(3)、汇报交流,展示学生作品。

预设:因为都是把整体平均分成了2份,取其中的1份。

师:哪儿不同?

预设:总数不同,每份数也不同。

四、闯关游戏,加深理解。

第一关:“准确地拿”。

第二关:“独具慧眼”。

五、回顾反思,结束全课。

1、引导学生回顾反思:今天你有什么收获?

2、师给与评价

比应用教学设计 篇3

一、教材分析

《比例的应用》为全日制聋校数学第十五册第一单元的第三部分内容,这一部分的教学内容从构建上更注重学生技能的养成和知识的运用。把通过三个相关联的量求第四个量的运算,用方程的方法呈现为比例的形式,这样从视觉上更附和了聋生的认识特点,同时也把复杂的等量关系更清晰的更简单的体现在比例的内容里。让学生轻松的理解比例就是在等号两边表示两组相等的比。这样的方法也是比例应用题的一大特点。同时更有助于学生从理论知识到技能操作的转变,使新课程理念融入于特教课堂。

二、教学方法

情趣导入法、总结法、问题导入法及指导法。

三、教学目标

1、知识目标:理解应用题中比例的意义,并根据比例的性质解决应用问题。

2、能力目标:

①通过对应用题中已知条件与未知条件的分析并确定数量关系,培养学生逻辑思维能力和分析解决问题的能力

②通过求解的过程,培养学生的运算能力。

3、情感目标:培养学生的数学兴趣,激发自主探索的求知欲。

4、缺陷补偿:通过对问题的分析,积累语言发展思维。重点:利用比例的.意义确定等量关系。难点:数量间的运算关系。

四、教学流程:

1、兴趣入题

“同学们有没有想过毕业后未来的生活呢?现在我请大家为自己的将来设想一下,你准备做什么呢?”。

2、初探新知

出示根据学生的理想加工的题例。

董健昕同学经营一服装店,卖3件衣服可以盈利150元,按这样的收入计算,每月卖出80件可以盈利多少元?

让学生运用“三步”解题法,分析问题。

1看

已知条件包括:3件、盈利150元、80件求知条件:盈利多少元?

2找

从名数看包括四种数量:件数、盈利总额、件数、盈利总额。且四种数量是两两重复的。

确定数量关系:总额与件数间的关系是除法,进一步确定比例关系,总额:件数=总额:件数。

等号左边的总额为150元,件数为3件,等号的右边总额为?,件数为80件。

3解

解:设盈利?元。 150:3=?:80 3?=150×80?=150×80÷3?=4000答:可以盈利4000元。

巩固方法:

出示文本中的例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

让邻座的学生间进行比较分析,确定数量及数量间的关系并求解。

即时小结:

比例的形式就是:比=比,应用题中的比例即为:左边的数量关系等于右边数量关系。如何利用比例来解应用题就是看是否有两两相对的数量,并确定对应的数量间是否存在正、反比例关系。让学生从抽象到直观的掌握方法。

课业布置:

紧扣学生的理想出示题例二:职业课上,每天做8面国旗,要10天完成,如果每天做10面要几天完成呢?

板书设计:

比例的应用

1看:(已知:3件、盈利150元、80件)(未知:盈利?元?)2找:(总额:件数=总额:件数)3解

解:设盈利?元。 150:3=?:80 3?=150×80?=4000答:可以盈利4000元。

比应用教学设计 篇4

教学内容:

人教版六年级数学上册第54页例2和练习十二第1~4题。

教学目标:

1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

教学重点:

运用按比分配的知识解决生活中的实际问题。

教学难点:

提高分析问题与解决问题的能力。

教学过程:

一、情景导入。

如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。

板书:比的应用。

二、探索新知。

请同学们打开教科书的54页。

出示教材54页例2

阅读与理解:

(1)、了解情境中的生活信息。

(2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。

分析与解答:

(1)、稀释液:500ml 总分数:1+ 4=5

1 : 4表示什么意思呢?

浓缩液 : 水

(2)、浓缩液和水的体积比是1: 4 。

浓缩液的体积是稀释液的1/5。

水的体积是稀释液的4/5。

方法一:

总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

把每份是:500(1+4)=100(mL)

浓缩液:1001=100(mL)

水:1004=400(mL)

方法二:

先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。

浓缩液有:5001/5=100(mL)

水有:5004/5=400(mL)

回顾与反思:

浓缩液体积:水的体积

=( ):( )

=( ):( )

答:浓缩液有100mL,水的体积有400mL。

三、巩固练习

练习十二第1、2题。

四、小结:

1、今天我们应用比解决了一些实际问题。你有什么收获?

2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。

五、作业:

练习十二第3、4题。

六、板书设计:

比的应用

方法一 方法二

总分数1+4=5

每份数: 500(1+4)=100(mL) 浓缩液占总体积的1/5

水占总体积的4/5

浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)

答:浓缩液有100mL,水的体积有400mL。

课后反思:

按比的`配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。

比应用教学设计 篇5

【教学内容】苏教版五年级数学下册第119至120页内容。

【教学目标】

1.使学生在学习数学中,进一步体会数学知识与实际生活的联系,能综合运用学过的数学知识和方法解决生活当中的各种实际问题。提高解决问题的能力

2.使学生在自觉整理复习知识中,进一步评价和反思自己在本学期的整体学习情况,体会与同学交流和学习成功的乐趣,感受数学的意义和价值,发展对数学的积极情感。

【课前要求】

1.每名学生收集统计图或一些分数表示的信息;

2.每名学生制作一张日历卡。

3.收集本学期与生活应用有关的题型。

【教学过程】

一、谈话引

入学是为了用,本学期同学们学习了很多数学知识,请同学们说说这些数学知识都帮你解决了哪些生活中出现的问题。

1.拿出收集到的与生活应用有关的题型,四人小组人单位,互相交流;

2.个别上台汇报结果。

【设计意图:数学源于生活,用于生活。让学生将各自的体会进行交流,增加了认识的宽度,同时激发了学生的积极性。】

二、教学第25题。

让学生拿出收集到的统计图或分数表示的信息,在小组当中交流。请个别学生上来汇报自己的成果与心得(你收集到的`是什么数据,从这些数据当中你看出了什么?)。

【设计意图:学生有可能对同一统计图会有自己不一样的理解,互相交流,分享心得与意见,能进一步加深学生对统计图的认识。】

二、 教学第26题。

拿出日历卡。理解题意,明确要求,只能横着框。尝试完成。 用投影配合展示结果。

【设计意图:培养学生综合运用知识解决实际问题的能力。】

三、教学第27题。

1.说出分母是8的最简真分数有哪几个?它们的和是多少?(让学生迅速动笔,在规定的时间内完成,汇报)

2.再任选几个整数,分别写出用这几个数作分母的所有最简真分数,并求出每组真分数的和。(每人选两个整数,并写出用这个整数作分母的所有最简真分数,再求出和。)

3.你发现了什么规律?

(任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。)

【设计意图:通过自己的实际操作,培养学生学会发现规律、总结规律。】

四、教学第28题。

学生独立完成,用投影展示结果。

【设计意图:培养学生位置感与方向感。】

五、教学第31题。

读题,理解题意。学生尝试做游戏。

要想取胜,可以倒过来推想(自己最后一次取之前,应该留几根给对手)。

指出:每次取完后,留下的火柴根数必须是4的倍数。再次尝试游戏。

说说取胜的策略。

【设计意图:游戏中学,游戏中发现规律,远比在枯燥的笔算中要有效果。】

六、教学第29题。

小组交流。

汇报结论,注意表述的正确性。

七、课后延伸第30题。

分组课后完成测量、计算。

【设计意图:课后作业,紧密地与生活联系在一起,进一步体现小组合作的重要性,加强小组合作意识。】

八、总结。

说说本节课的收获与自己的不足。

比应用教学设计 篇6

教学目标具体要求:

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:

勾股定理的应用

难点:

勾股定理的应用

教案设计

一、知识点讲解

知识点1:(已知两边求第三边)

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?

知识点2:

利用方程求线段长

1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,

(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?

(2)DE与CE的位置关系

(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?

利用方程解决翻折问题

2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?

3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少?

5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式.

知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系

1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。

(2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。

(3)在ABC中,a:b:c=1:1:,那么ABC的确切形状是_____________。

2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明∠AFE是直角吗?

变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明∠AFE是直角吗?

3.一位同学向西南走40米后,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了

二、课堂小结

谈一谈你这节课都有哪些收获?

应用勾股定理解决实际问题

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的`概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节:

一、复习引入

对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。

二、例题讲解,巩固练习,总结数学思想方法

活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。

活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。

活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。

二、巩固练习,熟练新知

通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。

在教学设计的实施中,也存在着一些问题:

1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。

2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。

3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。

比应用教学设计 篇7

数据库技术是计算机信息系统与应用系统的核心技术和重要基础,《数据库原理与应用》课程的教学目标就是使学生系统地掌握数据库系统的基本原理和基本技术,掌握数据库设计方法和步骤,具备设计数据库模式以及开发数据库应用系统的基本能力。课程设计作为该课程常规教学的延伸和深化,是承上启下的必要教学环节。下面,我和大家分享一下我所做的教学设计。

一、教学目标分析

中等职业技术学校计算机专业的《数据库原理与应用》课程的任务是:介绍数据库技术的基本概念,熟悉数据库管理软件xBASE系列的基本操作,掌握程序设计的基本方法,初步掌握交互式开发工具,通过课程实习掌握小型应用软件的开发过程。

因此,本课程的教学目标是:使学生掌握数据库技术和数据库管理软件的基础知识和基本技能,掌握程序设计方法,具有开发小型应用系统的能力。为实现这一教学目标,要进行相应的教学改革,主要是课程的教学由传统“理论教学+笔试”模式改为“基础(包括基本理论和基本技能)教学+课程设计”模式。课程设计的目标是:培养学生利用各种媒体(包括传统媒体和Internet技术等)获取、加工、处理信息的能力,能够完成小型软件的开发。

二、活动目的

通过课程设计教学活动,让学生在已掌握数据库原理的基础上,通过对社会或生活需要的调查、分析,做出规划、设计,培养学生搜集信息的能力,开发小型应用软件,从而使学生掌握数据库知识意义和信息技能,提高自学能力和知识的综合能力和信息素养。

三、活动内容

活动内容包括指导学生从生活出发,搜集相关资料,分析需求情况,确定开发项目;要针对开发的项目再采集数据,进行系统规划,确定系统的框架;画出流程图,并以此写出FoxPro程序及进行调试和修改;编写系统使用手册;指导学生进行演示和组织评价工作;在课程设计中指导学生自学。

四、教学设想

课程设计采取以学生学习活动为主体的教学活动,学生在教师的要求和指导下,自主地确定设计的课题,确定软件的内容和表现方式,通过各种媒体进行自学。因此,在课程设计教学中教师是教学过程的组织者、指导者、意义建构的帮助者、促进者。

五、教学对象

20xx级计算机应用专业全体学生。

六、教学时间

20xx年5月~6月。

七、教学过程

共分为五个阶段:

1.动员布置阶段

强调进行课程设计的意义,鼓励学生积极参与课程设计,激发学生的学习热情,培养良好学习环境。印发《〈数据库原理与应用〉课程设计说明》,详细地布置设计内容,完成工作,并推荐一些设计项目供学生参考,提高学生参与的积极性,动员更多的学生参与其中。

2.指导学生收集资料阶段

指导学生收集原始资料,初步确定课程设计项目,并上报指导教师,再由指导教师汇总,教师再根据情况进行个别或集中指导。

3.协助学生对资料进行分析、归纳阶段

对学生所收集到的资料进行分析,提出所要解决的问题,研究解决该问题的可行性。通过论证,确定课程设计项目。在这个阶段,教师要对学生所要解决的问题及解决问题的方法的科学性、合理性、可行性进行分析归纳。

4.指导规划设计阶段

学生根据所选课题,进行系统规划设计。(范文网 )包括确定软件(课题)功能、系统结构(数据流程)、程序流程、编写代码、调试程序。这是课程设计的主体部分,这个阶段我们对学生的指导原则是严格要求、规范设计、耐心指导、发扬个性、鼓励创新。

5.总结评价阶段

总结采取三种方法:学生自己演示课题,教师组织其他学生进行评价;教师总结表彰;学生书面总结。这个阶段的主要目的是“表扬先进,激励后进”,让学生展示自己的成果,分享成功的喜悦,总结学习成绩,增强学习信心;相互了解,通过对比发现差距,确立奋斗目标。

八、指导学生学习

在课程设计的教学过程中,学生的“学”是教学的中心。学生主动地学习,并自觉地应用相关知识,同时利用反馈的信息总结解决实际问题的方法。在教学中,一方面,教师要着力为学生创造一个良好的学习环境,使学生可以在其中进行自由探索和自主学习,并及时地为学生在探索过程中提供相应的帮助。另一方面,教师指导学生如何利用各种工具去获得信息资源(如文字资料、书籍、Internet资源等),使学生的学习环境空间得到充分扩展。

九、课程设计结果统计

课程设计结果统计是完整教学活动的组成部分,主要包括:

1.课题分布

2.课程设计评价统计

如何科学地进行课程设计的评价,主要考虑下列因素:(1)学生的综合能力;(2)学生应用信息的能力;(3)学生对教学之外知识的汲取能力;(4)学生的创造能力。具体从软件作品(包括所有要求上交的内容)的外观、软件说明书的编写、软件界面和使用方法、软件的结构、编写程序的算法和创新精神等方面进行评价。

十、问题思考

如何理解课程设计的目的和如何给学生进行科学的评价,是课程设计教学的.重要问题。

课程设计教学不仅要求学生掌握相关的数据库理论和软件工程学的有关知识,更重要的是学生能够对它们形成意义建构,这是基于建构主义教学的核心。也就是说学生的知识不是通过人为的“灌输”,而是学生在自主学习中得到的。学生通过解决具体问题、查阅书籍和文字资料以及利用Internet寻找信息资源培养和提高了自学能力和信息素养,从而提高了学生的素质。因此,对学生课程设计的评价不应过分强调设计的本身,而应围绕学生的自主学习能力、协作学习过程中作出的贡献、是否达到意义的建构要求三个方面去进行的。

总而言之,详细周密的教学设计有助于更好地打造高效课堂,使学生学到更多的知识;课程设计教学能够科学地培养学生自主学习的能力,提高学生的多方面素养。

(作者单位 广东省潮州市职业技术学校)

比应用教学设计 篇8

本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。

本节课素质教育目标

(一)知识教学点

1、初步学会列方程解比较容易的两步应用题。

2、知道列方程解应用题的关键是找应用题中相等的数量关系。

(二)能力训练点

1、使学生能用方程的方法解较简单的两步计算应用题。

2、引导学生能根据解题过程总结列方程解应用题的一般步骤。

3、能独立用列方程的方法解答此类应用题。

(三)德育渗透点

1、培养学生用不同的方法解决问题的思维方式。

2、渗透在多种方法中选择最简单的方法解决问题。

教学重点:列方程解应用题的方法步骤。

教学难点:根据题意分析数量间的相等关系。

要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法——用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。

学解应用题工程问题思路指点

工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。它们的基本关系式是:工作总量÷工作效率=工作时间。

工程问题是小学分数应用题中的一个重点,也是一个难点。下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。

例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?

[思路说明]①把这项工程的工作总量看作“1”。甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。

1÷(1/12+1/20)=1÷2/15=15/2(天)

②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。用工作总量除以两队合建一天的工作量,就是两队合建的天数。

60÷(60÷12+60÷20)=60÷(5+3)

=60÷8=15/2(天)

评点这是一道工程问题的基本题,也是工程问题中常见的题型。上面列举的两种解题方法,前者比较简便。这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。工程问题一般采用这种方法求解。

练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?

例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?

[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。

1÷(1/8+1/10)×3/4

=1÷9/40×3/4=10/3(天)

②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。

3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)

评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。两种思路简捷、清晰,都是很好的解法。

练习:一项工程,单独完成,甲队需8天,乙队需12天。两队合干了一段时间后,还剩这项工程的1/6没完成。问甲、乙两队合干了几天?

例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。两人同时出发,相向而行,几小时才能相遇?

[思路说明]①由甲2小时行全程的1/3。可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。

综合算式:

1÷(1/(2÷1/3)+1/(2÷1/2))

=1÷(1/6+1/4)=1÷5/12=12/5(小时)

②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。

综合算式:

1÷(1/3÷2+1/2÷2)

=1÷(1/6+1/4)=1÷5/12=12/5(小时)

评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。

练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?

例4一项工程,甲、乙合做6天可以完成。甲独做18天可以完成,乙独做多少天可以完成?

[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。

1÷(1/6-1/18)=1÷1/9=9(天)

评点这是一道较复杂的工程问题,是工程问题的主要题型之一。主要考查同学们运用分数的'基本知识及工程问题的数量关系,解决实际问题的能力。解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?

例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?

[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

综合算式:

[1-(1/10+1/15)×5]÷1/12

=[1-1/6×5]÷1/12

=1/6÷1/12=2(天)

评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.

练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?

例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?

[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

综合算式:

1÷[1/6-(1-1/6×2)÷8]

=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]

=1÷[1/6-1/12]=1÷1/12=12(天)

评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?

比应用教学设计 篇9

教学内容:

人教版六年级数学上册第54页例2和练习十二第1~4题。

教学目标:

1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

教学重点:

运用按比分配的知识解决生活中的实际问题。

教学难点:

提高分析问题与解决问题的能力。

教学过程:

一、情景导入。

如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。

板书:比的应用。

二、探索新知。

请同学们打开教科书的54页。

出示教材54页例2

阅读与理解:

(1)、了解情境中的生活信息。

(2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。

分析与解答:

(1)、稀释液:500ml 总分数:1+ 4=5

1 : 4表示什么意思呢?

浓缩液 : 水

(2)、浓缩液和水的体积比是1: 4 。

浓缩液的体积是稀释液的1/5。

水的体积是稀释液的4/5。

方法一:

总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

把每份是:500(1+4)=100(mL)

浓缩液:1001=100(mL)

水:1004=400(mL)

方法二:

先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。

浓缩液有:5001/5=100(mL)

水有:5004/5=400(mL)

回顾与反思:

浓缩液体积:水的体积

=( ):( )

=( ):( )

答:浓缩液有100mL,水的体积有400mL。

三、巩固练习

练习十二第1、2题。

四、小结:

1、今天我们应用比解决了一些实际问题。你有什么收获?

2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。

五、作业:

练习十二第3、4题。

六、板书设计:

比的应用

方法一 方法二

总分数1+4=5

每份数: 500(1+4)=100(mL) 浓缩液占总体积的1/5

水占总体积的4/5

浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)

答:浓缩液有100mL,水的体积有400mL。

课后反思:

按比的'配制稀释液解决生产生活中的实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。

比应用教学设计

作为一位杰出的老师,时常需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的比应用教学设计,仅供参考,希望能够帮助到大家。

比应用教学设计15篇

作为一名教职工,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。写教学设计需要注意哪些格式呢?以下是小编整理的比应用教学设计,希望能够帮助到大家。

比应用教学设计 篇10

【教材分析】

《比的应用》小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、 “比例尺”的知识奠定基础。

教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

【学生分析】

学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

【教学目标】

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的'乐趣,并养成积极、主动的探究精神。

【教具准备】

课前准备:学生查找有关事物各组成部分比的资料。

课上准备:小红旗。

【教学重点】理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。

【教学过程】

一.情境引入

老师有140个橘子,要分给幼儿园两个班的小朋友,你觉得怎样分才算合理呢?(平均分,这样才公平。)

经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?(不合理,因为每个人分到的就不一样多了。)

怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。(按人数比30 :20 = 3 :2进行分配。)

3、3 :2表示什么意思?

[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。

二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配

为了研究方便,老师给大家提供了一些小旗代替橘子。

(一)合作研究

1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数)

大班 小班

第一次

第二次

第三次

第四次

第五次

大班分得()面小旗

小班分得()面小旗

2.学生合作研究

3.教师组织反馈交流

老师在巡视的过程中,收集约三种不同的分法,分步展示在黑板上。

四人一组交流讨论要求

(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?

(2)观察、比较这几种分法,你能发现什么?

插问:你觉得分一次至少需要多少面小旗?为什么?

也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?

学生可能出现的方法预设:

分法1:每次分给大班3面,分给小班2面。

表扬:认真有耐心,十二次。

分法2:根据比的基本性质分,分的次数明显减少。

表扬:很会动脑筋,在分的过程中及时进行了调整。

分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。

表扬:很会联系实际情况,这种分法在实际生活中非常实用。

[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力

(二)验证

1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的?

大班 小班

分得小旗的总面数

人数

平均每人分到小旗的面数

30 :20 = 3 :2 = 36 :24

2.师生一起小结:

(1)平均每人分到的小旗同样多吗?

(2)把这些小旗按大班和小班的人数比来分配是合理的分法吗?

(3)虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?

[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。

(三)当我们知道总数的情况下的按比分配

1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?

2.四人一组交流,说说你想到的方法:

方法1:按比逐次分配。

方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小旗。

方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数

3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?

三、巩固练习

同学们表现得太出色了,能再帮老师一个忙好吗?好啊

我家有一块近似长方形的菜地,面积大约是984平方米,我想按3:5的比例种茄子和西红柿,茄子和西红柿各种多少平方米?

四、总结

今天的学习,你有哪些收获和感受?

1、通过这节课的学习你对比有了哪些新的认识?

2、把一些事物按一定的比分的时候,可以用哪些策略?

3、你在生活中还能找到比的应用的例子吗?

大家都在看