圆柱的体积教学设计

知远网

2025-07-29教案

知远网整理的圆柱的体积教学设计(精选12篇),希望能帮助到大家,请阅读参考。

圆柱的体积教学设计 篇1

教学目标

1、理解圆柱体体积公式的推导过程,掌握计算公式。

2、会运用公式计算圆柱的体积。

教学重点

圆柱体体积的计算。

教学难点

理解圆柱体体积公式的推导过程。

教学过程

一、复习准备

(一)教师提问

1、什么叫体积?怎样求长方体的体积?

2、圆的面积公式是什么?

3、圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)

二、新授教学

(一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)

1、教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

2、学生利用学具操作。

3、启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

③近似长方体的高就是圆柱的高,没有变化。

4、学生根据圆的面积公式推导过程,进行猜想。

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

5、启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体。

(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

6、推导圆柱的体积公式

(1)学生分组讨论:圆柱体的体积怎样计算?

(2)学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的'高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

(3)用字母表示圆柱的体积公式。(板书:V=Sh)

(二)教学例4。

1、出示例4

例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

2.1米=210厘米

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

2、反馈练习

(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

(三)教学例5。

1、出示例5

例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

水桶的底面积:

=3.14×

=3.14×100

=314(平方厘米)

水桶的容积:

314×25

=7850(立方厘米)

=7.8(立方分米)

答:这个水桶的容积大约是7.8立方分米。

三、课堂小结

通过本节课的学习,你有什么收获?

1、圆柱体体积公式的推导方法。

2、公式的应用。

四、课堂练习

(一)填表

底面积S(平方米)

高h(米)

圆柱的体积V(立方米)

15

3

6.4

4

圆柱的体积教学设计 篇2

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体

积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的.印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。

教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。

总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!

圆柱的体积教学设计 篇3

教学内容:

苏教版义务教育教科书《数学》六年级下册第18-19页练习三第10—16题,思考题以及动手做。

教学目标:

1.通过知识梳理、交流展示等,使学生进一步理解圆柱表面积和体积的区别,能选择恰当的方法解决问题,在浸没实验中,能测算出不规则物体的体积,积累活动经验,提升实验素养。

2.使学生经历观察、操作、比较、分析、估计、类比、归纳等活动过程,培养学生初步的比较、分析、综合、抽象、概括,以及简单的判断、推理能力,提高转化的意识和能力,发展数学思考,增强空间观念。

3.通过丰富的数学学习活动,使学生进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

教材分析:

圆柱和圆锥这部分内容是学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱也是基本的几何形体,在日常生活和生产劳动中经常能够看到。教学圆柱能够扩大学生认识几何形体的范围,丰富对形体的认识,有利于解决更多的实际问题。教学圆柱,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义,有利于完善认知结构,发展空间观念,有利于转化能力和推理能力的进一步提高。

学情分析:

学生在过去的学习中已经积累了十分丰富的图形与几何的.学习经验,特别是圆面积的计算方法,长方体、正方体、圆柱和圆锥的特征,长方体、正方体和圆柱的表面积和体积的计算方法等知识的探索过程,以及在这些过程中获得的学习经验和方法,都为本课圆柱体积的综合练习奠定了坚实的基础。本节课,学生通过知识梳理、交流展示等活动,可以进一步理解圆柱表面积和体积的区别,并能选择恰当的方法解决问题,发展数学思考,增强空间观念,进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

设计理念:

从以教定学,到以学定教,再到由学转教。学习金字塔理论告诉我们:最好的学习是讲给别人听,随着教学改革的不断推进,我们从“以教定学”走向了“以学定教”,以学定教,呼唤教育教学回到学生的真实学情、现实认知水平等方面上来,根据学生的“学”,设计教师的“教”,日益凸显了教师是组织者、引导者、合作者的角色定位。叶圣陶先生说过,“教是为了不教”,赋予“以学定教”更多的生长意义,我们在不知不觉中,从“以学定教”转向了“由学转教”,即由学生的学转为由学生来教的更高级的学习生态。教学方式的改变让我们更加明确了学习的意义。

重点难点:

教学重点:用圆柱的表面积和体积公式解决实际问题。教学难点:合理分析问题并选择恰当算法,增强空间观念。

教学准备:

教师准备:反馈器一套;希沃白板、课件及5块互动大屏;投影仪;两份合作学习(实验)单;板贴一套等。

学生准备:底面被平均分成16份的圆柱形学具16套;知识梳理图50张;预学单50张;圆柱形容器及土豆或铁块若干等。

圆柱的体积教学设计 篇4

【教材简析】:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

【教学内容】:

p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

【教学目标】:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

【教学重点】:掌握圆柱体积的计算公式。

【教学难点】:圆柱体积的计算公式的`推导。

【教学过程】:

第一课时本册总课时:12 课时

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、什么叫做物体的体积?你会计算下面那些图形的体积?

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

(3)通过观察,使学生明确:

长方体的底面积等于圆柱的底面积,

长方体的高就是圆柱的高。

长方体的体积=底面积×高,

所以圆柱的体积=底面积×高,

v = s h

圆柱的体积计算公式是:

v=s h

2、课堂练习:

(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)让学生解答和板算,最后师生共同完成.

解:v=sh

=75×90

=675(立方厘米)

答:它的体积是675立方厘米。

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)

4.作业:

圆柱的体积教学设计 篇5

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

【圆柱的体积=底面积×高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积×高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的'教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计 篇6

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的.同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

【圆柱的体积=底面积×高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积×高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计 篇7

【教学目标】

1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。

2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。

3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。

【教学重点】掌握和运用圆柱体积的计算公式。

【教学难点】圆柱体积公式的推导过程。

【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。

【教学过程

一、情景导入,复习旧知。

1、什么是圆柱的体积?

①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?

②什么叫做物体的体积?

③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?

④推测:圆柱的体积可能与它的什么有关?

2、导入新课。

这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”

二、探索新知

1、比较大小,探究圆柱的`体积与哪些因素有关。(让学生先试着说说)

(1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的体积也就越大)

(2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的体积也就越大。)

(3)圆柱的体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。

(1)引导学生回忆长方体、正方体的体积计算方法。

(2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?

(3)学生小组讨论交流。

(4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)

3、演示转化过程,推导公式。

(1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。

(2)学生带问题操作转化过程。

a:拼成的长方体的底面积等于圆柱的什么?

b:拼成的长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)

师生共同完成推导过程。

长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh

(4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h

(5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)

4、教学例6。

(1)出示例6。读题,说说从题中获得的信息。

(2)引导学生思考:解决这个问题就是要计算什么?

老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。

(3)学生独立解决问题。

(4)组织交流反馈。

交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

三、 巩固应用

1、完成教材第26页“做一做”第一题。

(1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。

(2)要求这个问题,需要先求什么?再求什么?独立完成。

2、完成教材第28页练习五第2题。

(1)尝试完成。

(2)说说解题思路。

3、完成教材第28页练习五第3题。

(1)尝试完成。

(2)说说解题思路。

四、课堂小节

今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。

五、课堂作业

教材练习五第4、5题。

板书设计:

圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h

圆柱的体积教学设计 篇8

教学目标

知识与能力

1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

过程与方法

1.通过观察、实验、讨论,学生理解所学知识。

2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。

3.在讲解例题与巩固练习中,学生掌握基本的解题方法。

情感、态度与价值观

1.使学生感觉到数学就在身边,激发其学习数学的兴趣。

2.通过实验操作及设问,培养其创造性思维和大胆的猜想。

教学重点

圆柱体体积的计算

教学难点

圆柱体体积的公式推导方法

教学突破

本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。

教 具

圆柱的体积公式演示教具,多媒体课件

教学过程

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

2,复习相关知识,为新课教学作铺垫。

(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)

(2)出示圆柱体物品,指名学生指出各部分名称。

二、新课教学

设疑揭题:

我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。

1.探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:

① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的'体积=圆柱的体积)

② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?

填表:请同学看屏幕回答下面问题,

④ 底面积(㎡)高(m)圆柱体积(m3)

4 3

5 6

9 2

(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)

例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)

解: d=6dm,h=7dm.r=3dm

S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

(设计意图:使学生注意解题格式,注意体积的单位为三次方)

三、巩固反馈

1.求下面圆柱体的体积。(单位:厘米)

同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。

⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

四、拓展练习

1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

五、课堂小结

1.谈谈这节课你有哪些收获。

2.解题时需要注意那些方面。

六、布置作业

1.课后练习1,2题

2.拓展练习2题

板书设计

圆柱的体积

长方体的体积=底面积x高

圆柱——长方体 圆柱的体积=底面积x高

V=sh

圆柱的体积教学设计 篇9

一、复习导入

1、回顾上节课内容,提问:圆柱的特征,圆柱的表面积计算方法。

导入:这节课我们学习圆柱的体积、

2、想一想,提问:什么叫做体积?我们学过哪些物体的体积计算公式?

(物体所占空间的大小叫做体积、学过长方体正方体的、)

它们的计算公式是什么?可以归纳为:

长(正)方体的体积===底面积*高

3、想一想:圆面积计算公式的.推导过程、

(把圆面积转化为一个近似的长方形的面积,从而推导出圆面积的计算公式)

那么,能不能把圆柱转化为我们已学过的图形来计算它的体积?

二、新授:

叙:以上研究圆面积计算公式的方法叫做割补法,这种方法也适用于推导圆柱体积的计算公式、下面请同学们打开课本看书自学。

演示并提问:

(1)拼成的长方体的体积与圆柱的体积有什么关系?

(2)拼成的长方体的底面积与圆柱的哪部分有关系?有什么关系?

(3)拼成的长方体的高与圆柱的哪部分有关系?有什么关系?

总结:长方体的体积与圆柱的体积相等,长方体的底面积与圆柱的底面积相等,长方体的高与圆柱的高相等。

因为:圆柱的体积===长方体的体积

长方体的体积===底面积*高

↓↓↓

所以:圆柱的体积===底面积*高

用字母表示为:v==sh

运用以上公式,完成练习题、

(注意:单位要统一,要认真审题,认真计算、)

动脑筋,思考以下几个问题:

已知如下条件,如何求圆柱的体积?

(1)底面积s、高h→→体积v==

(2)底面半径r、高h→→体积v==

(3)底面直径d、高h→→体积v==

(4)底面周长c、高h→→体积v==

强调:圆柱的体积v=sh=rh,在没有告诉底面积和高时,要先找底面半径和高,应用v=rh去计算。

三、巩固练习(填表)

hvs=20平方分米

4分米

r=5厘米

10厘米

d=8分米

6分米

c=12、56米

2米

四、课堂小结

同学们,通过这堂课的学习你知道了些什么?谁来说一下。

回答得非常好,下去以后可以应用所学知识去解答一些实际问题。

板书设计:

圆柱的体积

圆柱的体积===底面积*高

↓↓↓

长方体的体积===底面积*高v==sh

作业设计:完成习题

圆柱的体积教学设计 篇10

教学目标:

1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;

2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。

3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。

教学重点:

掌握和运用圆柱体积计算公式进行正确计算。

教学难点:

理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学准备:

1、用于演示把圆柱体积转化成长方体体积的教具。

2、多媒体课件。

教学过程:

一、复习导入、揭示课题

谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)

1、呈现长方体、正方体和圆柱的直观图。

2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)

3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。

二、自主探究,精讲点拨

1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?

2、学生小组讨论、交流。

教师:同学们自己先在小组里讨论一下

(1)你准备把圆柱体转化成什么立体图形?

(2)你是怎样转化成这个立体图形的?

(3)转化以后的立体图形和圆柱体之间有什么关系?

3、推导圆柱体积公式。

学生交流,教师动画演示。

(1)把圆柱体转化成长方体。

(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)

(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。

(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)

(5)推导圆柱体积公式。

讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)

教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:

圆柱的体积 = 底面积×高

V = S h

三、运用公示,解决问题

教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?

①知道圆柱的底面积和高,可以求圆柱的体积。

练习七的第1题:填表。

②知道圆柱的底面半径和高,可以求圆柱的体积。

试一试。

③知道圆柱的底面积直径和高,可以求圆柱的体积。

练一练的`第1题:计算下面各圆柱的体积。

④知道圆柱的底面周长和高,可以求圆柱的体积。

一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?

四、迁移应用,质疑反馈。

1、判断正误,对的画“√”,错误的画“×”。

2、计算下面各圆柱的体积。

3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。

五、全课小结。

这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。

六、作业布置:

完成作业纸上的习题

教学反思

本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。

而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

不足之处是:

1、

2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。

圆柱的体积教学设计 篇11

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

二、自主探究

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

(设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

(4)、实验后让学生对数据进行分析:用实验的方法得出的'数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)

圆柱的体积教学设计 篇12

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米; (2)d=4分米; (3)C=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的'底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2、公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积 底面积 高

圆柱体积 底面积 高

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

V=sh

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

课后“练一练”里的练习题。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

大家都在看